MRI of Lung Morphology and Perfusion

  • Sebastian Ley
  • Julia Ley-Zaporozhan
Part of the Medical Radiology book series (MEDRAD)


The use of magnetic resonance imaging (MRI) of the chest is becoming more frequent and standard examination protocols are now available for various diseases. Given the lack of ionizing radiation exposure, this technique is especially well suited for examinations of children. MRI provides good visualization of the lung parenchyma, especially in the setting of diseases associated with air space filling, like pneumonia, or severe airway abnormalities, like cystic fibrosis. Functional information regarding chest wall, diaphragmatic, and airway motion during free breathing can be acquired with MRI. Furthermore, lung perfusion can be assessed with good spatial and temporal resolution. Lung perfusion determined by MRI is a promising functional biomarker for assessing disease severity and monitoring treatment response. This chapter will provide examination protocols, clinical indications, and imaging findings for typical applications of MRI for investigating lung morphology and perfusion.


Magnetic Resonance Imaging Cystic Fibrosis Cystic Fibrosis Patient Lung Parenchyma Arterial Spin Label 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Biederer J, Hintze C, Fabel M (2008) MRI of pulmonary nodules: technique and diagnostic value. Cancer Imaging 8:125–130PubMedCentralPubMedCrossRefGoogle Scholar
  2. Eibel R, Herzog P, Dietrich O, Rieger CT, Ostermann H, Reiser MF, Schoenberg SO (2006) Pulmonary abnormalities in immunocompromised patients: comparative detection with parallel acquisition MR imaging and thin-section helical CT. Radiology 241:880–891PubMedCrossRefGoogle Scholar
  3. Eichinger M, Puderbach M, Fink C, Gahr J, Ley S, Plathow C, Tuengerthal S, Zuna I, Muller FM, Kauczor HU (2006) Contrast-enhanced 3D MRI of lung perfusion in children with cystic fibrosis-initial results. Eur Radiol 16:2147–2152PubMedCrossRefGoogle Scholar
  4. Eichinger M, Optazaite DE, Kopp-Schneider A, Hintze C, Biederer J, Niemann A, Mall MA, Wielputz MO, Kauczor HU, Puderbach M (2012) Morphologic and functional scoring of cystic fibrosis lung disease using MRI. Eur J Radiol 81:1321–1329PubMedCrossRefGoogle Scholar
  5. Haller HA Jr, Kramer SS, Lietman SA (1987) Use of CT scans in selection of patients for pectus excavatum surgery: a preliminary report. J Pediatr Surg 22:904–906PubMedCrossRefGoogle Scholar
  6. Herrmann KA, Zech C, Strauss T, Hatz R, Schoenberg S, Reiser M (2006) Cine MRI of the thorax in patients with pectus excavatum. Radiologe 46:309–316PubMedCrossRefGoogle Scholar
  7. Hierholzer J, Luo L, Bittner RC, Stroszczynski C, Schroder RJ, Schoenfeld N, Dorow P, Loddenkemper R, Grassot A (2000) MRI and CT in the differential diagnosis of pleural disease. Chest 118:604–609PubMedCrossRefGoogle Scholar
  8. Johnson KM, Fain SB, Schiebler ML, Nagle S (2013) Optimized 3D ultrashort echo time pulmonary MRI. Magn Reson Med 70:1241–1250PubMedCrossRefGoogle Scholar
  9. Ley S, Ley-Zaporozhan J (2012) Pulmonary perfusion imaging using MRI: clinical application. Insights Imaging 3:61–71PubMedCentralPubMedCrossRefGoogle Scholar
  10. Ley S, Loukanov T, Ley-Zaporozhan J, Springer W, Sebening C, Sommerburg O, Hagl S, Gorenflo M (2010) Long-term outcome after external tracheal stabilization due to congenital tracheal instability. Ann Thorac Surg 89:918–925PubMedCrossRefGoogle Scholar
  11. Malek MH, Fonkalsrud EW, Cooper CB (2003) Ventilatory and cardiovascular responses to exercise in patients with pectus excavatum. Chest 124:870–882PubMedCrossRefGoogle Scholar
  12. McCahon E (2006) Lung tumours in children. Paediatr Respir Rev 7:191–196PubMedGoogle Scholar
  13. Montella S, Maglione M, Bruzzese D, Mollica C, Pignata C, Aloj G, Manna A, Esposito A, Mirra V, Santamaria F (2012) Magnetic resonance imaging is an accurate and reliable method to evaluate non-cystic fibrosis paediatric lung disease. Respirology 17:87–91PubMedCrossRefGoogle Scholar
  14. Puderbach M, Eichinger M, Gahr J, Ley S, Tuengerthal S, Schmahl A, Fink C, Plathow C, Wiebel M, Muller FM, Kauczor HU (2007a) Proton MRI appearance of cystic fibrosis: comparison to CT. Eur Radiol 17:716–724PubMedCrossRefGoogle Scholar
  15. Puderbach M, Eichinger M, Haeselbarth J, Ley S, Kopp-Schneider A, Tuengerthal S, Schmaehl A, Fink C, Plathow C, Wiebel M, Demirakca S, Muller FM, Kauczor HU (2007b) Assessment of morphological MRI for pulmonary changes in cystic fibrosis (CF) patients: comparison to thin-section CT and chest x-ray. Invest Radiol 42:715–725PubMedCrossRefGoogle Scholar
  16. Rieger C, Herzog P, Eibel R, Fiegl M, Ostermann H (2008) Pulmonary MRI–a new approach for the evaluation of febrile neutropenic patients with malignancies. Support Care Cancer 16:599–606PubMedCrossRefGoogle Scholar
  17. Schraml C, Schwenzer NF, Martirosian P, Boss A, Schick F, Schafer S, Stern M, Claussen CD, Schafer JF (2012) Non-invasive pulmonary perfusion assessment in young patients with cystic fibrosis using an arterial spin labeling MR technique at 1.5 T. MAGMA 25:155–162PubMedCrossRefGoogle Scholar
  18. Wielputz MO, Eichinger M, Puderbach M (2013) Magnetic resonance imaging of cystic fibrosis lung disease. J Thorac Imaging 28:151–159PubMedCrossRefGoogle Scholar
  19. Zou Y, Zhang M, Wang Q, Shang D, Wang L, Yu G (2008) Quantitative investigation of solitary pulmonary nodules: dynamic contrast-enhanced MRI and histopathologic analysis. AJR Am J Roentgenol 191:252–259PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Diagnostic and Interventional RadiologyChirurgische Klinik Dr. RineckerMunichGermany
  2. 2.Division of Pediatric RadiologyDiagnostic and Interventional RadiologyHeidelbergGermany
  3. 3.Division of Pediatric RadiologyInstitute of Clinical Radiology, University Hospital MunichMunichGermany

Personalised recommendations