Advertisement

Post-operative Temporal Bone Imaging

  • Luc van den Hauwe
  • Christoph Kenis
  • Bert De Foer
  • Jan Walther Casselman
Chapter
Part of the Medical Radiology book series (MEDRAD)

Abstract

Three categories of patients are referred for follow-up imaging after temporal bone surgery. The first group consists of patients with (complicated) chronic middle ear disease, including cholesteatoma. For this group, the imaging algorithm has changed enormously for the last 10 years. Multidetector computed tomography (MDCT) and more recently cone beam CT (CBCT) are ideally suited to demonstrate the bony details after mastoidectomy and to assess the integrity of the ossicular chain reconstruction when prosthetic failure is suspected. To evaluate the middle ear and/or mastoid cavity for the presence of residual cholesteatoma, MR imaging (MRI) has become the first choice diagnostic modality. Non-EPI diffusion-weighted imaging (DWI) has proven to be the most sensitive and specific technique and has higher diagnostic performance than delayed contrast-enhanced MR-imaging. After stapes surgery in patients with otosclerosis, imaging studies are rarely required. When prosthetic failure is suspected, MDCT and CBCT can be performed. In patients with postoperative vertigo and sensorineural hearing loss (SNHL), MR imaging may be needed to look for labyrinthine abnormalities (hemorrhage, infection, …) if CT is not contributive. In the follow-up of patients with vestibular schwannoma, MR imaging is the modality of choice, whether a conservative (‘wait and scan’) management, radiosurgery or surgey has been chosen.

Keywords

Tympanic Membrane External Auditory Canal Cochlear Implant Magnetic Resonance Examination Internal Auditory Canal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The author wishes to acknowledge his colleagues P.M. Parizel, MD, PhD, J.W. Van Goethem, MD, PhD and O. d’Archambeau, MD, Department of Radiology, Universitair Ziekenhuis Antwerpen—University of Antwerp for their kind readiness to share their imaging files. Thanks also to all colleagues of the Department of ENT Surgery (Chairman: P.H. Van de Heyning, MD, PhD), Universitair Ziekenhuis Antwerpen—University of Antwerp for their clinical input.

References

  1. Aikele P, Kittner T, Offergeld C et al (2003) Diffusion-weighted MR imaging of cholesteatoma in pediatric and adult patients who have undergone middle ear surgery. AJR 181:261–265PubMedCrossRefGoogle Scholar
  2. Ayache D, Williams MT, Lejeune D et al (2005) Usefulness of delayed postcontrast magnetic resonance imaging in the detection of residual cholesteatoma after canal wall-up tympanoplasty. Laryngoscope 115:607–610PubMedCrossRefGoogle Scholar
  3. Ayache D, Darrouzet V, Dubrulle F et al (2012) Imaging of non-operated cholesteatoma: clinical practice guidelines. Eur Ann Otorhinolaryngol Head Neck Dis 129:148–152PubMedCrossRefGoogle Scholar
  4. Barath K, Huber AM, Stämpfli P et al (2011) Neuroradiology of cholesteatomas. AJNR 32:221–229PubMedCrossRefGoogle Scholar
  5. Bertalanffy A, Dietrich W, Aichholzer M et al (2001) Gamma knife radiosurgery of acoustic neurinomas. Acta Neurochir (Wien) 143:689–695CrossRefGoogle Scholar
  6. Blaney SP, Tierney P, Oyarazabal M et al (2000) CT scanning in “second look” combined approach tympanoplasty. Rev Laryngol Otol Rhinol 121:79–81Google Scholar
  7. Brackmann DE (1992) Middle fossa approach for acoustic tumor removal. Clin Neurosurg 38:603PubMedGoogle Scholar
  8. Brackmann DE (1993) Tympanoplasty with mastoidectomy: canal wall up procedures. Am J Otol 14(4):380–382Google Scholar
  9. Bush DA, McAllister CJ, Loredo LN et al (2002) Fractionated proton beam radiotherapy for acoustic neuroma. Neurosurgery 50:270–273PubMedGoogle Scholar
  10. Cass SP, Kartush JM, Wilner HI et al (1991) Comparison of computerized tomography and magnetic resonance imaging for the postoperative assessment of residual acoustic tumor. Otolaryngol Head Neck Surg 104:182–190PubMedGoogle Scholar
  11. Casselman JW (2001) MRI aids evaluation of temporal bone disease. Diagn Imaging March/April:60–65Google Scholar
  12. Causse JB, Causse JR, Wiet RJ et al (1983) Complications of stapedectomies. Am J Otol 4:275–280PubMedGoogle Scholar
  13. Chakeres DW, Mattox DE (1985) Computed tomographic evaluation of non-metallic middle-ear prostheses. Invest Radiol 20:596–600PubMedCrossRefGoogle Scholar
  14. Charabi S, Thomsen J, Tos M, Charabi B, Mantoni M, Børgesen SE (1998) Acoustic neuroma/vestibular schwannoma growth: past, present and future. Acta Otolaryngol 118(3):327–332Google Scholar
  15. Corrales CE, Blevins NH (2013) Imaging for evaluation of cholesteatoma: current concepts and future directions. Curr Opin Otolaryngol Head Neck Surg 21:461–467PubMedCrossRefGoogle Scholar
  16. d’Archambeau O, Parizel PM, Koekelkoren E et al (1990) CT diagnosis and differential diagnosis of otodystrophic lesions of the temporal bone. Eur J Radiol 11:22–30PubMedCrossRefGoogle Scholar
  17. de Bruijn AJG (2000) Clinical and audiological aspects of stapes surgery in otosclerosis. PhD thesis, Amsterdam UniversityGoogle Scholar
  18. Declau F, Van Spaendonck M, Timmermans JP et al (2001) Prevalence of otosclerosis in an unselected series of temporal bones. Oto Neurotol 22:596–602CrossRefGoogle Scholar
  19. De Foer B, Vercruysse JP, Pilet B et al (2006) Single-shot, turbo spin-echo, diffusion-weighted imaging in the detection of acquired middle ear cholesteatoma. AJNR 27:1480–1482PubMedGoogle Scholar
  20. De Foer B, Vercruysse JP, Bernaerts A, Deckers F, Pouillon M, Somers T, Casselman J, Offeciers E (2008) Detection of postoperative residual cholesteatoma with non-echo-planar diffusion-weighted magnetic resonance imaging. Otol Neurotol 29:513–517PubMedCrossRefGoogle Scholar
  21. De Foer B, Vercruysse JP, Bernaerts A et al (2010) Middle ear cholesteatoma: non-echo-planar diffusion-weighted MR imaging versus delayed gadolinium-enhanced T1-weighted MR imaging—value in detection. Radiology 255:866–872PubMedCrossRefGoogle Scholar
  22. De Foer B (2011) The value of magnetic resonance imaging in the preoperative evaluation and the postoperative follow-up of middle ear cholesteatoma. PhD thesis, Leuven University PressGoogle Scholar
  23. Dhepnorrarat RC, Wood B, Rajan GP (2009) Postoperative non-echo-planar diffusion-weighted magnetic resonance imaging changes after cholesteatoma surgery: implications for cholesteatoma screening. Otol Neurotol 30:54–58PubMedCrossRefGoogle Scholar
  24. Dremmen MHG, Hofman PAM, Hof JR et al (2012) The diagnostic accuracy of non-echo-planar diffusion-weighted imaging in the detection of residual and/or recurrent cholesteatoma of the temporal bone. AJNR 33:439–444PubMedCrossRefGoogle Scholar
  25. Dubrulle F, Souillard R, Chechin D et al (2006) Diffusion-weighted MR imaging sequence in the detection of postoperative recurrent cholesteatoma. Radiology 238:604–610PubMedCrossRefGoogle Scholar
  26. Fitzek C, Mewes T, Fitzek S et al (2002) Diffusion-weighted MRI of cholesteatomas of the petrous bone. J Magn Reson Imaging 15:636–641PubMedCrossRefGoogle Scholar
  27. Fucci MJ, Buchman CA, Brackmann DE, Berliner KI (1999) Acoustic tumor growth: implications for treatment choices. Am J Otol 20(4):495–499Google Scholar
  28. Fritsch MH, Gutt JJ (2005) Ferromagnetic movements of middle ear implants and stapes prostheses in a 3-T magnetic resonance field. Otol Neurotol 26:225–230PubMedCrossRefGoogle Scholar
  29. Gantz BJ, Wilkinson EP, Hansen MR (2005) Canal wall reconstruction tympanomastoidectomy with mastoid obliteration. Laryngoscope 115(10):1734–1740Google Scholar
  30. Gaillardin L, Lescanne E, Morinière S, Cottier J-P, Robier A (2012) Residual cholesteatoma: prevalence and location. Follow-up strategy in adults. Eur Ann Otorhinolaryngol Head Neck Dis 129(3):136–140Google Scholar
  31. Geoffray A, Guesmi M, Nebbia JF, Leloutre B, Bailleux S, Maschi C (2012) MRI for the diagnosis of recurrent middle ear cholesteatoma in children—can we optimize the technique? Preliminary study. Pediatric RadiologyGoogle Scholar
  32. Haberkamp TJ, Meyer GA, Fox M (1998) Surgical exposure of the fundus of the internal auditory canal: anatomic limits of the middle fossa versus the retrosigmoid transcanal approach. Laryngoscope 108(8 Pt 1):1190–1194Google Scholar
  33. Hasso AN, Opp RL, Swartz JD (1996) Otosclerosis and dysplasias of the temporal bone. In: Som PM, Curtin HD (eds) Head and neck imaging, 3rd edn. Mosby-Year Book, St. Louis, pp 1432–1448Google Scholar
  34. Hermans R, Marchal G, Feenstra L et al (1995) Spiral CT of the temporal bone: value of image reconstruction at submillimetric table increments. Neuroradiology 37:150–154PubMedCrossRefGoogle Scholar
  35. Horowitz SW, Leonetti JP, Azar-Kia B et al (1996) Postoperative radiographic findings following acoustic neuroma removal. Skull Base Surg 6:199–205PubMedCrossRefPubMedCentralGoogle Scholar
  36. Hoistad DL, Melnik G, Mamikoglu B et al (2001) Update on conservative management of acoustic neuroma. Otol Neurotol 22:682–685PubMedCrossRefGoogle Scholar
  37. Huins CT, Singh A, Lingam RK et al (2010) Detecting cholesteatoma with non-echo planar (HASTE) diffusion-weighted magnetic resonance imaging. Otolaryngol Head Neck Surg 143:141–146PubMedCrossRefGoogle Scholar
  38. Irving RM, Beynon GJ, Viani L et al (1995) The patient’s perspective after vestibular schwannoma removal: quality of life and implications for management. Am J Otol 16:331–337PubMedCrossRefGoogle Scholar
  39. Jeunen G, Desloovere C, Hermans R, Vandecaveye V (2008) The value of magnetic resonance imaging in the diagnosis of residual or recurrent acquired cholesteatoma after canal wall-up tympanoplasty. Otol Neurotol 29(1):16–18Google Scholar
  40. Jindal M, Doshi J, Srivastav M et al (2010) Diffusion-weighted magnetic resonance imaging in the management of cholesteatoma. Eur Arch Otorhinolaryngol 267:181–185PubMedCrossRefGoogle Scholar
  41. Jindal M, Riskalla A, Jiang D, Connor S, O’Connor AF (2011) A systematic review of diffusion-weighted magnetic resonance imaging in the assessment of postoperative cholesteatoma. Otol Neurotol 32:1243–1249PubMedCrossRefGoogle Scholar
  42. Kasbekar AV, Scoffings DJ, Kenway B, Cross J, Donnelly N, Lloyd SWK, et al (2010) Non echo planar, diffusion-weighted magnetic resonance imaging (periodically rotated overlapping parallel lines with enhanced reconstruction sequence) compared with echo planar imaging for the detection of middle-ear cholesteatoma. J Laryngol Otol 125(04):376–380. Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=21110910&retmode=ref&cmd=prlinks
  43. Khemani S, Singh A, Lingam RK et al (2011) Imaging of postoperative middle ear cholesteatoma. Clin Radiol 66:760–767PubMedCrossRefGoogle Scholar
  44. Khemani S, Lingam RK, Kalan A et al (2012) The value of non-echo planar HASTE diffusion-weighted MR imaging in the detection, localisation and prediction of extent of postoperative cholesteatoma. Clin Otolaryngol 36:306–312CrossRefGoogle Scholar
  45. Klingebiel R, Bauknecht HC, Kaschke O et al (2001) Virtual endoscopy of the tympanic cavity based on high-resolution multislice computed tomographic data. Otol Neurotol 22:803–807PubMedCrossRefGoogle Scholar
  46. Kösling S, Woldag K, Meister EF et al (1995) Value of computed tomography in patients with persistent vertigo after stapes surgery. Invest Radiol 12:712–715CrossRefGoogle Scholar
  47. Kösling S, Bootz F (2001) CT and MR imaging after middle ear surgery. Eur J Radiol 40:113–118PubMedCrossRefGoogle Scholar
  48. Kwok P, Fisch U, Strutz J et al (2002) Stapes surgery: how precisely do different prostheses attach to the long process of the incus with different instruments and surgeons? Otol Neurotol 23:289–295PubMedCrossRefGoogle Scholar
  49. Lane J (2012) HASTE DWI versus HASTE DWI on 1.5T and 3T systems. Personal communicationGoogle Scholar
  50. Lehmann P, Saliou G, Brochart C, Page C, Deschepper B, Vallée JN, et al (2009) 3T MR imaging of postoperative recurrent middle ear cholesteatomas: value of periodically rotated overlapping parallel lines with enhanced reconstruction diffusion-weighted MR imaging. Am J Neuroradiol 30(2):423–427Google Scholar
  51. Lemmerling MM, De Foer B, Vandevyver V et al (2008) Imaging of the opacified middle ear. Eur J Radiol 66:363–371PubMedCrossRefGoogle Scholar
  52. Li PMM, Linos E, Gurgel RK et al (2012) Evaluating the utility of non-echo-planar diffusion-weighted imaging in the preoperative evaluation of cholesteatoma: a meta-analysis. Laryngoscope 33(9):1573–1577Google Scholar
  53. Lingam RK, Khatri P, Hughes J, Singh A (2013) Apparent diffusion coefficients for detection of postoperative middle ear cholesteatoma on non-echo-planar diffusion-weighted images. radiology Jun 25. [Epub ahead of print]Google Scholar
  54. Lye RH, Pace-Balzan A, Ramsden RT et al (1992) The fate of tumour rests following removal of acoustic neuromas: an MRI Gd-DTPA study. Br J Neurosurg 6:195–202PubMedCrossRefGoogle Scholar
  55. Maheshwari S, Mukherji SK (2002) Diffusion-weighted imaging for differentiating recurrent cholesteatoma from granualtion tissue after mastoidectomy: case report. AJNR 23:847–849PubMedGoogle Scholar
  56. Majithia AA, Lingam RKR, Nash RR, Khemani SS, Kalan AA, Singh AA (2012) Staging primary middle ear cholesteatoma with non-echoplanar (half-Fourier-acquisition single-shot turbo-spin-echo) diffusion-weighted magnetic resonance imaging helps plan surgery in 22 patients: our experience. Clin Otolaryngol 37(4):325–330Google Scholar
  57. Malis L (2000) Gamma surgey for vestibular schwannoma. Letter to the editor. J Neurosurg 92:892–894Google Scholar
  58. Mark AS, Fitzgerald DC (1993) Segmental enhancement of the cochlea on contrast-enhanced MR: correlation with the frequency of hearing loss and possible sign of perilymphatic fistula and autoimmune labyrintihtis. AJNR 14:991–996PubMedGoogle Scholar
  59. Mark AS, Casselman JW (2002) Anatomy and disease of the temporal bone. In: Atlas SW (ed) Magnetic resonance imaging of the brain and spine, 3rd edn. Lippincott Williams & Wilkins, Philadelphia, pp 1363–1432Google Scholar
  60. Marquet J, Greten WL, Van Camp KJ (1972) Considerations about the surgical approach in stapedectomy. Acta Otolaryngol 74:406–410PubMedCrossRefGoogle Scholar
  61. Más-Estellés F, Mateos-Fernández M, Carrascosa-Bisquert B, Facal de Castro F, Puchades-Román I, Morera-Pérez C (2012) Contemporary non-echo-planar diffusion-weighted imaging of middle ear cholesteatomas. Radiographics 32(4):1197–1213Google Scholar
  62. Martin AD, Driscoll CL, Wood CP et al (2005) Safety evaluation of titanium middle ear prostheses at 3.0 tesla. Otolaryngol Head Neck Surg 132:537–542PubMedCrossRefGoogle Scholar
  63. McElveen JT Jr, Wilkins RH, Molter DW et al (1993) Hearing preservation using the modified translabyrinthine approach. Otolaryngol Head Neck Surg 108:671–679PubMedGoogle Scholar
  64. Mercke U (1987) The cholesteatomatous ear one year after surgery with obliteration technique. Am J Otol 8:534–536PubMedGoogle Scholar
  65. Millen SJ, Daniels DL (1994) The effect of intracranial surgical trauma on gadolinium-enhanced magnetic resonance imaging. Laryngoscope 104:804–813PubMedCrossRefGoogle Scholar
  66. Miracle AC, Mukherji SK (2009) Conebeam CT of the head and neck, part 2: clinical applications. AJNR Am J Neuroradiol 30:1285–1292Google Scholar
  67. Mukherji SK, Mancuso AM, Kotzur IM et al (1994) CT of the temporal bone: findings after mastoidectomy, ossicular reconstruction, and cochlear implantation. AJR 163:1467–1471PubMedCrossRefGoogle Scholar
  68. Mulkens TH, Parizel PM, Martin J-J et al (1993) Acoustic schwannoma: MR findings in 84 tumors. AJR 160:395–398PubMedCrossRefGoogle Scholar
  69. Naganawa S, Nakashima T (2009) Cutting edge of inner ear MRI. Acta Oto-laryngol 129:15–21CrossRefGoogle Scholar
  70. Nowé V, Verstreken M, Wuyts FL, Van de Heyning P, De Schepper AM, Parizel PM (2004) Enhancement of the otic capsule in active retrofenestral otosclerosis. Otol Neurotol 25(4):633–634Google Scholar
  71. Peltonen LI, Aarnisalo AA, Kortesniemi MK, Suomalainen A, Jero J, Robinson S (2007) Limited cone-beam computed tomography imaging of the middle ear: a comparison with multislice helical computed tomography. Acta Radiol 48:207–212PubMedCrossRefGoogle Scholar
  72. Penninger RT, Tavassolie TS, Carey JP (2011) Cone-beam volumetric tomography for applications in the temporal bone. Otol Neurotol 32:453–460Google Scholar
  73. Pickuth D, Brandt S, Berghaus A et al (2000) Vertigo after stapes surgery: the role of high resolution CT. BJR 73:1021–1023PubMedCrossRefGoogle Scholar
  74. Pizzini FB, Barbieri F, Beltramello A et al (2010) HASTE diffusion-weighted 3-Tesla magnetic resonance imaging in the diagnosis of primary and relapsing cholesteatoma. Otol Neurotol 31:596–602PubMedGoogle Scholar
  75. Plouin-Gaudon I, Bossard D, Fuchsmann C et al (2010a) Diffusion-weighted MR imaging for evaluation of pediatric recurrent cholesteatomas. Int J Pediatr Otorhinolaryngol 74:22–26PubMedCrossRefGoogle Scholar
  76. Plouin-Gaudon I, Bossard D, Ayari-Khalfallah S et al (2010b) Fusion of MRIs and CT scans for surgical treatment of cholesteatoma of the middle ear in children. Arch Otolaryngol Head Neck Surg 136:878–883PubMedCrossRefGoogle Scholar
  77. Prasad D, Steiner M, Steiner L (2000) Gamma surgery for vestibular schwannoma. J Neurosurg 92:745–759PubMedCrossRefGoogle Scholar
  78. Profant M, Sláviková K, Kabátová Z, Slezák P, Waczulíková I (2012) Predictive validity of MRI in detecting and following cholesteatoma. Eur Arch Otorhinolaryngol 269(3):757–765Google Scholar
  79. Rajan GP, Ambett R, Wun L et al (2010) preliminary outcomes of cholesteatoma screening in children using non-echo-planar diffusion-weighted magnetic resonance imaging. Int J Pediatr Otorhinolaryngol 74:297–301PubMedCrossRefGoogle Scholar
  80. Rangheard AS, Marsot-Dupuch K, Mark AS et al (2001) Postoperative complications in otospongiosis: usefulness of MR imaging. AJNR 22:1171–1178PubMedGoogle Scholar
  81. Raut VV, Toner JG, Kerr AG et al (2002) Management of otosclerosis in the UK. Clin Otolaryngol 27:113–119PubMedCrossRefGoogle Scholar
  82. Ruivo J, Mermuys K, Bacher K, Kuhweide R, Offeciers E, Casselman JW (2009) Cone beam computed tomography, a low-dose imaging technique in the postoperative assessment of cochlear implantation. Otol Neurotol 30:299–303PubMedCrossRefGoogle Scholar
  83. Sartoretti-Schefer S, Kollias S, Valavanis A (2000) Spatial relationship between vestibular schwannoma and facial nerve on three-dimensional T2-weighted fast spin-echo MR images. AJNR 21:810–816PubMedGoogle Scholar
  84. Selesnick SH, Rebol J, Heier LA et al (2001) Internal auditory canal involvement of acoustic neuromas: surgical correlates to magnetic resonance imaging findings. Otol Neurotol 22:912–916PubMedCrossRefGoogle Scholar
  85. Shea JJ Jr (1958) Fenestration of the oval window. Ann Otol Rhinol Laryngol 67:932–951PubMedCrossRefGoogle Scholar
  86. Sheehy JL, Brackmann DE, Graham MD (1977) Cholesteatoma surgery: residual and recurrent disease. A review of 1,024 cases. Ann Otol Rhinol Laryngol 86(4 Pt 1):451–462Google Scholar
  87. Shellock FG, Schatz CJ (1991) Metallic otologic implants: in vitro assessment of of ferromagnetism at 1.5 T. AJNR 12:279–281PubMedGoogle Scholar
  88. Shelton C, Sheehy JL (1990) Tympanoplasty: review of 400 staged cases. Laryngoscope 100(7):679–681Google Scholar
  89. Stasolla A, Magliulo G, Parrotto D et al (2004) Detection of postoperative relapsing/residual cholesteatomas with diffusion-weighted echo-planar magnetic resonance imaging. Otol Neurotol 25:879–884PubMedCrossRefGoogle Scholar
  90. Somers T, Casselman J, de Ceulaer G, Govaerts P, Offeciers E (2001) Prognostic value of magnetic resonance imaging findings in hearing preservation surgery for vestibular schwannoma. Otol Neurotol 22(1):87–94Google Scholar
  91. Stone JA, Mukherji SK, Jewett BS et al (2000) CT evaluation of prosthetic ossicular reconstruction procedures: what the otologist needs to know. RadioGraphics 20:593–605PubMedCrossRefGoogle Scholar
  92. Swartz JD, Wolfson RJ, Russell KB et al (1983) High resolution computed tomography of the middle ear and mastoid. Part III: surgically altered anatomy and pathology. Radiology 148:461–464PubMedCrossRefGoogle Scholar
  93. Swartz JD, Harnsberger HR (1998) The middle ear and mastoid. In: Swartz JD, Harnsberger HR (eds) Imaging of the temporal bone, 3rd edn. Thieme, New York, pp 47–169Google Scholar
  94. Schwartz KM, Lane JI, Bolster BD et al (2011) The utility of diffusion-weighted imaging for cholesteatoma evaluation. AJNR 32:430–436PubMedCrossRefGoogle Scholar
  95. Teissl C, Kremser C, Hochmair ES et al (1998) Cochlear implants: in vitro investigation of electromagnetic interference at MR imaging—compatibility and safety aspects. Radiology 208:700–708PubMedCrossRefGoogle Scholar
  96. Thiriat S, Riehm S, Kremer S, Martin E, Veillon F (2009) Apparent diffusion coefficient values of middle ear cholesteatoma differ from abscess and cholesteatoma admixed infection. Am J Neuroradiol 30(6):1123–1126Google Scholar
  97. Tierney PA, Pracy P, Blaney SP et al (1999) An assessment of the value of the preoperative computed tomography scans prior to otoendoscopic ‘second look’ in intact canal wall mastoid surgery. Clin Otolaryngol 24:274–276PubMedCrossRefGoogle Scholar
  98. Van de Heyning PH (2002) Personal communicationGoogle Scholar
  99. Van den Abeele D, Coen E, Parizel PM et al (1999) Can MRI replace a second look operation in cholesteatoma surgery? Acta Otolaryngol 119:555–561CrossRefGoogle Scholar
  100. Venail F, Bonafe A, Poirrier V, Mondain M, Uziel A (2008) Comparison of echo-planar diffusion-weighted imaging and delayed postcontrast T1-weighted MR imaging for the detection of residual cholesteatoma. Am J Neuroradiol 29(7):1363–1368Google Scholar
  101. Vercruysse JP, De Foer B, Pouillon M et al (2006) The value of diffusion-weighted MR imaging in the diagnosis of primary acquired and residual cholesteatoma: a surgical verified study of 100 patients. Eur Radiol 16:1461–1467PubMedCrossRefGoogle Scholar
  102. Vercruysse JP, De Foer B, Somers T, Casselman J, Offeciers E (2010) Long-term follow up after bony mastoid and epitympanic obliteration: radiological findings. J Laryngol Otol 124:37–43PubMedCrossRefGoogle Scholar
  103. Weissman JL, Hirsch BE, Fukui MB et al (1997) The evolving MR appearance of structures in the internal auditory canal after removal of an acoustic neuroma. AJNR 18:313–323PubMedGoogle Scholar
  104. Wiet RJ, Teixido M, Liang JG (1992) Complications in acoustic neuroma surgery. Otolaryngol Clin North Am 25:389–412PubMedGoogle Scholar
  105. Williams MT, Ayache D, Elmaleh M, Héran F, Elbaz P, Piekarski JD (2000) Helical CT findings in patients who have undergone stapes surgery for otosclerosis. AJR 174:387–392PubMedCrossRefGoogle Scholar
  106. Williams MT, Ayache D (2004) Imaging of the postoperative middle ear. Eur Radiol 14(3):482–495Google Scholar
  107. Willliams MT, Ayache D, Alberti C et al (2003) Detection of postoperative residual cholesteatoma with delayed contrast-enhanced MR imaging: initial findings. Eur Radiol 13:169–174Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Luc van den Hauwe
    • 1
    • 2
  • Christoph Kenis
    • 3
  • Bert De Foer
    • 4
  • Jan Walther Casselman
    • 3
    • 4
    • 5
  1. 1.Department of RadiologyAZ KlinaBrasschaatBelgium
  2. 2.Department of RadiologyAntwerp University HospitalEdegemBelgium
  3. 3.Department of RadiologyAZ Sint Jan HospitalBruggeBelgium
  4. 4.Department of RadiologyGZA Sint Augustinus HospitalWilrijkBelgium
  5. 5.University of GhentGentBelgium

Personalised recommendations