Advertisement

Imaging of Cholesteatoma

  • Bert De Foer
  • Simon Nicolay
  • Jean-Philippe Vercruysse
  • Erwin Offeciers
  • Jan W. Casselman
  • Marc Pouillon
Chapter
Part of the Medical Radiology book series (MEDRAD)

Abstract

Whereas imaging of cholesteatoma was limited to CT scan a decade ago, MRI has become in the past few years an indispensable tool in the evaluation of the cholesteatoma patient as well as prior to first stage surgery in describing the exact location and extent of the cholesteatoma as well as prior to second stage surgery in selecting patients for second stage surgery. This chapter describes the different types of cholesteatoma as well as the different types of cholesteatoma surgery. Emphasis is put on current state-of-the art imaging of cholesteatoma as well in the non-operated patient as well as in the patient prior to second stage surgery.

Keywords

Tympanic Membrane External Auditory Canal Geniculate Ganglion Lateral Semicircular Canal Membranous Labyrinth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aarts MC, Rovers MM, Van Der Veen EL et al (2010) The diagnostic value of diffusion-weighted magnetic resonance imaging in detecting a residual cholesteatoma. Otolaryngol Head Neck Surg 143:12–16PubMedCrossRefGoogle Scholar
  2. Aikele P, Kittner T, Offergeld C et al (2003) Diffusion-weighted MR imaging of cholesteatoma in pediatric and adult patients who have undergone middle ear surgery. Am J Roentgenol 181:261–265CrossRefGoogle Scholar
  3. Ayache D, Williams MT, Lejeune D et al (2005) Usefullness of delayed postcontrast magnetic resonance imaging in the detection of residual cholesteatoma after canal wall-up tympanoplasty. Laryngoscope 115:607–610PubMedCrossRefGoogle Scholar
  4. Baràth K, Huber AM, Stämpfli P et al (2011) Neuroradiology of cholesteatomas. AJNR Am J Neuroradiol 32:221–229 Epub 2010 Apr 1PubMedCrossRefGoogle Scholar
  5. Blaney SP, Tierney P, Oyarazabal M, Bowdler DA (2001) CT scanning in “second look” combined approach tympanoplasty. Rev Laryngol Otol Rhinol (Bord) 121:79–81Google Scholar
  6. Brenner DJ, Hall EJ (2007) Computed Tomography—an increasing source of radiation exposure. N Engl J Med 357:2277–2284PubMedCrossRefGoogle Scholar
  7. Brown JS (1982) A ten year statistical follow-up of 1142 consecutive cases of cholesteatoma: the closed versus the open technique. Laryngoscope 92:390–396PubMedGoogle Scholar
  8. Darrouzet V, Duclos JY, Portmann D et al (2000) Preference for the closed technique in management of cholesteatoma of the middle ear in children: a retrospective study of 215 consecutive patients treated over 10 years. Am J Otol 21:474–481PubMedGoogle Scholar
  9. Darrouzet V, Duclos JY, Portmann D et al (2002) Congenital middle ear cholesteatoma in children: our experience in 34 cases. Otolaryngol Head Neck Surg 126:34–40PubMedCrossRefGoogle Scholar
  10. De Foer B, Vercruysse JP, Pilet B et al (2006) Single-shot, turbo spin-echo, diffusion-weighted imaging versus spin-echo-planar, diffusion-weighted imaging in the detection of acquired middle ear cholesteatoma. Am J Neuroradiol 27:1480–1482PubMedGoogle Scholar
  11. De Foer B, Vercruysse JP, Bernaerts A et al (2007) The value of single-shot turbo spin-echo difusion-weighted MR imaging in the detection of middle ear cholesteatoma. Neuroradiology 28:230–234Google Scholar
  12. De Foer B, Vercruysse JP, Bernaert A et al (2008) Detection of postoperative residual cholesteatoma with non-echo-planar diffusion-weighted magnetic resonance imaging. Otol Neurotol 29:513–517PubMedCrossRefGoogle Scholar
  13. De Foer B, Vercruysse JP, Spaepen M et al (2010a) Diffusion-weighted magnetic resonance imaging of the temporal bone. Neuroradiology 52:785–807 Epub 2010 Jul 15PubMedCrossRefGoogle Scholar
  14. De Foer B, Vercruysse JP, Bernaert A et al (2010b) Middle ear cholesteatoma: non-echo-planar diffusion-weighted MRI imaging versus delayed gadolinium-enhanced T1-weighted MR imaging: value in detection. Radiology 255:866–872PubMedCrossRefGoogle Scholar
  15. De Foer B, Vercruysse JP, Spaepen M et al (2010c) Diffusion-weighted magnetic resonance imaging of the temporal bone. Neuroradiology 52:785–807PubMedCrossRefGoogle Scholar
  16. Denoyelle F, Silberman B, Garabedian EN (1994) Value of magnetic resonance imaging associated with X-ray computed tomography in the screening of residual cholesteatoma after primary surgery. Ann Otolaryngol Chir Cervicofac 111:85–88PubMedGoogle Scholar
  17. Dhepnorrarat RC, Wood B, Rajan GP (2009) Postoperative non-echo-planar diffusion-weighted magnetic resonance imaging after cholesteatoma surgery: implications for cholesteatoma screening. Otol Neurotol 30:54–58PubMedCrossRefGoogle Scholar
  18. Dremmen MH, Hofman PA, Hof JR (2012) The diagnostic accuray of non-echo-planar diffusion-weighted imaging in the detection of residual and/or recurrent cholesteatoma of the temporal bone. Am J Neuroradiol 33:439–444PubMedCrossRefGoogle Scholar
  19. Du Verney JG (1683) Traité de l’Organe de l’Ouie. Paris: E. MichailletGoogle Scholar
  20. Emonot G, Veyret C, Dumollard JM et al (2008) Apport de l’imagerie aud diagnostic de cholesteatome residuel. Fr ORL 94:366–374Google Scholar
  21. Fitzek C, Mewes T, Fitzek S et al (2002) Diffusion-weighted MRI of cholesteatoma of the petrous bone. J Magn Reson Imaging 15:636–641PubMedCrossRefGoogle Scholar
  22. Huins CT, Singh A, Lingam RK et al (2010) Detecting cholesteatoma with non-echo planar (HASTE) diffusion-weighted magnetic resonance imaging. Otolaryngol Head Neck Surg 143:141–148PubMedCrossRefGoogle Scholar
  23. Jeunen G, Desloovere C, Hermans R (2008) The value of magnetic resonance imaging in the diagnosis of residual or recurrent acquired cholesteatoma after canal wall-up tympanoplasty. Otol Neurotol 29:16–18PubMedCrossRefGoogle Scholar
  24. Jindal M, Riskalla A, Jiang D et al (2011) A systematic review of diffusion-weighted magnetic resonance imaging in the assessment of postoperative cholesteatoma. Otol Neurotol 32:1243–1249PubMedCrossRefGoogle Scholar
  25. Khemani S, Lingam RK, Kalan A et al (2011) The value of non-echo planar HASTE diffusion-weighted MR imaging in the detection, localisation and prediction of extent of postoperative cholesteatoma. Clin Otolaryngol 36:306–312PubMedCrossRefGoogle Scholar
  26. Kimitsuki T, Suda Y, Kawano H et al (2001) Correlation between MRI findings and second-look operation in cholesteatoma surgery. ORL J Otorhinolaryngol Relat Spec 63:291–293PubMedCrossRefGoogle Scholar
  27. Lehmann P, Saliou G, Brocart C et al (2009) 3 T MR imaging of postoperative recurrent middle ear cholesteatoma: value of periodically rotated overlapping parallel lines with enhanced reconstruction diffusion-weighted MR imaging. Am J Neuroradiol 30:423–427PubMedCrossRefGoogle Scholar
  28. Lemmerling M, De Foer B (2001) Imaging of cholesteatomatous and non-cholesteatomatous middle ear disease. In: Lemmerling M, Kollias SS (eds) Radiology of the petrous bone. Springer, New York, pp 31–47Google Scholar
  29. Lemmerling MM, De Foer B, Vandevyver V et al (2008) Imaging of the opacified middle ear. Eur J Radiol 66:363–371PubMedCrossRefGoogle Scholar
  30. Li PM, Linos E, Gurgel RK et al (2013) Evaluating the utility of non-echo-planar diffusion-weighted imaging in the preoperative evaluation of cholesteatoma: a meta-analysis. Laryngoscope 123:1247–1250 Google Scholar
  31. Lingam RK, Khatri P, Hughes J et al (2013). Apparent diffusion coefficients for detection of postoperative middle ear cholesteatoma on non-echo-planar diffusion-weighted images. Radiol 269:504–510Google Scholar
  32. Maheshwari S, Mukherji SK (2002) Diffusion-weighted imaging for differentiating recurrent cholesteatoma from granulation tissue after mastoidectomy: case report. Am J Neuroradiol 23:847–849PubMedGoogle Scholar
  33. Martin N, Sterkers O, Nahum H (1990) Chronic inflammatory disease of the middle ear cavities: Gd-DTPA-enhanced imaging. Radiology 176:399–405PubMedCrossRefGoogle Scholar
  34. Mas-Estelles F, Mateos-Fernandez M, Carrascosa-Bisquert B et al (2012) Contemporary non-echo-planar diffusion-weighted imaging of middle ear cholesteatomas. Radiographics 32:1197–1213PubMedCrossRefGoogle Scholar
  35. Müller J (1838) Ueber den feineren Bau und die formen der krankhaften Geschwülste. G. Reimer, BerlinGoogle Scholar
  36. Nelson M, Roger G, Koltai PJ et al (2002) Congenital cholesteatoma: classification, management, and outcome. Arch Otolaryngol Head Neck Surg 128:810–814PubMedCrossRefGoogle Scholar
  37. Offeciers E, Vercruysse JP, De Foer B et al (2008) Mastoid and epitympanic obliteration. The obliteration technique. In: Ars B (ed) Chronic Otitis Media. Pathogenesis Oriented Therapeutic Treatment. Kugler, Amsterdam, pp 299-327Google Scholar
  38. Rajan GP, Ambett R, Wun L et al (2010) Preliminary outcomes of cholesteatoma screening in children using non-echo-planar diffusion-weighted magnetic resonance imaging. Int J Pediatric Otorhinolaryngol 74:297–301CrossRefGoogle Scholar
  39. Schilder AG, Govaerts PJ, Somers T et al (1997) Tympano-ossicular allografts for cholesteatoma in children. Int J Pediatr Otorhinolaryngol 42:31–40PubMedCrossRefGoogle Scholar
  40. Sheehy JL, Brackmann DE, Graham MD (1977) Cholesteatoma surgery: residual and recurrent disease. A review of 1,024 cases. Ann Otol Rhinol Laryngol 86:451–462PubMedCrossRefGoogle Scholar
  41. Shelton C, Sheehy JL (1990) Tympanoplasty: review of 400 staged cases. Laryngoscope 100:679–681PubMedGoogle Scholar
  42. Stasolla A, Magliulo G, Parrott D et al (2004) Detection of postoperative relapsing/residual cholesteatomas with diffusion-weighted echo-planar magnetic resonance imaging. Otol Neurotol 25:679–684CrossRefGoogle Scholar
  43. Tierney PA, Pracy P, Blaney SP et al (1999) An assessment of the value of the preoperative computed tomography scans prior to otoendoscopic ‘second look’ in intact canal wall mastoid surgery. Clin Otolaryngol Allied Sci 24:274–276PubMedCrossRefGoogle Scholar
  44. Toyama C, Leite Cda C, Barauna Filho IS et al (2008) The role of magnetic resonance imaging in the postoperative management of cholesteatomas. Braz J Otorhinolaryngol 74:693–696PubMedGoogle Scholar
  45. Vanden Abeele D, Coen E, Parizel PM et al (1999) Can MRI replace a second look operation in cholesteatoma surgery. Acta Otolaryngol 119:555–561PubMedCrossRefGoogle Scholar
  46. Venail F, Bonafe A, Poirrier V et al (2008) Comparison of echo-planar diffusion-weighted imaging and delayed postcontrast T1-weighted MR imaging for the detection of residual cholesteatoma Am. J Neuroradiol 29:1363–1368CrossRefGoogle Scholar
  47. Vercruysse JP, De Foer B, Pouillon M et al (2006) The value of diffusion-weighted MR imaging in the diagnosis of primary acquired and residual cholesteatoma: a surgical verified study of 100 patients. Eur Radiol 16:1461–1467PubMedCrossRefGoogle Scholar
  48. Vercruysse JP, De Foer B, Somers T et al (2008) Mastoid and epitympanic bony obliteration in pediatric cholesteatoma. Otol Neurotol 829:953–960CrossRefGoogle Scholar
  49. Williams MT, Ayache D, Alberti C et al (2003) Detection of postoperative residual cholesteatoma with delayed contrast-enhanced MR-imaging: initial findings. Eur Radiol 13:169–174PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Bert De Foer
    • 1
  • Simon Nicolay
    • 1
  • Jean-Philippe Vercruysse
    • 2
  • Erwin Offeciers
    • 3
  • Jan W. Casselman
    • 1
    • 4
    • 5
  • Marc Pouillon
    • 1
  1. 1.Department of RadiologyGZA Hospitals Sint-AugustinusWilrijkBelgium
  2. 2.Department of ENTHeilig HartziekenhuisMolBelgium
  3. 3.European Institute for ORLGZA Hospitals Sint-AugustinusWilrijkBelgium
  4. 4.Department of RadiologyAZ Sint-Jan AVBruggeBelgium
  5. 5.University of GhentGhentBelgium

Personalised recommendations