There is Evidence for the Superiority of Protons and Heavy Ions, Pro

  • Gregor Habl
  • Jürgen Debus
Part of the Medical Radiology book series (MEDRAD)


This chapter deals with the question of whether irradiation of the prostate with protons or other particles is superior to X-rays. The physical and biological principles of particle beam therapy are presented and the clinical aspects of proton and carbon ion therapy of the prostate are discussed. Relevant studies of particle therapies are introduced and discussed relating to differences in comparison to modern X-ray techniques.


Androgen Deprivation Therapy Linear Energy Transfer Relative Biological Effectiveness Proton Therapy Particle Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akakura K, Tsujii H, Morita S, Tsuji H, Yagishita T, Isaka S, Ito H, Akaza H, Hata M, Fujime M et al (2004) Phase I/II clinical trials of carbon ion therapy for prostate cancer. Prostate 58(3):252–258PubMedCrossRefGoogle Scholar
  2. Allen AM, Pawlicki T, Dong L, Fourkal E, Buyyounouski M, Cengel K, Plastaras J, Bucci MK, Yock TI, Bonilla L et al (2012) An evidence based review of proton beam therapy: the report of ASTRO’s emerging technology committee. Radiother Oncol J Eur Soc Ther Radiol Oncol 103(1):8–11CrossRefGoogle Scholar
  3. Arcangeli G, Saracino B, Gomellini S, Petrongari MG, Arcangeli S, Sentinelli S, Marzi S, Landoni V, Fowler J, Strigari L (2010) A prospective phase III randomized trial of hypofractionation versus conventional fractionation in patients with high-risk prostate cancer. Int J Radiat Oncol Biol Phys 78(1):11–18PubMedCrossRefGoogle Scholar
  4. Athar BS, Bednarz B, Seco J, Hancox C, Paganetti H (2010) Comparison of out-of-field photon doses in 6 MV IMRT and neutron doses in proton therapy for adult and pediatric patients. Phys Med Biol 55(10):2879–2891PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bauer J, Unholtz D, Kurz C, Parodi K (2013a) An experimental approach to improve the Monte Carlo modelling of offline PET/CT-imaging of positron emitters induced by scanned proton beams. Phys Med Biol 58(15):5193–5213PubMedCrossRefGoogle Scholar
  6. Bauer J, Unholtz D, Sommerer F, Kurz C, Haberer T, Herfarth K, Welzel T, Combs SE, Debus J, Parodi K (2013b) Implementation and initial clinical experience of offline PET/CT-based verification of scanned carbon ion treatment. Radiother Oncol J Eur Soc Ther Radiol Oncol 107(2):218–226CrossRefGoogle Scholar
  7. Bohlen TT, Brons S, Dosanjh M, Ferrari A, Fossati P, Haberer T, Patera V, Mairani A (2012) Investigating the robustness of ion beam therapy treatment plans to uncertainties in biological treatment parameters. Phys Med Biol 57(23):7983–8004PubMedCrossRefGoogle Scholar
  8. Brenner DJ, Martinez AA, Edmundson GK, Mitchell C, Thames HD, Armour EP (2002) Direct evidence that prostate tumors show high sensitivity to fractionation (low alpha/beta ratio), similar to late-responding normal tissue. Int J Radiat Oncol Biol Phys 52(1):6–13PubMedCrossRefGoogle Scholar
  9. Cahlon O, Zelefsky MJ, Shippy A, Chan H, Fuks Z, Yamada Y, Hunt M, Greenstein S, Amols H (2008) Ultra-high dose (86.4 Gy) IMRT for localized prostate cancer: toxicity and biochemical outcomes. Int J Radiat Oncol Biol Phys 71(2):330–337PubMedCrossRefGoogle Scholar
  10. Carabe A, Moteabbed M, Depauw N, Schuemann J, Paganetti H (2012) Range uncertainty in proton therapy due to variable biological effectiveness. Phys Med Biol 57(5):1159–1172PubMedCrossRefGoogle Scholar
  11. Carabe A, Espana S, Grassberger C, Paganetti H (2013) Clinical consequences of relative biological effectiveness variations in proton radiotherapy of the prostate, brain and liver. Phys Med Biol 58(7):2103–2117PubMedCrossRefGoogle Scholar
  12. Chung CS, Yock TI, Nelson K, Xu Y, Keating NL, Tarbell NJ (2013) Incidence of second malignancies among patients treated with proton versus photon radiation. Int J Radiat Oncol Biol Phys 87(1):46–52PubMedCrossRefGoogle Scholar
  13. Creutz EC, Wilson RR (1946) Mono-energetic protons from a cyclotron. Rev Sci Instr 17(10):385–388CrossRefGoogle Scholar
  14. Dearnaley DP, Khoo VS, Norman AR, Meyer L, Nahum A, Tait D, Yarnold J, Horwich A (1999) Comparison of radiation side-effects of conformal and conventional radiotherapy in prostate cancer: a randomised trial. Lancet 353(9149):267–272PubMedCrossRefGoogle Scholar
  15. Elsasser T, Kramer M, Scholz M (2008) Accuracy of the local effect model for the prediction of biologic effects of carbon ion beams in vitro and in vivo. Int J Radiat Oncol Biol Phys 71(3):866–872PubMedCrossRefGoogle Scholar
  16. Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, Shank B, Solin LJ, Wesson M (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21(1):109–122PubMedCrossRefGoogle Scholar
  17. Enghardt W, Parodi K, Crespo P, Fiedler F, Pawelke J, Ponisch F (2004) Dose quantification from in-beam positron emission tomography. Radiother Oncol J Eur Soc Ther Radiol Oncol 73(Suppl 2):S96–S98CrossRefGoogle Scholar
  18. Fowler JF, Ritter MA, Chappell RJ, Brenner DJ (2003) What hypofractionated protocols should be tested for prostate cancer? Int J Radiat Oncol Biol Phys 56(4):1093–1104PubMedCrossRefGoogle Scholar
  19. Frey K, Bauer J, Unholtz D, Kurz C, Kramer M, Bortfeld T, Parodi K (2014) TPSPET-A TPS-based approach for in vivo dose verification with PET in proton therapy. Phys Med Biol 59(1):1–21PubMedCrossRefGoogle Scholar
  20. Gerweck LE, Kozin SV (1999) Relative biological effectiveness of proton beams in clinical therapy. Radiother Oncol J Eur Soc Ther Radiol Oncol 50(2):135–142CrossRefGoogle Scholar
  21. Haberer T, Debus J, Eickhoff H, Jakel O, Schulz-Ertner D, Weber U (2004) The Heidelberg Ion Therapy Center. Radiother Oncol J Eur Soc Ther Radiol Oncol 73(Suppl 2):S186–S190CrossRefGoogle Scholar
  22. Hall EJ (2006) Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int J Radiat Oncol Biol Phys 65(1):1–7PubMedCrossRefGoogle Scholar
  23. Hsi WC, Indelicato DJ, Vargas C, Duvvuri S, Li Z, Palta J (2009) In vivo verification of proton beam path by using post-treatment PET/CT imaging. Med Phys 36(9):4136–4146PubMedCrossRefGoogle Scholar
  24. Ishikawa H, Tsuji H, Kamada T, Yanagi T, Mizoe JE, Kanai T, Morita S, Wakatsuki M, Shimazaki J, Tsujii H (2006a) Carbon ion radiation therapy for prostate cancer: results of a prospective phase II study. Radiother Oncol J Eur Soc Ther Radiol Oncol 81(1):57–64CrossRefGoogle Scholar
  25. Ishikawa H, Tsuji H, Kamada T, Hirasawa N, Yanagi T, Mizoe JE, Akakura K, Suzuki H, Shimazaki J, Tsujii H (2006b) Risk factors of late rectal bleeding after carbon ion therapy for prostate cancer. Int J Radiat Oncol Biol Phys 66(4):1084–1091PubMedCrossRefGoogle Scholar
  26. Ishikawa H, Tsuji H, Kamada T, Hirasawa N, Yanagi T, Mizoe JE, Akakura K, Suzuki H, Shimazaki J, Nakano T et al (2008) Adverse effects of androgen deprivation therapy on persistent genitourinary complications after carbon ion radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 72(1):78–84PubMedCrossRefGoogle Scholar
  27. Ishikawa H, Tsuji H, Kamada T, Akakura K, Suzuki H, Shimazaki J, Tsujii H (2012) Carbon-ion radiation therapy for prostate cancer. Int J Urol Off J Jpn Urol Assoc 19(4):296–305Google Scholar
  28. Jakel O, Reiss P (2007) The influence of metal artefacts on the range of ion beams. Phys Med Biol 52(3):635–644PubMedCrossRefGoogle Scholar
  29. Jarosek S, Elliott S, Virnig BA (2011) Proton beam radiotherapy in the U.S. Medicare population: growth in use between 2006 and 2009: Data Points # 10. In: Data points publication series, Rockville (MD) Google Scholar
  30. Jones B (2009) Joint symposium 2009 on carbon ion radiotherapy. Br J Radiol 82(983):884–889PubMedCrossRefGoogle Scholar
  31. Karger CP, Jakel O (2007) Current status and new developments in ion therapy. Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft [et al] 183(6):295–300CrossRefGoogle Scholar
  32. Kuban DA, Tucker SL, Dong L, Starkschall G, Huang EH, Cheung MR, Lee AK, Pollack A (2008) Long-term results of the M. D. Anderson randomized dose-escalation trial for prostate cancer. Int J Radiat Oncol Biol Phys 70(1):67–74PubMedCrossRefGoogle Scholar
  33. Kupelian PA, Willoughby TR, Reddy CA, Klein EA, Mahadevan A (2007) Hypofractionated intensity-modulated radiotherapy (70 Gy at 2.5 Gy per fraction) for localized prostate cancer: Cleveland clinic experience. Int J Radiat Oncol Biol Phys 68(5):1424–1430PubMedCrossRefGoogle Scholar
  34. Livsey JE, Cowan RA, Wylie JP, Swindell R, Read G, Khoo VS, Logue JP (2003) Hypofractionated conformal radiotherapy in carcinoma of the prostate: five-year outcome analysis. Int J Radiat Oncol Biol Phys 57(5):1254–1259PubMedCrossRefGoogle Scholar
  35. Lodge M, Pijls-Johannesma M, Stirk L, Munro AJ, De Ruysscher D, Jefferson T (2007) A systematic literature review of the clinical and cost-effectiveness of hadron therapy in cancer. Radiother Oncol J Eur Soc Ther Radiol and Oncol 83(2):110–122CrossRefGoogle Scholar
  36. Macias V, Biete A (2009) Hypofractionated radiotherapy for localised prostate cancer. Review of clinical trials. In: Clinical & translational oncology : official publication of the federation of Spanish oncology societies and of the national cancer institute of Mexico, vol 11(7), pp 437-445Google Scholar
  37. Mackin D, Peterson S, Beddar S, Polf J (2012) Evaluation of a stochastic reconstruction algorithm for use in Compton camera imaging and beam range verification from secondary gamma emission during proton therapy. Phys Med Biol 57(11):3537–3553PubMedCentralPubMedCrossRefGoogle Scholar
  38. Mayahara H, Murakami M, Kagawa K, Kawaguchi A, Oda Y, Miyawaki D, Sasaki R, Sugimura K, Hishikawa Y (2007) Acute morbidity of proton therapy for prostate cancer: the Hyogo Ion Beam Medical Center experience. Int J Radiat Oncol Biol Phys 69(2):434–443PubMedCrossRefGoogle Scholar
  39. Nihei K, Ogino T, Ishikura S, Kawashima M, Nishimura H, Arahira S, Onozawa M (2005) Phase II feasibility study of high-dose radiotherapy for prostate cancer using proton boost therapy: first clinical trial of proton beam therapy for prostate cancer in Japan. Jpn J Clin Oncol 35(12):745–752PubMedCrossRefGoogle Scholar
  40. Nikoghosyan AV, Schulz-Ertner D, Herfarth K, Didinger B, Munter MW, Jensen AD, Jakel O, Hoess A, Haberer T, Debus J (2011) Acute toxicity of combined photon IMRT and carbon ion boost for intermediate-risk prostate cancer—acute toxicity of 12C for PC. Acta Oncol 50(6):784–790PubMedCrossRefGoogle Scholar
  41. Nishio T, Miyatake A, Inoue K, Gomi-Miyagishi T, Kohno R, Kameoka S, Nakagawa K, Ogino T (2008) Experimental verification of proton beam monitoring in a human body by use of activity image of positron-emitting nuclei generated by nuclear fragmentation reaction. Radiol Phys Technol 1(1):44–54PubMedCrossRefGoogle Scholar
  42. Olsen DR, Bruland OS, Frykholm G, Norderhaug IN (2007) Proton therapy—a systematic review of clinical effectiveness. Radiother Oncol J Eur Soc Ther Radiol Oncology 83(2):123–132CrossRefGoogle Scholar
  43. Paganetti H (2012) Range uncertainties in proton therapy and the role of Monte Carlo simulations. Phys Med Biol 57(11):R99–R117PubMedCentralPubMedCrossRefGoogle Scholar
  44. Paganetti H, Gerweck LE, Goitein M (2000) The general relation between tissue response to x-radiation (alpha/beta-values) and the relative biological effectiveness (RBE) of protons: prediction by the Katz track-structure model. Int J Radiat Biol 76(7):985–998PubMedCrossRefGoogle Scholar
  45. Paganetti H, Niemierko A, Ancukiewicz M, Gerweck LE, Goitein M, Loeffler JS, Suit HD (2002) Relative biological effectiveness (RBE) values for proton beam therapy. Int J Radiat Oncol Biol Phys 53(2):407–421PubMedCrossRefGoogle Scholar
  46. Parodi K, Paganetti H, Shih HA, Michaud S, Loeffler JS, DeLaney TF, Liebsch NJ, Munzenrider JE, Fischman AJ, Knopf A et al (2007a) Patient study of in vivo verification of beam delivery and range, using positron emission tomography and computed tomography imaging after proton therapy. Int J Radiat Oncol Biol Phys 68(3):920–934PubMedCentralPubMedCrossRefGoogle Scholar
  47. Parodi K, Ferrari A, Sommerer F, Paganetti H (2007b) Clinical CT-based calculations of dose and positron emitter distributions in proton therapy using the FLUKA Monte Carlo code. Phys Med Biol 52(12):3369–3387PubMedCentralPubMedCrossRefGoogle Scholar
  48. Peschke P, Karger CP, Scholz M, Debus J, Huber PE (2011) Relative biological effectiveness of carbon ions for local tumor control of a radioresistant prostate carcinoma in the rat. Int J Radiat Oncol Biol Phys 79(1):239–246PubMedCrossRefGoogle Scholar
  49. Pollack A, Zagars GK, Starkschall G, Antolak JA, Lee JJ, Huang E, von Eschenbach AC, Kuban DA, Rosen I (2002) Prostate cancer radiation dose response: results of the M. D. Anderson phase III randomized trial. Int J Radiat Oncol Biol Phys 53(5):1097–1105PubMedCrossRefGoogle Scholar
  50. Robertson JB, Williams JR, Schmidt RA, Little JB, Flynn DF, Suit HD (1975) Radiobiological studies of a high-energy modulated proton beam utilizing cultured mammalian cells. Cancer 35(6):1664–1677PubMedCrossRefGoogle Scholar
  51. Rossi CJ Jr, Slater JD, Yonemoto LT, Jabola BR, Bush DA, Levy RP, Grove R, Slater JM (2004) Influence of patient age on biochemical freedom from disease in patients undergoing conformal proton radiotherapy of organ-confined prostate cancer. Urology 64(4):729–732PubMedCrossRefGoogle Scholar
  52. Scholz M, Jakob B, Taucher-Scholz G (2001) Direct evidence for the spatial correlation between individual particle traversals and localized CDKN1A (p21) response induced by high-LET radiation. Radiat Res 156(5 Pt 1):558–563PubMedCrossRefGoogle Scholar
  53. Schulz-Ertner D, Jakel O, Schlegel W (2006) Radiation therapy with charged particles. Seminars in radiation oncology 16(4):249–259PubMedCrossRefGoogle Scholar
  54. Shimazaki J, Akakura K, Suzuki H, Ichikawa T, Tsuji H, Ishikawa H, Harada M, Tsujii H (2006) Monotherapy with carbon ion radiation for localized prostate cancer. Jpn J Clin Oncol 36(5):290–294PubMedCrossRefGoogle Scholar
  55. Shipley WU, Verhey LJ, Munzenrider JE, Suit HD, Urie MM, McManus PL, Young RH, Shipley JW, Zietman AL, Biggs PJ et al (1995) Advanced prostate cancer: the results of a randomized comparative trial of high dose irradiation boosting with conformal protons compared with conventional dose irradiation using photons alone. Int J Radiat Oncol Biol Phys 32(1):3–12PubMedCrossRefGoogle Scholar
  56. Slater JD, Rossi CJ Jr, Yonemoto LT, Bush DA, Jabola BR, Levy RP, Grove RI, Preston W, Slater JM (2004) Proton therapy for prostate cancer: the initial Loma Linda University experience. Int J Radiat Oncol Biol Phys 59(2):348–352PubMedCrossRefGoogle Scholar
  57. Tsuji H, Yanagi T, Ishikawa H, Kamada T, Mizoe JE, Kanai T, Morita S, Tsujii H (2005) Hypofractionated radiotherapy with carbon ion beams for prostate cancer. Int J Radiat Oncol Biol Phys 63(4):1153–1160PubMedCrossRefGoogle Scholar
  58. Wakatsuki M, Tsuji H, Ishikawa H, Yanagi T, Kamada T, Nakano T, Suzuki H, Akakura K, Shimazaki J, Tsujii H (2008) Quality of life in men treated with carbon ion therapy for prostate cancer. Int J Radiat Oncol Biol Phys 72(4):1010–1015PubMedCrossRefGoogle Scholar
  59. Wilson RR (1946) Radiological use of fast protons. Radiology 47(5):487–491PubMedCrossRefGoogle Scholar
  60. Yonemoto LT, Slater JD, Rossi CJ Jr, Antoine JE, Loredo L, Archambeau JO, Schulte RW, Miller DW, Teichman SL, Slater JM (1997) Combined proton and photon conformal radiation therapy for locally advanced carcinoma of the prostate: preliminary results of a phase I/II study. Int J Radiat Oncol Biol Phys 37(1):21–29PubMedCrossRefGoogle Scholar
  61. Yu JB, Makarov DV, Gross C (2011) A new formula for prostate cancer lymph node risk. Int J Radiat Oncol Biol Phys 80(1):69–75PubMedCrossRefGoogle Scholar
  62. Zelefsky MJ, Fuks Z, Hunt M, Lee HJ, Lombardi D, Ling CC, Reuter VE, Venkatraman ES, Leibel SA (2001) High dose radiation delivered by intensity modulated conformal radiotherapy improves the outcome of localized prostate cancer. J Urol 166(3):876–881PubMedCrossRefGoogle Scholar
  63. Zietman AL, DeSilvio ML, Slater JD, Rossi CJ Jr, Miller DW, Adams JA, Shipley WU (2005) Comparison of conventional-dose vs high-dose conformal radiation therapy in clinically localized adenocarcinoma of the prostate: a randomized controlled trial. JAMA 294(10):1233–1239PubMedCrossRefGoogle Scholar
  64. Zietman AL, Bae K, Slater JD, Shipley WU, Efstathiou JA, Coen JJ, Bush DA, Lunt M, Spiegel DY, Skowronski R et al (2010a) Randomized trial comparing conventional-dose with high-dose conformal radiation therapy in early-stage adenocarcinoma of the prostate: long-term results from proton radiation oncology group/american college of radiology 95-09. J Clin Oncol Off J Am Soc Clin Oncol 28(7):1106–1111CrossRefGoogle Scholar
  65. Zietman A, Goitein M, Tepper JE (2010b) Technology evolution: is it survival of the fittest? J Clin Oncol Off J Am Soc Clin Oncol 28(27):4275–4279CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Radiologische Universitätsklinik, StrahlenklinikHeidelbergGermany

Personalised recommendations