Cardiovascular Toxicity and Monitoring Methods in Oncologic Patients

  • Maxim Avanesov
  • Andreas Block
  • Gunnar K. Lund
Part of the Medical Radiology book series (MEDRAD)


Therapy of oncologic diseases requires a profound knowledge of the wide spectrum of available anticancer drugs and the ability of the oncologist to weigh the pros and cons of each medication in every single case individually to maintain a high standard of oncologic therapy.

Besides common side effects of anticancer drugs as headache, nausea, and diarrhea, adverse cardiovascular effects are, though less common, a crucial limitation with regard to the acceptance and continuation of the often long-standing therapy. Therefore, an appropriate choice of a single or multidrug medication, considering its special risks for cardiovascular side effects, is essential for preventing a preterm cancelation of a pivotal therapy.

This chapter offers an overview of widely used anticancer drugs, focusing on its certain cardiovascular effects, the possibility of cardioprotection, as well as important risk factors of treated patients, possibly boosting adverse cardiac effects.

Moreover, this chapter outlines commonly used monitoring methods for an appropriate surveillance, including those for high-risk oncologic patients with heart failure or arterial hypertension, and provides different treatment options in cases of manifest cardiovascular side effects.


Vascular Endothelial Growth Factor Cardiac Magnetic Resonance Late Gadolinium Enhancement Vascular Endothelial Growth Factor Level Cardiovascular Toxicity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





Angiotensin-converting enzyme


Break-point cluster-Abelson


Body mass index


Congestive heart failure


Chronic myeloid leukemia


Cardiac magnetic resonance imaging


Chemotherapy-related cardiac dysfunction


Endothelin-converting enzyme 1




Food and Drug Administration


Gastrointestinal stromal tumor


Human epidermal growth factor receptor 2


Herceptin adjuvant trial


Left ventricle


Left ventricular ejection fraction


Non-small-cell lung carcinoma


New York Heart Association


Polyethylene glycol


Relative risk


Tissue Doppler imaging


Tyrosine kinase inhibitor


Vascular endothelial growth factor


  1. Abraham WT, Jessup M, Casey DE et al (2009) 2009 focused update: ACCF/AHA Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation 119:1977–2016CrossRefPubMedGoogle Scholar
  2. Altena R, Perik PJ, van Veldhuisen DJ, de Vries EG, Gietema JA (2009) Cardiovascular toxicity caused by cancer treatment: strategies for early detection. Lancet Oncol 10(4):391–399CrossRefPubMedGoogle Scholar
  3. Arbuck SG, Strauss H, Rowinsky E, Christian M, Suffness M, Adams J, et al (1993) A reassessment of cardiac toxicity associated with Taxol. J Natl Cancer Inst Monogr (15):117–130Google Scholar
  4. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, Lordick F, Ohtsu A, Omuro Y, Satoh T et al (2010) Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376:687–697CrossRefPubMedGoogle Scholar
  5. Barrett-Lee PJ, Dixon JM, Farrell C et al (2009) Expert opinion on the use of anthracyclines in patients with advanced breast cancer at cardiac risk. Ann Oncol 20:816–827CrossRefPubMedGoogle Scholar
  6. Becker K, Erkenbrecher JF, Haussinger D, Frieling T (1999) Cardiotoxicity of the antiproliferative compound fluorouracil. Drugs 57:475–484CrossRefPubMedGoogle Scholar
  7. Bovelli D, Plataniotis G, Roila F, ESMO Guidelines Working Group (2010) Cardiotoxicity of chemotherapeutic agents and radio – therapy-related heart disease: ESMO Clinical Practice Guidelines. Ann Oncol 21:277–282CrossRefGoogle Scholar
  8. Bruder O, Wagner A, Jensen CJ, Schneider S, Ong P, Kispert E-M, Nassenstein K, Schlosser T, Sabin GV, Sechtem U, Mahrholdt H et al (2010) Myocardial scar visualized by cardiovascular magnetic resonance imaging predicts major adverse events in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 56(11):875–87Google Scholar
  9. Buck T, Breithardt OA, Faber L et al (2009) Manual zur Indikation und Durchführung der Echokardiographie. Clin Res Cardiol Suppl 4(Suppl1):3–51CrossRefGoogle Scholar
  10. Cadeddu C, Piras A, Mantovani G et al (2010) Protective effects of the angiotensin II receptor blocker telmisartan on epirubicin-induced inflammation, oxidative stress, and early ventricular impairment. Am Heart J 160:487.e1–7CrossRefPubMedGoogle Scholar
  11. Cardinale D, Sandri MT (2010) Role of biomarkers in chemotherapy-induced cardiotoxicity. Prog Cardiovasc Dis 53:121–129CrossRefPubMedGoogle Scholar
  12. Cardinale D, Sandri MT, Martinoni A et al (2000) Left ventricular dysfunction predicted by early troponin I release after high-dose chemotherapy. J Am Coll Cardiol 36(2):517–522CrossRefPubMedGoogle Scholar
  13. Cardinale D, Sandri MT, Colombo A et al (2004) Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation 109:2749–2754CrossRefPubMedGoogle Scholar
  14. Cardinale D, Colombo A, Sandri MT et al (2006) Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation 114(23):2474–2481CrossRefPubMedGoogle Scholar
  15. Cardinale D, Colombo A, Lamantia G, Colombo N, Civelli M, De Giacomi G et al (2010) Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol 55:213–220CrossRefPubMedGoogle Scholar
  16. Chen B, Peng X, Pentassuglia L, Lim CC, Sawyer DB (2007) Molecular and cellular mechanisms of anthracycline cardiotoxicity. Cardiovasc Toxicol 7:114–121CrossRefPubMedGoogle Scholar
  17. Chu TF, Rupnick MA, Kerkela R, Dallabrida SM, Zurakowski D, Nguyen L et al (2007) Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet 370:2011–2019PubMedCentralCrossRefPubMedGoogle Scholar
  18. Collins C, Weiden PL (1987) Cardiotoxicity of 5-fluorouracil. Cancer Treat Rep 71:733–736PubMedGoogle Scholar
  19. Crone SA, Zhao YY, Fan L, Gu Y, Minamisawa S, Liu Y et al (2002) ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat Med 8:459–465CrossRefPubMedGoogle Scholar
  20. Cvetković RS, Scott LJ (2005) Dexrazoxane: a review of its use for cardioprotection during anthracycline chemotherapy. Drugs 65:1005–1024CrossRefPubMedGoogle Scholar
  21. Danilouchkine MG, Westenberg JM, De Roos A, Reiber JC et al (2005) Operator induced variability in cardiovascular MR: left ventricular measurements and their reproducibility. J Cardiovasc Magn Reson 7(2):447–457CrossRefPubMedGoogle Scholar
  22. de Azambuja E, Procter MJ, van Veldhuisen DJ, Agbor-Tarh D, Metzger-Filho O, Steinseifer J, Untch M, Smith IE, Gianni L, Baselga J, Jackisch C, Piccart-Gebhart MJ, Suter TM (2014) Trastuzumab-associated cardiac events at 8 years of median follow-up in the Herceptin Adjuvant trial. J Clin Oncol 32(20):2159–2165CrossRefPubMedGoogle Scholar
  23. de Forni M, Malet-Martino MC, Jaillais P, Shubinski RE, Bachaud JM, Lemaire L et al (1992) Cardiotoxicity of high-dose continuous infusion fluorouracil: a prospective clinical study. J Clin Oncol 10:1795–1801PubMedGoogle Scholar
  24. Di Lorenzo G, Autorino R, Bruni G, Carteni G, Ricevuto E, Tudini M, Ficorella C, Romano C, Aieta M, Giordano A et al (2009) Cardiovascular toxicity following sunitinib therapy in metastatic renal cell carcinoma: a multicenter analysis. Ann Oncol 20:1535–1542CrossRefPubMedGoogle Scholar
  25. Di Marco A, Cassinelli G, Arcamone F (1981) The discovery of daunorubicin. Cancer Treat Rep 65(Suppl 4):3–8PubMedGoogle Scholar
  26. Early Breast Cancer Trialists’ Collaborative Group Ebctcg (2011) Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet 379:432–444CrossRefGoogle Scholar
  27. Eidem BW (2008) Identification of anthracycline cardiotoxicity: left ventricular ejection fraction is not enough. J Am Soc Echocardiogr 21:1290–1292CrossRefPubMedGoogle Scholar
  28. Eskilsson J, Albertsson M (1990) Failure of preventing 5-fluorouracil cardiotoxicity by prophylactic treatment with verapamil. Acta Oncol 29:1001–1003CrossRefPubMedGoogle Scholar
  29. Ewer MS, Lippman SM (2005) Type II chemotherapy-related cardiac dysfunction: time to recognize a new entity. J Clin Oncol 23:2900–2902CrossRefPubMedGoogle Scholar
  30. Ewer MS, Vooletich MT, Durand JB et al (2005) Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. J Clin Oncol 23:820–7826Google Scholar
  31. Fallah-Rad N, Lytwyn M, Fang T, Kirkpatrick I, Jassal DS et al (2008) Delayed contrast enhancement cardiac magnetic resonance imaging in trastuzumab induced cardiomyopathy. J Cardiovasc Magn Reson 10:5. doi: 10.1186/1532-429X-10-5
  32. Fallah-Rad N, Walker JR, Wassef A, Lytwyn M, Bohonis S, Fang T, Tian G, Kirkpatrick IDC, Singal PK et al (2011) The utility of cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging in predicting early left ventricular dysfunction in patients with human epidermal growth factor receptor II-positive breast cancer treated with adjuvant trastuzumab therapy. J Am Coll Cardiol 57(22):2263–2270Google Scholar
  33. Feldman AM, Lorell BH, Reis SE (2000) Trastuzumab in the treatment of metastatic breast cancer: anticancer therapy versus cardiotoxicity. Circulation 102(3):272–274CrossRefPubMedGoogle Scholar
  34. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676CrossRefPubMedGoogle Scholar
  35. Ferrari R, Ceconi C, Campo G, Cangiano E, Cavazza C, Secchiero P et al (2009) Mechanisms of remodelling. Circ J 73:1973–1982CrossRefPubMedGoogle Scholar
  36. Force T, Krause DS, Van Etten RA (2007) Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat Rev Cancer 7:332–344CrossRefPubMedGoogle Scholar
  37. Friedrich MG, Sechtem U, Schulz-Menger J, Holmvang G, Alakija P, Cooper LT, White JA, Abdel-Aty H et al (2009) Cardiovascular magnetic resonance in myocarditis: a JACC white paper. J Am Coll Cardiol 53(17):1475–1487Google Scholar
  38. Gewirtz DA (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 57(7):727–741CrossRefPubMedGoogle Scholar
  39. Gottdiener JS, Appelbaum FR, Ferrans VJ, Deisseroth A, Ziegler J (1981) Cardiotoxicity associated with high-dose cyclophosphamide therapy. Arch Intern Med 141:758–763CrossRefPubMedGoogle Scholar
  40. Grenier MA, Lipshultz SE (1998) Epidemiology of anthracycline cardiotoxicity in children and adults. Semin Oncol 25(4 Suppl 10):72–85PubMedGoogle Scholar
  41. Grün S, Schumm J, Greulich S, Wagner A, Schneider S, Bruder O, Kispert E-M, Hill S, Ong P, Klingel K, Kandolf R, Sechtem U et al (2012) Long-term follow-up of biopsy-proven viral myocarditis: predictors of mortality and incomplete recovery. J Am Coll Cardiol 59(18):1604–1615Google Scholar
  42. Hamed S, Barshack I, Luboshits G et al (2006) Erythropoietin improves myocardial performance in doxorubicin-induced cardiomyopathy. Eur Heart J 27:1876–1883CrossRefPubMedGoogle Scholar
  43. Hare JL, Brown JK, Leano R, Jenkins C, Woodward N, Marwick TH (2009) Use of myocardial deformation imaging to detect preclinical myocardial dysfunction before conventional measures in patients undergoing breast cancer treatment with trastuzumab. Am Heart J 158:294–301CrossRefPubMedGoogle Scholar
  44. Harrigan CJ, Peters DC, Gibson CM, Maron BJ, Manning WJ, Maron MS, Appelbaum E et al (2011) Hypertrophic cardiomyopathy: quantification of late gadolinium enhancement with contrast-enhanced cardiovascular MR imaging. Radiology 258:128–133CrossRefPubMedGoogle Scholar
  45. Hasinoff BB, Patel D (2010) Mechanisms of myocyte cytotoxicity induced by the multikinase inhibitor sorafenib. Cardiovasc Toxicol 10:1–8CrossRefPubMedGoogle Scholar
  46. Horacek JM, Jakl M, Horackova J, Pudil R, Jebavy L, Maly J (2009) Assessment of anthracycline-induced cardiotoxicity with electrocardiography. Exp Oncol 31:115–117PubMedGoogle Scholar
  47. Hudsmith L, Petersen S, Francis JM, Robson M, Neubauer S et al (2005) Normal human left and right ventricular and left atrial dimensions using steady state free precession magnetic resonance imaging. J Cardiovasc Magn Reson 7:775–782CrossRefPubMedGoogle Scholar
  48. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342CrossRefPubMedGoogle Scholar
  49. Jensen SA, Sorensen JB (2006) Risk factors and prevention of cardiotoxicity induced by 5-fluorouracil or capecitabine. Cancer Chemother Pharmacol 58:487–493CrossRefPubMedGoogle Scholar
  50. Joensuu H et al (2006) Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. N Engl J Med 354:809–820CrossRefPubMedGoogle Scholar
  51. Jurcut R, Wildiers H, Ganame J, D’hooge J, Paridaens R, Voigt JU (2008) Detection and monitoring of cardiotoxicity — what does modern cardiology offer? Support Care Cancer 16:437–445CrossRefPubMedGoogle Scholar
  52. Kalay N, Basar E, Ozdogru I et al (2006) Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol 48:2258–2262CrossRefPubMedGoogle Scholar
  53. Kantarjian HM, Hochhaus A, Saglio G, De Souza C, Flinn IW, Stenke L, Goh Y-T, Rosti G, Nakamae H, Gallagher NJ et al (2011) Nilotinib versus imatinib for the treatment of patients with newly diagnosed chronic phase, Philadelphia chromosome positive, chronic myeloid leukaemia: 24-month minimum follow-up of the phase 3 randomised ENESTnd trial. Lancet Oncol 12:841–851CrossRefPubMedGoogle Scholar
  54. Keefe DL (2002) Trastuzumab-associated cardiotoxicity. Cancer 95:1592–1600CrossRefPubMedGoogle Scholar
  55. Kerkela R, Grazette L, Yacobi R, Iliescu C, Patten R, Beahm C et al (2006) Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat Med 12:908–916CrossRefPubMedGoogle Scholar
  56. Kim RJ, Fieno DS, Parrish TB, Harris K, Chen EL, Simonetti O, Bundy J, Finn JP, Klocke FJ, Judd RM et al (1999) Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100(19):1992–2002Google Scholar
  57. Koh E, Nakamura T, Takahashi H (2004) Troponin-T and brain natriuretic peptide as predictors for adriamycin-induced cardiomyopathy in rats. Circ J 68:163–167CrossRefPubMedGoogle Scholar
  58. Ku DD, Zaleski JK, Liu S, Brock TA (1993) Vascular endothelial growth factor induces EDRF-dependent relaxation in coronary arteries. Am J Physiol 265(2 Pt 2):H586–H592PubMedGoogle Scholar
  59. Lestuzzi C, Crivellari D, Rigo F, Viel E, Meneguzzo N (2010) Capecitabine cardiac toxicity presenting as effort angina: a case report. J Cardiovasc Med (Hagerstown) 11:700–703CrossRefGoogle Scholar
  60. Lipshultz SE, Rifai N, Dalton VM et al (2004) The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. N Engl J Med 351(2):145–153CrossRefPubMedGoogle Scholar
  61. Lipshultz SE, Scully RE, Lipsitz SR et al (2010) Assessment of dexrazoxane as a cardioprotectant in doxorubicin-treated children with high-risk acute lymphoblastic leukaemia: long-term follow-up of a prospective, randomised, multicentre trial. Lancet Oncol 11:950–961PubMedCentralCrossRefPubMedGoogle Scholar
  62. Loyola E, Sadana R, Stein C The European health report 2012: charting the way to well-being. WHO Library Cataloguing in Publication Data ISBN 978 92 890 14274Google Scholar
  63. Lyman GH, Khorana AA, Falanga A, Clarke-Pearson D, Flowers C, Jahanzeb M, Kakkar A, Kuderer NM, Levine MN, Liebman H et al (2007) American Society of Clinical Oncology guideline: recommendations for venous thromboembolism prophylaxis and treatment in patients with cancer. J Clin Oncol 25:5490–5505CrossRefPubMedGoogle Scholar
  64. Lyu YL, Kerrigan JE, Lin CP, Azarva AM, Tsai YC, Ban Y et al (2007) Topoisomerase II beta mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res 67(18):8839–8846CrossRefPubMedGoogle Scholar
  65. Maceira AM, Prasad SK, Khan M, Pennell DJ et al (2006) Normalized left ventricular systolic and diastolic function by Steady State Free Precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 8:417–426CrossRefPubMedGoogle Scholar
  66. Maitland ML, Bakris GL, Black HR, Chen HX, Durand JB, Elliott WJ, Ivy SP, Leier CV, Lindenfeld J, Liu G et al (2010) Initial assessment, surveillance, and management of blood pressure in patients receiving vascular endothelial growth factor signaling pathway inhibitors. J Natl Cancer Inst 102:596–604PubMedCentralCrossRefPubMedGoogle Scholar
  67. Marchandise B, Schroeder E, Bosly A et al (1989) Early detection of doxorubicin cardiotoxicity: interest of Doppler echocardiographic analysis of left ventricular filling dynamics. Am Heart J 118:92–98CrossRefPubMedGoogle Scholar
  68. Martin M, Esteva FJ, Alba E et al (2009) Minimizing cardiotoxicity while optimizing treatment efficacy with trastuzumab: review and expert recommendations. Oncologist 14:1–11CrossRefPubMedGoogle Scholar
  69. Milan A, Puglisi E, Ferrari L, Bruno G, Losano I, Veglio F (2014) Arterial hypertension and cancer. Int J Cancer 134(10):2269–2277CrossRefPubMedGoogle Scholar
  70. Mir O, Ropert S, Alexandre J, Goldwasser F (2009) Hypertension as a surrogate marker for the activity of anti-VEGF agents. Ann Oncol 20:967–970CrossRefPubMedGoogle Scholar
  71. Miyagawa K, Emoto N, Widyantoro B et al (2010) Attenuation of doxorubicin-induced cardiomyopathy by endothelin-converting enzyme-1 ablation through prevention of mitochondrial biogenesis impairment. Hypertension 55:738–746CrossRefPubMedGoogle Scholar
  72. Monreal M, Falga’ C, Valle R et al (2006) Venous thromboembolism in patients with renal insufficiency: findings from the RIETE registry. Am J Med 119:1073–1079CrossRefPubMedGoogle Scholar
  73. Moore RA, Adel N, Riedel E et al (2011) High incidence of thromboembolic events in patients treated with cisplatin-based chemotherapy: a large retrospective analysis. J Clin Oncol 29:3466–3473CrossRefPubMedGoogle Scholar
  74. Nalluri SR, Chu D, Keresztes R, Zhu X, Wu S (2008) Risk of venous thromboembolism with the angiogenesis inhibitor bevacizumab in cancer patients: a meta-analysis. JAMA 300(19):2277–2285CrossRefPubMedGoogle Scholar
  75. Neilan TG, Jassal DS, Scully MF et al (2006) Iloprost attenuates doxorubicin-induced cardiac injury in a murine model without compromising tumour suppression. Eur Heart J 27:1251–1256CrossRefPubMedGoogle Scholar
  76. Perez EA, Koehler M, Byrne J, Preston AJ, Rappold E, Ewer MS (2008) Cardiac safety of lapatinib: pooled analysis of 3689 patients enrolled in clinical trials. Mayo Clin Proc 83:679–686CrossRefPubMedGoogle Scholar
  77. Perez EA, Romond EH, Suman VJ, Jeong JH, Davidson NE, Geyer CE Jr, Martino S, Mamounas EP, Kaufman PA, Wolmark N (2011) Four-year follow-up of trastuzumab plus adjuvant chemotherapy for operable human epidermal growth factor receptor 2-positive breast cancer: joint analysis of data from NCCTG N9831 and NSABP B-31. J Clin Oncol 29:3366–3373PubMedCentralCrossRefPubMedGoogle Scholar
  78. Popat S, Smith IE (2008) Therapy insight: anthracyclines and trastuzumab-the optimal management of cardiotoxic side effects. Nat Clin Pract Oncol 5(6):324–335PubMedGoogle Scholar
  79. Ranpura V, Pulipati B, Chu D, Zhu X, Wu S (2010) Increased risk of high-grade hypertension with bevacizumab in cancer patients: a meta-analysis. Am J Hypertens 23:460–468CrossRefPubMedGoogle Scholar
  80. Richards CJ, Je Y, Schutz FA, Heng DY, Dallabrida SM, Moslehi JJ, Choueiri TK (2011) Incidence and risk of congestive heart failure in patients with renal and nonrenal cell carcinoma treated with sunitinib. J Clin Oncol 29:3450–3456CrossRefPubMedGoogle Scholar
  81. Ryberg M, Nielsen D, Cortese G, Nielsen G, Skovsgaard T, Andersen PK (2008) New insight into epirubicin cardiac toxicity: competing risks analysis of 1097 breast cancer patients. J Natl Cancer Inst 100:1058–1067CrossRefPubMedGoogle Scholar
  82. Salvatorelli E, Menna P, Cascegna S, Liberi G, Calafiore AM, Gianni L et al (2006) Paclitaxel and docetaxel stimulation of doxorubicinol formation in the human heart: implications for cardiotoxicity of doxorubicin-taxane chemotherapies. J Pharmacol Exp Ther 318:424–433CrossRefPubMedGoogle Scholar
  83. Sandri MT, Salvatici M, Cardinale D, Zorzino L, Passerini R, Lentati P et al (2005) N-terminal pro-B-type natriuretic peptide after high-dose chemotherapy: a marker predictive of cardiac dysfunction? Clin Chem 51:1405–1410CrossRefPubMedGoogle Scholar
  84. Sawaya H, Sebag IA, Plana JC et al (2011) Early detection and prediction of cardiotoxicity in chemotherapy-treated patients. Am J Cardiol 107:1375–1380PubMedCentralCrossRefPubMedGoogle Scholar
  85. Scully RE, Lipshultz SE (2007) Anthracycline cardiotoxicity in long-term survivors of childhood cancer. Cardiovasc Toxicol 7:122–128CrossRefPubMedGoogle Scholar
  86. Sengupta PP, Northfelt DW, Gentile F et al (2008) Trastuzumab-induced cardiotoxicity: heart failure at the crossroads. Mayo Clin Proc 83:197–203CrossRefPubMedGoogle Scholar
  87. Slordal L, Spigset O (2006) Heart failure induced by non-cardiac drugs. Drug Saf 29:567–586CrossRefPubMedGoogle Scholar
  88. Suter TM, Procter M, van Veldhuisen DJ, Muscholl M, Bergh J, Carlomagno C et al (2007) Trastuzumab-associated cardiac adverse effects in the herceptin adjuvant trial. J Clin Oncol 25:3859–3865CrossRefPubMedGoogle Scholar
  89. Swain SM, Vici P (2004) The current and future role of dexrazoxane as a cardioprotectant in anthracycline treatment: expert panel review. J Cancer Res Clin Oncol 130:1–7CrossRefPubMedGoogle Scholar
  90. Taniguchi I (2005) Clinical significance of cyclophosphamide-induced cardiotoxicity. Intern Med 44:89–90CrossRefPubMedGoogle Scholar
  91. Tassan-Mangina S, Codorean D, Metivier M et al (2006) Tissue Doppler imaging and conventional echocardiography after anthracycline treatment in adults: early and late alterations of left ventricular function during a prospective study. Eur J Echocardiogr 7:141–146CrossRefPubMedGoogle Scholar
  92. Todaro MC, Oreto L, Qamar R, Paterick TE, Carerj S, Khandheria BK (2013) Cardiooncology: state of the heart. Int J Cardiol 168:680–687CrossRefPubMedGoogle Scholar
  93. Turrisi G, Montagnani F, Grotti S, Marinozzi C, Bolognese L, Fiorentini G (2010) Congestive heart failure during imatinib mesylate treatment. Int J Cardiol 145(1):148–150CrossRefPubMedGoogle Scholar
  94. Vaklavas C, Lenihan D, Kurzrock R, Tsimberidou AM (2010) Anti-vascular endothelial growth factor therapies and cardiovascular toxicity: what are the important clinical markers to target? Oncologist 15:130–141PubMedCentralCrossRefPubMedGoogle Scholar
  95. Van Dalen EC, Michiels EM, Caron HN, Kremer LC (2010) Different anthracycline derivates for reducing cardiotoxicity in cancer patients. Cochrane Database Syst Rev (3):CD005006Google Scholar
  96. Van Dalen EC, Caron HN, Dickinson HO, Kremer LC (2011) Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst Rev (6):CD003917Google Scholar
  97. Von Hoff DD, Layard MW, Basa P et al (1979) Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med 91(5):710–717CrossRefGoogle Scholar
  98. Wang J, Khoury DS, Thohan V et al (2007) Global diastolic strain rate for the assessment of left ventricular relaxation and filling pressures. Circulation 115:1376–1383CrossRefPubMedGoogle Scholar
  99. Wassmuth R, Lentzsch S, Erdbruegger U, Schulz-Menger J, Doerken B, Dietz R, Friedrich MG et al (2001) Subclinical cardiotoxic effects of anthracyclines as assessed by magnetic resonance imaging-A pilot study. Am Heart J 141:1007–1013CrossRefPubMedGoogle Scholar
  100. Wu S, Chen JJ, Kudelka A, Lu J, Zhu X (2008a) Incidence and risk of hypertension with sorafenib in patients with cancer: a systematic review and meta-analysis. Lancet Oncol 9(2):117–123Google Scholar
  101. Wu E, Ortiz JT, Tejedor P, Lee DC, Bucciarelli-Ducci C, Kansal P, Carr JC, Holly TA, Lloyd-Jones D, Klocke FJ et al (2008b) Infarct size by contrast enhanced cardiac magnetic resonance is a stronger predictor of outcomes than left ventricular ejection fraction or endsystolic volume index: prospective cohort study. Heart 94(6):730–736Google Scholar
  102. Yeh ET, Bickford CL (2009) Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol 53:2231–2247CrossRefPubMedGoogle Scholar
  103. Yeh ET, Tong AT, Lenihan DJ et al (2004) Cardiovascular complications of cancer therapy: diagnosis, pathogenesis, and management. Circulation 109:3122–3131CrossRefPubMedGoogle Scholar
  104. Zhao YY, Sawyer DR, Baliga RR, Opel DJ, Han X, Marchionni MA et al (1998) Neuregulins promote survival and growth of cardiac myocytes: persistence of ErbB2 and ErbB4 expression in neonatal and adult ventricular myocytes. J Biol Chem 273:10261–10269CrossRefPubMedGoogle Scholar
  105. Zhu X, Stergiopoulos K, Wu S (2009) Risk of hypertension and renal dysfunction with an angiogenesis inhibitor sunitinib: systematic review and meta-analysis. Acta Oncol 48:9–17CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Maxim Avanesov
    • 1
  • Andreas Block
    • 2
  • Gunnar K. Lund
    • 1
  1. 1.Department of Diagnostic and Interventional Radiology, Center for Radiology and EndoscopyUniversity Medical Center Hamburg-EppendorfHamburgGermany
  2. 2.Department of Internal Medicine II and Clinic (Oncology Center), Center for OncologyUniversity Medical Center Hamburg-EppendorfHamburgGermany

Personalised recommendations