Diffusion-Weighted Methods

  • Peter Raab
  • Heinrich Lanfermann
Part of the Medical Radiology book series (MEDRAD)


During the last two decades the technical advancements of Diffusion Weighted Imaging have enabled the precise and repeatable characterization of brain tumor microstructure non-invasively, mainly by the use of the apparent diffusion coefficient (ADC) as a biomarker. This has led to many applications aiding in tumor grading, prognosis assessment and treatment monitoring.


Apparent Diffusion Coefficient Fractional Anisotropy Boron Neutron Capture Therapy Central Neurocytomas High Apparent Diffusion Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alvarez-Linera J, Benito-Leon J, Escribano J et al (2008) Predicting the histopathological grade of cerebral gliomas using high b value MR DW imaging at 3-tesla. J Neuroimaging 18:276–281PubMedCrossRefGoogle Scholar
  2. Arvinda HR, Kesavadas C, Sarma PS et al (2009) Glioma grading: sensitivity, specificity, positive and negative predictive values of diffusion and perfusion imaging. J Neurooncol 94:87–96PubMedCrossRefGoogle Scholar
  3. Atlas SW, DuBois P, Singer MB et al (2000) Diffusion measurements in intracranial hematomas: implications for MR imaging of acute stroke. AJNR Am J Neuroradiol 21:1190–1194PubMedGoogle Scholar
  4. Bai X, Zhang Y, Liu Y et al (2011) Grading of supratentorial astrocytic tumors by using the difference of ADC value. Neuroradiology 53:533–539PubMedCrossRefGoogle Scholar
  5. Bammer R (2003) Basic principles of diffusion-weighted imaging. Eur J Radiol 45:169–184PubMedCrossRefGoogle Scholar
  6. Basser PJ (1995) Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed 8:333–344PubMedCrossRefGoogle Scholar
  7. Basser PJ, Özarslan E (2009) Introduction to diffusion MR. In: Johansen-Berg H, Behrens TEJ (eds) Diffusion MRI: from quantitative measurement to in vivo neuroanatomy. Academic Press, Elsevier, London/Burlington/San DiegoGoogle Scholar
  8. Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111:209–219PubMedCrossRefGoogle Scholar
  9. Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66:259–267PubMedCrossRefPubMedCentralGoogle Scholar
  10. Beaulieu C (2009) The biological basis of diffusion anisotropy. In: Johansen-Berg H, Behrens TEJ (eds) Diffusion MRI: from quantitative measurement to in vivo neuroanatomy. Academic Press, Elsevier, London/Burlington/San Diego, pp 106–126Google Scholar
  11. Beaulieu C, Allen PS (1994a) Water diffusion in the giant axon of the squid: implications for diffusion-weighted MRI of the nervous system. Magn Reson Med 32:579–583PubMedCrossRefGoogle Scholar
  12. Beaulieu C, Allen PS (1994b) Determinants of anisotropic water diffusion in nerves. Magn Reson Med 31:394–400PubMedCrossRefGoogle Scholar
  13. Berghoff AS, Spanberger T, Ilhan-Mutlu A et al (2013) Preoperative diffusion-weighted imaging of single brain metastases correlates with patient survival times. PLoS One 8:e55464PubMedCrossRefPubMedCentralGoogle Scholar
  14. Brown R (1828) A brief account of microscopical observations made in the months of June, July and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Philos Mag 4:161–173Google Scholar
  15. Bulakbasi N, Guvenc I, Onguru O et al (2004) The added value of the apparent diffusion coefficient calculation to magnetic resonance imaging in the differentiation and grading of malignant brain tumors. J Comput Assist Tomogr 28:735–746PubMedCrossRefGoogle Scholar
  16. Busch E, Beaulieu C, de Crespigny A et al (1998) Diffusion MR imaging during acute subarachnoid hemorrhage in rats. Stroke 29:2155–2161PubMedCrossRefGoogle Scholar
  17. Byrnes TJ, Barrick TR, Bell BA et al (2011) Diffusion tensor imaging discriminates between glioblastoma and cerebral metastases in vivo. NMR Biomed 24:54–60PubMedCrossRefGoogle Scholar
  18. Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94:630–638CrossRefGoogle Scholar
  19. Chenevert TL, Brunberg JA, Pipe JG (1990) Anisotropic diffusion in human white matter: demonstration with MR techniques in vivo. Radiology 177:401–405PubMedCrossRefGoogle Scholar
  20. Chenevert TL, Sundgren PC, Ross BD (2006) Diffusion imaging: insight to cell status and cytoarchitecture. Neuroimaging Clin N Am 16:619–632PubMedCrossRefGoogle Scholar
  21. Desprechins B, Stadnik T, Koerts G et al (1999) Use of diffusion-weighted MR imaging in differential diagnosis between intracerebral necrotic tumors and cerebral abscesses [see comments]. AJNR Am J Neuroradiol 20:1252–1257PubMedGoogle Scholar
  22. Ebisu T, Tanaka C, Umeda M et al (1996) Discrimination of brain abscess from necrotic or cystic tumors by diffusion-weighted echo planar imaging. Magn Reson Imaging 14:1113–1116PubMedCrossRefGoogle Scholar
  23. Ebisu T, Tanaka C, Umeda M et al (1997) Hemorrhagic and nonhemorrhagic stroke: diagnosis with diffusion-weighted and T2-weighted echo-planar MR imaging. Radiology 203:823–828PubMedCrossRefGoogle Scholar
  24. Ellingson BM, Cloughesy TF, Lai A et al (2011) Graded functional diffusion map-defined characteristics of apparent diffusion coefficients predict overall survival in recurrent glioblastoma treated with bevacizumab. Neuro Oncol 13:1151–1161PubMedCrossRefPubMedCentralGoogle Scholar
  25. Ellingson BM, Cloughesy TF, Lai A et al (2012a) Nonlinear registration of diffusion-weighted images improves clinical sensitivity of functional diffusion maps in recurrent glioblastoma treated with bevacizumab. Magn Reson Med 67:237–245PubMedCrossRefGoogle Scholar
  26. Ellingson BM, Cloughesy TF, Zaw T et al (2012b) Functional diffusion maps (fDMs) evaluated before and after radiochemotherapy predict progression-free and overall survival in newly diagnosed glioblastoma. Neuro Oncol 14:333–343PubMedCrossRefPubMedCentralGoogle Scholar
  27. Ellingson BM, Cloughesy TF, Lai A et al (2013) Quantitative probabilistic functional diffusion mapping in newly diagnosed glioblastoma treated with radiochemotherapy. Neuro Oncol 15:382–390PubMedCrossRefPubMedCentralGoogle Scholar
  28. Federau C, O’Brien K (2015) Increased brain perfusion contrast with T2 -prepared intravoxel incoherent motion (T2prep IVIM) MRI. NMR Biomed 28:9–16PubMedGoogle Scholar
  29. Fick A (1855) Ueber diffusion. Ann Phys Lpz 170:59–86CrossRefGoogle Scholar
  30. Field AS, Alexander AL (2004) Diffusion tensor imaging in cerebral tumor diagnosis and therapy. Top Magn Reson Imaging 15:315–324PubMedCrossRefGoogle Scholar
  31. Grech-Sollars M, Saunders DE, Phipps KP et al (2012) Survival analysis for apparent diffusion coefficient measures in children with embryonal brain tumours. Neuro Oncol 14:1285–1293PubMedCrossRefPubMedCentralGoogle Scholar
  32. Guo AC, Cummings TJ, Dash RC et al (2002) Lymphomas and high-grade astrocytomas: comparison of water diffusibility and histologic characteristics. Radiology 224:177–183PubMedCrossRefGoogle Scholar
  33. Gupta A, Young RJ, Karimi S et al (2011) Isolated diffusion restriction precedes the development of enhancing tumor in a subset of patients with glioblastoma. AJNR Am J Neuroradiol 32:1301–1306PubMedCrossRefPubMedCentralGoogle Scholar
  34. Hahn EL (1950) Spin echoes. Phys Rev 80:580–594CrossRefGoogle Scholar
  35. Hattingen E, Franz K, du Mesnil de Rochemont R (2008) Medulloblastoma of the cerebellopontile angle. Rofo 180:834–835PubMedCrossRefGoogle Scholar
  36. Hattingen E, Jurcoane A, Bahr O et al (2011) Bevacizumab impairs oxidative energy metabolism and shows antitumoral effects in recurrent glioblastomas: a 31P/1H MRSI and quantitative magnetic resonance imaging study. Neuro Oncol. doi: 10.1093/neuonc/nor132 Google Scholar
  37. Helenius J, Soinne L, Perkio J et al (2002) Diffusion-weighted MR imaging in normal human brains in various age groups. AJNR Am J Neuroradiol 23:194–199PubMedGoogle Scholar
  38. Hiramatsu R, Kawabata S, Furuse M et al (2013) Identification of early and distinct glioblastoma response patterns treated by boron neutron capture therapy not predicted by standard radiographic assessment using functional diffusion map. Radiat Oncol 8:192PubMedCrossRefPubMedCentralGoogle Scholar
  39. Hoyt WF, Baghdassarian SA (1969) Optic glioma of childhood. Natural history and rationale for conservative management. Br J Ophthalmol 53:793–798PubMedCrossRefPubMedCentralGoogle Scholar
  40. Hyland M, Bermel RA, Cohen JA (2013) Restricted diffusion preceding gadolinium enhancement in large or tumefactive demyelinating lesions. Neurol Clin Pract 3:15–21PubMedCrossRefPubMedCentralGoogle Scholar
  41. Jensen JH, Helpern JA (2003) Quantifying Non-Gaussian water diffusion by means of pulsed-field-gradient MRI. In: 11th annual meeting of ISMRM, Toronto. p 2154Google Scholar
  42. Jensen JH, Helpern JA (2010) MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed 23:698–710PubMedCrossRefPubMedCentralGoogle Scholar
  43. Jensen JH, Helpern JA, Ramani A et al (2005) Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 53:1432–1440PubMedCrossRefGoogle Scholar
  44. Jones DK (2009) Gaussian modeling of the diffusion signal. In: Johansen-Berg H, Behrens TEJ (eds) Diffusion MRI: from quantitative measurement to in vivo neuroanatomy. Academic Press, Elsevier, London/Burlington/San Diego, pp 38–52Google Scholar
  45. Jones DK, Cercignani M (2010) Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed 23:803–820PubMedCrossRefGoogle Scholar
  46. Kocaoglu M, Ors F, Bulakbasi N et al (2009) Central neurocytoma: proton MR spectroscopy and diffusion weighted MR imaging findings. Magn Reson Imaging 27:434–440PubMedCrossRefGoogle Scholar
  47. Kono K, Inoue Y, Nakayama K et al (2001) The role of diffusion-weighted imaging in patients with brain tumors. AJNR Am J Neuroradiol 22:1081–1088PubMedGoogle Scholar
  48. Koral K, Gargan L, Bowers DC et al (2008) Imaging characteristics of atypical teratoid-rhabdoid tumor in children compared with medulloblastoma. AJR Am J Roentgenol 190:809–814PubMedCrossRefGoogle Scholar
  49. Koral K, Zhang S, Gargan L et al (2013) Diffusion MRI improves the accuracy of preoperative diagnosis of common pediatric cerebellar tumors among reviewers with different experience levels. AJNR Am J Neuroradiol 34:2360–2365PubMedCrossRefGoogle Scholar
  50. Lazar M (2010) Mapping brain anatomical connectivity using white matter tractography. NMR Biomed 23:821–835PubMedCrossRefPubMedCentralGoogle Scholar
  51. Le Bihan D (1995) Molecular diffusion, tissue microdynamics and microstructure. NMR Biomed 8:375–386PubMedCrossRefGoogle Scholar
  52. Le Bihan D (2012) Diffusion, confusion and functional MRI. Neuroimage 62:1131–1136PubMedCrossRefGoogle Scholar
  53. Le Bihan D, Johansen-Berg H (2012) Diffusion MRI at 25: exploring brain tissue structure and function. Neuroimage 61:324–341PubMedCrossRefPubMedCentralGoogle Scholar
  54. Le Bihan D, van Zijl P (2002) From the diffusion coefficient to the diffusion tensor. NMR Biomed 15:431–434PubMedCrossRefGoogle Scholar
  55. Le Bihan D, Breton E, Lallemand D et al (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407PubMedCrossRefGoogle Scholar
  56. Lee EJ, terBrugge K, Mikulis D et al (2011) Diagnostic value of peritumoral minimum apparent diffusion coefficient for differentiation of glioblastoma multiforme from solitary metastatic lesions. AJR Am J Roentgenol 196:71–76PubMedCrossRefGoogle Scholar
  57. Lober RM, Cho YJ, Tang Y et al (2014) Diffusion-weighted MRI derived apparent diffusion coefficient identifies prognostically distinct subgroups of pediatric diffuse intrinsic pontine glioma. J Neurooncol 117:175–182PubMedCrossRefGoogle Scholar
  58. Lu S, Ahn D, Johnson G et al (2003) Peritumoral diffusion tensor imaging of high-grade gliomas and metastatic brain tumors. AJNR Am J Neuroradiol 24:937–941PubMedGoogle Scholar
  59. Lu S, Ahn D, Johnson G et al (2004) Diffusion-tensor MR imaging of intracranial neoplasia and associated peritumoral edema: introduction of the tumor infiltration index. Radiology 232:221–228PubMedCrossRefGoogle Scholar
  60. Lu H, Jensen JH, Ramani A et al (2006) Three-dimensional characterization of non-gaussian water diffusion in humans using diffusion kurtosis imaging. NMR Biomed 19:236–247PubMedCrossRefGoogle Scholar
  61. Maier SE, Gudbjartsson H, Patz S et al (1998) Line scan diffusion imaging: characterization in healthy subjects and stroke patients. AJR Am J Roentgenol 171:85–93PubMedCrossRefGoogle Scholar
  62. Maier SE, Sun Y, Mulkern RV (2010) Diffusion imaging of brain tumors. NMR Biomed 23:849–864PubMedCrossRefPubMedCentralGoogle Scholar
  63. Miron S, Tal S, Achiron A (2013) Diffusion tensor imaging analysis of tumefactive giant brain lesions in multiple sclerosis. J Neuroimaging 23:453–459PubMedCrossRefGoogle Scholar
  64. Mong S, Ellingson BM, Nghiemphu PL et al (2012) Persistent diffusion-restricted lesions in bevacizumab-treated malignant gliomas are associated with improved survival compared with matched controls. AJNR Am J Neuroradiol 33:1763–1770PubMedCrossRefGoogle Scholar
  65. Mulkern RV, Haker SJ, Maier SE (2009) On high b diffusion imaging in the human brain: ruminations and experimental insights. Magn Reson Imaging 27:1151–1162PubMedCrossRefPubMedCentralGoogle Scholar
  66. Padhani AR, Liu G, Koh DM et al (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia (New York NY) 11:102–125CrossRefGoogle Scholar
  67. Pavlisa G, Rados M, Pavic L et al (2009) The differences of water diffusion between brain tissue infiltrated by tumor and peritumoral vasogenic edema. Clin Imaging 33:96–101PubMedCrossRefGoogle Scholar
  68. Pierce T, Kranz PG, Roth C et al (2014) Use of apparent diffusion coefficient values for diagnosis of pediatric posterior fossa tumors. Neuroradiol J 27:233–244PubMedGoogle Scholar
  69. Pierpaoli C, Jezzard P, Basser PJ et al (1996) Diffusion tensor MR imaging of the human brain. Radiology 201:637–648PubMedCrossRefGoogle Scholar
  70. Pipe J (2009) Pulse sequences for diffusion-weighted MRI. In: Johansen-Berg H, Behrens TEJ (eds) Diffusion MRI: from quantitative measurement to in vivo neuroanatomy. Academic Press, Elsevier, London/Burlington/San Diego, pp 11–35CrossRefGoogle Scholar
  71. Pope WB, Kim HJ, Huo J et al (2009) Recurrent glioblastoma multiforme: ADC histogram analysis predicts response to bevacizumab treatment. Radiology 252:182–189PubMedCrossRefGoogle Scholar
  72. Pope WB, Lai A, Mehta R et al (2011) Apparent diffusion coefficient histogram analysis stratifies progression-free survival in newly diagnosed bevacizumab-treated glioblastoma. AJNR Am J Neuroradiol 32:882–889PubMedCrossRefGoogle Scholar
  73. Poretti A, Meoded A, Cohen KJ et al (2013) Apparent diffusion coefficient of pediatric cerebellar tumors: a biomarker of tumor grade? Pediatr Blood Cancer 60:2036–2041PubMedGoogle Scholar
  74. Price SJ, Jena R, Burnet NG et al (2006) Improved delineation of glioma margins and regions of infiltration with the use of diffusion tensor imaging: an image-guided biopsy study. AJNR Am J Neuroradiol 27:1969–1974PubMedGoogle Scholar
  75. Provenzale JM, McGraw P, Mhatre P et al (2004) Peritumoral brain regions in gliomas and meningiomas: investigation with isotropic diffusion-weighted MR imaging and diffusion-tensor MR imaging. Radiology 232:451–460PubMedCrossRefGoogle Scholar
  76. Purcell EM, Torrey HC, Pound RV (1946) Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 69:37–38CrossRefGoogle Scholar
  77. Raab P, Hattingen E, Franz K et al (2010) Cerebral gliomas: diffusional kurtosis imaging analysis of microstructural differences. Radiology 254:876–881PubMedCrossRefGoogle Scholar
  78. Saini J, Chatterjee S, Thomas B et al (2011) Conventional and advanced magnetic resonance imaging in tumefactive demyelination. Acta Radiol 52:1159–1168PubMedCrossRefGoogle Scholar
  79. Stejskal E, Tanner J (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292CrossRefGoogle Scholar
  80. Tabesh A, Jensen JH, Ardekani BA et al (2010) Robust estimation of kurtosis and diffusion tensors in diffusional kurtosis imaging. In: Annual meeting of ISMRM, StockholmGoogle Scholar
  81. Takahashi M, Hackney DB, Zhang G et al (2002) Magnetic resonance microimaging of intraaxonal water diffusion in live excised lamprey spinal cord. Proc Natl Acad Sci U S A 99:16192–16196PubMedCrossRefPubMedCentralGoogle Scholar
  82. Tlili-Graiess K, Mama N, Arifa N et al (2014) Diffusion weighted MR imaging and proton MR spectroscopy findings of central neurocytoma with pathological correlation. J Neuroradiol 41:243–250PubMedCrossRefGoogle Scholar
  83. Toh CH, Wei KC, Ng SH et al (2011) Differentiation of brain abscesses from necrotic glioblastomas and cystic metastatic brain tumors with diffusion tensor imaging. AJNR Am J Neuroradiol. doi: 10.3174/ajnr.A2581 Google Scholar
  84. Tsuchiya K, Fujikawa A, Nakajima M et al (2005) Differentiation between solitary brain metastasis and high-grade glioma by diffusion tensor imaging. Br J Radiol 78:533–537PubMedCrossRefGoogle Scholar
  85. Van Cauter S, Veraart J, Sijbers J et al (2012) Gliomas: diffusion kurtosis MR imaging in grading. Radiology 263:492–501PubMedCrossRefGoogle Scholar
  86. Yacoub HA, Al-Qudahl ZA, Lee HJ et al (2011) Tumefactive multiple sclerosis presenting as acute ischemic stroke. J Vasc Interv Neurol4:21–23PubMedPubMedCentralGoogle Scholar
  87. Yamasaki F, Kurisu K, Satoh K et al (2005) Apparent diffusion coefficient of human brain tumors at MR imaging. Radiology 235:985–991PubMedCrossRefGoogle Scholar
  88. Zakaria R, Das K, Radon M et al (2014) Diffusion-weighted MRI characteristics of the cerebral metastasis to brain boundary predicts patient outcomes. BMC Med Imaging 14:26PubMedCrossRefPubMedCentralGoogle Scholar
  89. Zulfiqar M, Yousem DM, Lai H (2013) ADC values and prognosis of malignant astrocytomas: does lower ADC predict a worse prognosis independent of grade of tumor?–a meta-analysis. AJR Am J Roentgenol 200:624–629PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical SchoolHannoverGermany

Personalised recommendations