Bone Marrow: Chemotherapy

  • Björn Jobke
  • Hans Bloem
Part of the Medical Radiology book series (MEDRAD)


Most systemic diseases affecting the bone marrow (BM) will have a major impact on disease progression and life expectancy. Toxic effects on bone marrow caused by exogenic agents such as chemotherapy or other medications that are non-cell specific significantly influence treatment outcome and survival. The bone marrow with its active hematopoietic components, vital microenvironment, and complex cellular interactions among each other and with adjacent support tissue such as bone is vulnerable to a vast number of toxic stresses. We are just beginning to understand the role of normal and yet disease-unaffected bone marrow in patients treated for various illnesses. Morphological and compositional changes, as imaged with MRI, reflect a static picture of dynamic and ongoing biochemical cellular process. Newer techniques, for example, diffusion-weighted MR imaging brings us now closer to the cellular level. This is particularly important for the correct interpretation of bone marrow signal changes in cancer patients receiving chemotherapy. Bone marrow edema, hypo- or aplasia, reconversion, and necrosis are the most frequent changes associated with a broad spectrum of chemotherapeutic agents and their additives. The knowledge of chemotherapeutic regimes and the timeline of administration are essential for the interpretation of bone marrow.


Bone Marrow Bone Marrow Edema Normal Bone Marrow Magnetic Resonance Sequence Bone Marrow Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





Signal intensity


-Weighted image(s)






  1. Altehoefer C, Laubenberger J, Lange W, Kraus A, Allmann KH, Uhrmeister P, Langer M (1997) Prospective evaluation of bone marrow signal changes on magnetic resonance tomography during high-dose chemotherapy and peripheral blood stem cell transplantation in patients with breast cancer. Invest Radiol 32:613–620CrossRefPubMedGoogle Scholar
  2. Altehoefer C, Bertz H, Ghanem NA, Langer M (2001) Extent and time course of morphological changes of bone marrow induced by granulocyte-colony stimulating factor as assessed by magnetic resonance imaging of healthy blood stem cell donors. J Magn Reson Imaging 14:141–146CrossRefPubMedGoogle Scholar
  3. Bartl R (2012) Histology of normal bone and bone marrow and their main disorders. In: Baur-Melnyk A (ed) Medical radiology. Springer, Berlin/Heidelberg, pp 3–20Google Scholar
  4. Baur A, Stabler A, Bartl R, Lamerz R, Scheidler J, Reiser M (1997) MRI gadolinium enhancement of bone marrow: age-related changes in normals and in diffuse neoplastic infiltration. Skeletal Radiol 26:414–418CrossRefPubMedGoogle Scholar
  5. Berger FH, van Dijke CF, Maas M (2009) Diffuse marrow changes. Semin Musculoskelet Radiol 13:104–110CrossRefPubMedGoogle Scholar
  6. Berman E, Nicolaides M, Maki RG, Fleisher M, Chanel S, Scheu K, Wilson BA, Heller G, Sauter NP (2006) Altered bone and mineral metabolism in patients receiving imatinib mesylate. N Engl J Med 354:2006–2013CrossRefPubMedGoogle Scholar
  7. Bredella MA (2010) Perspective: the bone-fat connection. Skeletal Radiol 39:729–731CrossRefPubMedGoogle Scholar
  8. Burton C, Azzi A, Kerridge I (2002) Adverse events after imatinib mesylate therapy. N Engl J Med 346:712–713CrossRefPubMedGoogle Scholar
  9. Calderone RR, Larsen JM (1996) Overview and classification of spinal infections. Orthop Clin North Am 27:1–8PubMedGoogle Scholar
  10. Campiotti L, Codari R, Appio L, Ultori C, Solbiati F, Maria GA, Venco A (2007) Bone marrow necrosis related to imatinib mesylate therapy for cml bilineal blast crisis. Leuk Res 31:1768–1770CrossRefPubMedGoogle Scholar
  11. Carroll KW, Feller JF, Tirman PF (1997) Useful internal standards for distinguishing infiltrative marrow pathology from hematopoietic marrow at MRI. J Magn Reson Imaging 7:394–398CrossRefPubMedGoogle Scholar
  12. Daldrup-Link HE, Henning T, Link TM (2007) MR imaging of therapy-induced changes of bone marrow. Eur Radiol 17:743–761PubMedCentralCrossRefPubMedGoogle Scholar
  13. Daldrup-Link HE, Mohanty A, Cuenod C, Pichler B, Link T (2009) New perspectives on bone marrow contrast agents and molecular imaging. Semin Musculoskelet Radiol 13:145–156CrossRefPubMedGoogle Scholar
  14. Dietrich O, Biffar A, Reiser MF, Baur-Melnyk A (2009) Diffusion-weighted imaging of bone marrow. Semin Musculoskelet Radiol 13:134–144CrossRefPubMedGoogle Scholar
  15. Dreyer Z, Blah J, Bleyer A (2005) Late effects of childhood cancers and its treatment. In: Principles and practice of pediatric oncology. Lippincott Williams & Wilkins, Philadelphia, pp 1431–1461Google Scholar
  16. Duong S, Sallis JG, Zee SY (2004) Malignant fibrous histiocytoma arising within a bone infarct in a patient with sickle cell trait. Int J Surg Pathol 12:67–73CrossRefPubMedGoogle Scholar
  17. Ghanem N, Lerche A, Lohrmann C, Altehoefer C, Henke M, Langer M (2007) Quantitative and semiquantitative evaluation of erythropoietin-induced bone marrow signal changes in lumbar spine MRI in patients with tumor anemia. Onkologie 30:303–308CrossRefPubMedGoogle Scholar
  18. Gold GE, Han E, Stainsby J, Wright G, Brittain J, Beaulieu C (2004) Musculoskeletal MRI at 3.0 T: relaxation times and image contrast. AJR Am J Roentgenol 183:343–351CrossRefPubMedGoogle Scholar
  19. Hall E (2011) Radiobiology for the radiologist. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  20. Hanna SL, Fletcher BD (2004) Musculoskeletal effects of therapy in patients treated for hematological malignancies. In: Guermazi A (ed) Radiological imaging in hematological malignancies, Medical radiology. Springer, Berlin/Heidelberg, pp 485–509CrossRefGoogle Scholar
  21. Hillengass J, Bauerle T, Bartl R, Andrulis M, McClanahan F, Laun FB, Zechmann CM, Shah R, Wagner-Gund B, Simon D, Heiss C, Neben K, Ho AD, Schlemmer HP, Goldschmidt H, Delorme S, Stieltjes B (2011a) Diffusion-weighted imaging for non-invasive and quantitative monitoring of bone marrow infiltration in patients with monoclonal plasma cell disease: a comparative study with histology. Br J Haematol 153:721–728CrossRefPubMedGoogle Scholar
  22. Hillengass J, Stieltjes B, Bauerle T, McClanahan F, Heiss C, Hielscher T, Wagner-Gund B, Habetler V, Goldschmidt H, Schlemmer HP, Delorme S, Zechmann CM (2011b) Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted imaging of bone marrow in healthy individuals. Acta Radiol 52:324–330CrossRefPubMedGoogle Scholar
  23. Hirbe A, Morgan EA, Uluckan O, Weilbaecher K (2006) Skeletal complications of breast cancer therapies. Clin Cancer Res 12:6309s–6314sPubMedCentralCrossRefPubMedGoogle Scholar
  24. Hwang S, Panicek DM (2007a) Magnetic resonance imaging of bone marrow in oncology, part 1. Skeletal Radiol 36:913–920CrossRefPubMedGoogle Scholar
  25. Hwang S, Panicek DM (2007b) Magnetic resonance imaging of bone marrow in oncology, part 2. Skeletal Radiol 36:1017–1027CrossRefPubMedGoogle Scholar
  26. Karmazyn B, Cohen MD, Jennings SG, Robertson KA (2012) Marrow signal changes observed in follow-up whole-body MRI studies in children and young adults with neurofibromatosis type 1 treated with imatinib mesylate (Gleevec) for plexiform neurofibromas. Pediatr Radiol 42:1218–1222CrossRefPubMedGoogle Scholar
  27. Kauczor HU, Brix G, Dietl B, Jarosch K, Knopp MV, van Kaick G (1993) Bone marrow after autologous blood stem cell transplantation and total body irradiation: magnetic resonance and chemical shift imaging. Magn Reson Imaging 11:965–975CrossRefPubMedGoogle Scholar
  28. Khosla S, Burr D, Cauley J, Dempster DW, Ebeling PR, Felsenberg D, Gagel RF, Gilsanz V, Guise T, Koka S, McCauley LK, McGowan J, McKee MD, Mohla S, Pendrys DG, Raisz LG, Ruggiero SL, Shafer DM, Shum L, Silverman SL, Van Poznak CH, Watts N, Woo SB, Shane E (2008) Oral bisphosphonate-induced osteonecrosis: risk factors, prediction of risk using serum CTX testing, prevention, and treatment. J Oral Maxillofac Surg 66:1320–1321CrossRefPubMedGoogle Scholar
  29. Kornreich L, Horev G, Yaniv I, Stein J, Grunebaum M, Zaizov R (1997) Iron overload following bone marrow transplantation in children: MR findings. Pediatr Radiol 27:869–872CrossRefPubMedGoogle Scholar
  30. Kourbeti IS, Ziakas PD, Mylonakis E (2014) Biologic therapies in rheumatoid arthritis and the risk of opportunistic infections: a meta-analysis. Clin Infect Dis 58:1649–1657CrossRefPubMedGoogle Scholar
  31. Lang P, Fritz R, Vahlensieck M, Majumdar S, Berthezene Y, Grampp S, Genant HK (1992) Residual and reconverted hematopoietic bone marrow in the distal femur. Spin-echo and opposed-phase gradient-echo MRT. Rofo 156:89–95CrossRefPubMedGoogle Scholar
  32. Layer G, Sander W, Traber F, Block W, Ko Y, Ziske CG, Konig R, Vahlensieck M, Schild HH (2000) The diagnostic problems in magnetic resonance tomography of the bone marrow in patients with malignomas under G-CSF therapy. Radiologe 40:710–715CrossRefPubMedGoogle Scholar
  33. Liney GP, Bernard CP, Manton DJ, Turnbull LW, Langton CM (2007) Age, gender, and skeletal variation in bone marrow composition: a preliminary study at 3.0 Tesla. J Magn Reson Imaging 26:787–793CrossRefPubMedGoogle Scholar
  34. Matsue K, Takeuchi M, Koseki M, Uryu H (2006) Bone marrow necrosis associated with the use of imatinib mesylate in a patient with Philadelphia chromosome-positive acute lymphoblastic leukemia. Ann Hematol 85:542–544CrossRefPubMedGoogle Scholar
  35. Noebauer-Huhmann I-M, Uffmann M (2012) Anemias and bone marrow insufficiency. In: Baur-Melnyk A (ed) Medical radiology. Springer, Berlin/Heidelberg, pp 193–220Google Scholar
  36. Ollivier L, Gerber S, Vanel D, Brisse H, Leclere J (2006) Improving the interpretation of bone marrow imaging in cancer patients. Cancer Imaging 6:194–198PubMedCentralCrossRefPubMedGoogle Scholar
  37. Padhani AR, Koh DM, Collins DJ (2011) Whole-body diffusion-weighted MR imaging in cancer: current status and research directions. Radiology 261:700–718CrossRefPubMedGoogle Scholar
  38. Padhani AR, van Ree K, Collins DJ, D’Sa S, Makris A (2013) Assessing the relation between bone marrow signal intensity and apparent diffusion coefficient in diffusion-weighted MRI. AJR Am J Roentgenol 200:163–170CrossRefPubMedGoogle Scholar
  39. Patsch JM, Li X, Baum T, Yap SP, Karampinos DC, Schwartz AV, Link TM (2013) Bone marrow fat composition as a novel imaging biomarker in postmenopausal women with prevalent fragility fractures. J Bone Miner Res Aug;28(8):1721–1728. doi:  10.1002/jbmr.1950
  40. Pereira PL, Schick F, Einsele H, Farnsworth CT, Kollmansberger C, Mattke A, Duda SH, Claussen CD (1999) MR tomography of the bone marrow changes after high-dosage chemotherapy and autologous peripheral stem-cell transplantation. Rofo 170:251–257PubMedGoogle Scholar
  41. Rosoff PM (2006) The two-edged sword of curing childhood cancer. N Engl J Med 355:1522–1523CrossRefPubMedGoogle Scholar
  42. Schwartz AM, Leonidas JC (1984) Methotrexate osteopathy. Skeletal Radiol 11:13–16CrossRefPubMedGoogle Scholar
  43. Shapiro MD (2006) MR imaging of the spine at 3 T. Magn Reson Imaging Clin N Am 14:97–108CrossRefPubMedGoogle Scholar
  44. Shellock FG, Morris E, Deutsch AL, Mink JH, Kerr R, Boden SD (1992) Hematopoietic bone marrow hyperplasia: high prevalence on MR images of the knee in asymptomatic marathon runners. AJR Am J Roentgenol 158:335–338CrossRefPubMedGoogle Scholar
  45. Solomon DH, Mercer E, Woo SB, Avorn J, Schneeweiss S, Treister N (2013) Defining the epidemiology of bisphosphonate-associated osteonecrosis of the jaw: prior work and current challenges. Osteoporos Int 24:237–244CrossRefPubMedGoogle Scholar
  46. Stevens SK, Moore SG, Amylon MD (1990) Repopulation of marrow after transplantation: MR imaging with pathologic correlation. Radiology 175:213–218CrossRefPubMedGoogle Scholar
  47. Tamura T, Tasaka T, Fujimoto M, Matsuhashi Y, Fukumot T, Mano S, Kuwajima M, Nagai M (2004) Massive bone marrow necrosis in a patient with chronic myelocytic leukemia following imatinib mesylate therapy. Haematologica 89:ECR32PubMedGoogle Scholar
  48. Tang YM, Jeavons S, Stuckey S, Middleton H, Gill D (2007) MRI features of bone marrow necrosis. AJR Am J Roentgenol 188:509–514CrossRefPubMedGoogle Scholar
  49. Travis LB, Demark WW, Allan JM, Wood ME, Ng AK (2013) Aetiology, genetics and prevention of secondary neoplasms in adult cancer survivors. Nat Rev Clin Oncol 10:289–301CrossRefPubMedGoogle Scholar
  50. Umans H, Haramati N, Flusser G (2000) The diagnostic role of gadolinium enhanced MRI in distinguishing between acute medullary bone infarct and osteomyelitis. Magn Reson Imaging 18:255–262CrossRefPubMedGoogle Scholar
  51. Vahlensieck M, Schmidt HM (2000) The normal bone marrow and its variations in MRT. Radiologe 40:688–693CrossRefPubMedGoogle Scholar
  52. Van Berg BC, Omnoumi P, Galant C, Michoux N, Lecouvet FE (2012) MR imaging of the normal bone marrow and normal variants. In: Baur-Melnyk A (ed) Medical radiology. Springer, Berlin/Heidelberg, pp 21–48Google Scholar
  53. van Kaick G, Delorme S (2008) Therapy-induced effects in normal tissue. Radiologe 48:871–880CrossRefPubMedGoogle Scholar
  54. Vande Berg BC, Malghem J, Lecouvet FE, Devogelaer JP, Maldague B, Houssiau FA (1999) Fat conversion of femoral marrow in glucocorticoid-treated patients: a cross-sectional and longitudinal study with magnetic resonance imaging. Arthritis Rheum 42:1405–1411CrossRefPubMedGoogle Scholar
  55. Vande Berg BC, Lecouvet FE, Galant C, Simoni P, Malghem J (2009) Normal variants of the bone marrow at MR imaging of the spine. Semin Musculoskelet Radiol 13:87–96CrossRefPubMedGoogle Scholar
  56. Vanel D, Bonvalot S, Pechoux CL, Cioffi A, Domont J, Cesne AL (2007) Imatimid-induced bone marrow necrosis detected on MRI examination and mimicking bone metastases. Skeletal Radiol 36:895–898CrossRefPubMedGoogle Scholar
  57. Wasser K, Moehler T, Neben K, Nosas S, Heiss J, Goldschmidt H, Hillengass J, Duber C, Kauczor HU, Delorme S (2004) Dynamic MRI of the bone marrow for monitoring multiple myeloma during treatment with thalidomide as monotherapy or in combination with CED chemotherapy. Rofo 176:1285–1295CrossRefPubMedGoogle Scholar
  58. Wood ME, Vogel V, Ng A, Foxhall L, Goodwin P, Travis LB (2012) Second malignant neoplasms: assessment and strategies for risk reduction. J Clin Oncol 30:3734–3745CrossRefPubMedGoogle Scholar
  59. Zhao J, Krug R, Xu D, Lu Y, Link TM (2009) MRI of the spine: image quality and normal-neoplastic bone marrow contrast at 3 T versus 1.5 T. AJR Am J Roentgenol 192:873–880CrossRefPubMedGoogle Scholar
  60. Zink A, Manger B, Kaufmann J, Eisterhues C, Krause A, Listing J, Strangfeld A (2014) Evaluation of the RABBIT Risk Score for serious infections. Ann Rheum Dis 73:1673–1676PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of RadiologyDeutsches Krebsforschungszentrum (DKFZ), German Cancer Research CenterHeidelbergGermany
  2. 2.Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands

Personalised recommendations