Pediatric Cardiac MRI

  • Rajesh Krishnamurthy
  • Taylor Chung
Part of the Medical Radiology book series (MEDRAD)


MRI plays an important complementary role to echocardiography in the evaluation of cardiac morphology and function in children with cardiovascular disease in the pre-operative and post-operative period. Recent technological advancements including free breathing capabilities, improved image resolution, ultra-short imaging time, and real-time imaging, a spurt in clinical validation studies, and the lack of ionizing radiation have all combined to significantly expand the indications for MRI in pediatric cardiovascular disease over the last several years. This chapter provides an overview of relevant technical parameters in children, critical imaging findings and role of imaging in management of common congenital and acquired cardiovascular diseases in children.


Pulmonary Vein Atrial Septal Defect Ventricular Septal Defect Steady State Free Precession Arrhythmogenic Right Ventricular Cardiomyopathy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anderson LJ, Holden S, Davis B et al (2001) Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J 22:2171–2179PubMedGoogle Scholar
  2. Araoz PA, Reddy GP, Thomson PD, Higgins CB (2002) Images in cardiovascular medicine. Magnetic resonance angiography of crisscross heart. Circulation 105:537–538PubMedGoogle Scholar
  3. Atweh LA, Jadhav S, Vogelius E, Pednekar A, Muthupillai R, Krishnamurthy R (2013) Clinical validation of free-breathing navigator triggered retrospectively cardiac gated cine steady state free precession (NAV-SSFP) imaging in sedated children. In: Radiological Society of North America 99th scientific assembly and annual meeting, Chicago IL, December 3, 2013 (abstract)Google Scholar
  4. Axel L, Dougherty L (1989) Heart wall motion: improved method of spatial modulation of magnetization for MR imaging. Radiology 172:349–350PubMedGoogle Scholar
  5. Babu-Narayan SV, Goktekin O, Moon JC et al (2005) Late gadolinium enhancement cardiovascular magnetic resonance of the systemic right ventricle in adults with previous atrial redirection surgery for transposition of the great arteries. Circulation 111:2091–2098PubMedGoogle Scholar
  6. Bailes DR, Gilerdale DJ, Bydder GM et al (1985) Respiratory ordered phase encoding (ROPE): a method for reducing respiratory motion artifacts in MR imaging. J Comput Assist Tomogr 9:835–838PubMedGoogle Scholar
  7. Beerbaum P, Korperich H, Gieseke J et al (2003) Rapid left to-right shunt quantification in children by phase contrast magnetic resonance imaging combined with sensitivity encoding. Circulation 108:1355–1361PubMedGoogle Scholar
  8. Beerbaum P, Koerperich H, Sarikouch S et al (2006) Time resolved “Cine” 3D contrast-enhanced MR angiography using Centra-Keyhole-SENSE in congenital heart diseases with pulmonary artery pathology. J Cardiovasc MR 8:26 (abstract)Google Scholar
  9. Beerbaum P, Sarikouch S, Laser KT, Greil G, Burchert W, Körperich H (2009) Coronary anomalies assessed by whole-heart isotropic 3D magnetic resonance imaging for cardiac morphology in congenital heart disease. J Magn Reson Imaging 29:320–327PubMedGoogle Scholar
  10. Bogren HG, Klipstein RH, Firmin DN et al (1989) Quantitation of antegrade and retrograde blood flow in the human aorta by magnetic resonance velocity mapping. Am Heart J 117:1214–1222PubMedGoogle Scholar
  11. Bomma C, Rutberg J, Tandri H et al (2004) Misdiagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy. J Cardiovasc Electrophysiol 15:300–306PubMedGoogle Scholar
  12. Brenner LD, Caputo GR, Mostbeck G et al (1992) Quantification of antegrade and retrograde blood flow in the human aorta by magnetic resonance imaging. J Am Coll Cardiol 20:1246–1250PubMedGoogle Scholar
  13. Brown DW, Gauvreau K, Powell AJ et al (2007) Cardiac magnetic resonance versus routine cardiac catheterization before bidirectional glenn anastomosis in infants with functional single ventricle: a prospective randomized trial. Circulation 116:2718–2725PubMedGoogle Scholar
  14. Buechel ER, Balmer C, Bauersfeld U, Kellenberger CJ, Schwitter J (2009a) Feasiblity of perfusion cardiovascular magnetic resonance in pediatric patients. J Cardiovasc Magn Reson 11:51–58PubMedCentralPubMedGoogle Scholar
  15. Buechel E, Kaiser T, Jackson C, Schmitz A, Kellenberger C (2009b) Normal right- and left ventricular volumes and myocardial mass in children measured by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 11:19PubMedCentralPubMedGoogle Scholar
  16. Caputo GR, Kondo C, Masui T et al (1991) Right and left lung perfusion: in vitro and in vivo validation with oblique angle, velocity-encoded cine MR imaging. Radiology 180:693–698PubMedGoogle Scholar
  17. Carr JC, Simonetti O, Bundy J et al (2001) Cine MR angiography of the heart with segmented true fast imaging with steady state precession. Radiology 219:828–834PubMedGoogle Scholar
  18. Casolo G, Rega L, Gensini GF (2004) Detection of right atrial and pulmonary artery thrombosis after the Fontan procedure by magnetic resonance imaging. Heart 90:825PubMedCentralPubMedGoogle Scholar
  19. Castillo E, Osman NF, Reson BD et al (2005) Quantitative assessment of regional myocardial function with MR-tagging in a multi-center study: interobserver and intraosbserver agreement of fast strain analysis with Harmonic Phase (HARP) MRI. J Cardiovasc Magn Reson 7:783–791PubMedGoogle Scholar
  20. Chia JM, Fischer SE, Wickline SA et al (2000) Performance of QRS detection for cardiac magnetic resonance imaging with a novel vectorcardiographic triggering method. J Magn Reson Imaging 12:678–688PubMedGoogle Scholar
  21. Cho Y, Park T, Yang DH et al (2003) Arrhythmogenic right ventricular cardiomyopathy and sudden cardiac death in young Koreans. Circ J 67:925–928PubMedGoogle Scholar
  22. Choi YH, Park JH, Choe YH et al (1994) MR imaging of Ebstein’s anomaly of the tricuspid valve. AJR Am J Roentgenol 163:539–543PubMedGoogle Scholar
  23. Chung KJ, Simpson IA, Glass RF et al (1988) Cine magnetic resonance imaging after surgical repair in patients with transposition of the great arteries. Circulation 77:104–109PubMedGoogle Scholar
  24. Chung T (2012) Initial clinical experience in congenital heart disease MR examinations with multi-transmit radiofrequency (RF) technology on 3T. Pediatr Rad 42(S2):S254Google Scholar
  25. Chung T, Muthupilliai R (2004) Application of SENSE in clinical pediatric body MR imaging. Top Magn Reson Imaging 15:187–196PubMedGoogle Scholar
  26. Chung T, Krishnamurthy R (2005) Contrast-enhanced MR angiography in infants and children. Magn Reson Imaging Clin N Am 13:161–170PubMedGoogle Scholar
  27. Didier D, Higgins CB (1986) Identification and localization of ventricular septal defect by gated magnetic resonance imaging. Am J Cardiol 57:1363–1368PubMedGoogle Scholar
  28. Evans AJ, Iwai F, Grist TA et al (1993) Magnetic resonance imaging of blood flow with a phase subtraction technique. In vitro and in vivo validation. Invest Radiol 28:109–115PubMedGoogle Scholar
  29. Festa P, Ait-Ali L, Cerillo AG et al (2006) Magnetic resonance imaging is the diagnostic tool of choice in the preoperative evaluation of patients with partial anomalous pulmonary venous return. Int J Cardiovasc Imaging 22:685–693PubMedGoogle Scholar
  30. Firmin DN, Nayler GL, Klipstein RH et al (1987) In vivo validation of MR velocity imaging. J Comput Assis Tomogr 11:751–756Google Scholar
  31. Fischer SE, Wickline SA, Lorenz CH (1999) Novel real-time R-wave detection algorithm based on the vectorcardiogram for accurate gated magnetic resonance acquisitions. Magn Reson Med 42:361–370PubMedGoogle Scholar
  32. Flamm SD, Muthupillai R (2004) Coronary artery magnetic resonance angiography. J Magn Reson Imaging 19:686–709PubMedGoogle Scholar
  33. Fogel MA, Weinberg PM, Chin AJ et al (1996) Late ventricular geometry and performance changes of functional single ventricle throughout staged Fontan reconstruction assessed by magnetic resonance imaging. J Am Coll Cardiol 28:212–221PubMedGoogle Scholar
  34. Fogel MA, Weinberg PM, Gupta KB et al (1998) Mechanics of the single left ventricle: a study in ventricular–ventricular interaction II. Circulation 98:330–338 Fogel MA (2000) Assessment of cardiac function by magnetic resonance imaging. Pediatr Cardiol 21:59–69Google Scholar
  35. Fratz S, Hager A, Schreiber C, Schwaiger M, Hess J, Stern HC (2011) Long-term myocardial scarring after operation for anomalous left coronary artery from the pulmonary artery. Ann Thorac Surg 92:1761–1766PubMedGoogle Scholar
  36. Fratz S, Hauser M, Bengel FM et al (2006) Myocardial scars determined by delayed-enhancement magnetic resonance imaging and positron emission tomography are not common in right ventricles with systemic function in long-term follow up. Heart 92:1673–1677PubMedCentralPubMedGoogle Scholar
  37. Frayne R, Steinman DA, Ethier CR et al (1995) Accuracy of MR phase contrast velocity measurements for unsteady flow. J Magn Reson Imaging 5:428–431PubMedGoogle Scholar
  38. Friedrich MG, Sechtem U, Schulz-Menger J, et al (2009) Cardiovascular magnetic resonance in myocarditis: A JACC white paper. J Am Coll Cardiol 53:1475–1487Google Scholar
  39. Goo HW, Yang DH, Park IS et al (2007) Time-resolved three dimensional contrast-enhanced magnetic resonance angiography in patients with Fontan operation or bidirectional cavopulmonary connection: initial experience. J Magn Reson Imaging 25:727–736PubMedGoogle Scholar
  40. Greil GF, Geva T, Maier SE et al (2002a) Effect of acquisition parameters on the accuracy of velocity encoded cine magnetic resonance imaging blood flow measurements. J Magn Reson Imaging 15:47–54PubMedGoogle Scholar
  41. Greil GF, Stuber M, Botnar RM et al (2002b) Coronary magnetic resonance angiography in adolescents and young adults with Kawasaki disease. Circulation 105:908–911PubMedGoogle Scholar
  42. Grist TM, Thornton FJ (2005) Magnetic resonance angiography in children: technique, indications, and imaging findings. Pediatr Radiol 35:26–39PubMedGoogle Scholar
  43. Grotenhuis HB, Westenberg JJ, Doornbos J et al (2006) Aortic root dysfunctioning and its effect on left ventricular function in Ross procedure patients assessed with magnetic resonance imaging. Am Heart J 152(975):e1–e8PubMedGoogle Scholar
  44. Grosse-Wortmann L, Yun TJ, Al-Radi O et al (2008) Borderline hypoplasia of the left ventricle in neonates: insights for decision-making from functional assessment with magnetic resonance imaging. J Thorac Cardiovasc Surg 136:1429–1436PubMedGoogle Scholar
  45. Grothues F, Moon JC, Bellenger NG et al (2004) Interstudy reproducibility of right ventricular volumes, function and mass with cardiovascular magnetic resonance. Am Heart J 147:218–223PubMedGoogle Scholar
  46. Helbing WA, Bosch HG, Maliepaard C et al (1995) Comparison of echocardiographic methods with magnetic resonance imaging for assessment of right ventricular function in children. Am J Cardiol 76:589–594PubMedGoogle Scholar
  47. Helbing WA, Niezen RA, Cessie SL et al (1996) Right ventricular diastolic function in children with pulmonary regurgitation after repair of tetraology of Fallot: volumetric evaluation by magnetic resonance velocity mapping. J Am Coll Cardiol 28:1827–1835PubMedGoogle Scholar
  48. Helbing WA, de Roos A (2000) Clinical applications of cardiac magnetic resonance imaging after repair of tetralogy of Fallot. Pediatr Cardiol 21:70–79PubMedGoogle Scholar
  49. Henk CB, Higgins CB, Saeed M (2005) Endovascular interventional MRI. J Magn Reson Imaging 22:451–460PubMedGoogle Scholar
  50. Herfkens RJ, Higgins CB, Hricak H et al (1983) Nuclear magnetic resonance imaging of the cardiovascular system: normal and pathologic findings. Radiology 147:749–759PubMedGoogle Scholar
  51. Hernandez RJ, Aisen AM, Foo TKF et al (1993) Thoracic cardiovascular anomalies in children: evaluation with a fast gradient-recalled-echo sequence with cardiac-triggered segmented acquisition. Radiology 188:755–780Google Scholar
  52. Hoffmann U, Globits S, Schima W et al (2003) Usefulness of magnetic resonance imaging of cardiac and paracardiac masses. Am J Cardiol 92:890–895PubMedGoogle Scholar
  53. Hor KN, Wansapura J, Markham LW et al (2009) Circumferential strain analysis identifies strata of cardiomyopathy in Duchenne muscular dystrophy: a cardiac magnetic resonance tagging study. J Am Coll Cardiol 53:1204–1210PubMedCentralPubMedGoogle Scholar
  54. Hor KN, Mazur W, Taylor MD et al (2011) Effects of steroids and angiotensin converting enzyme inhibition on circumferential strain in boys with Duchenne muscular dystrophy: a cross-sectional and longitudinal study utilizing cardiovascular magnetic resonance. J Cardiovasc Magn Reson 13:60PubMedCentralPubMedGoogle Scholar
  55. Hsiao A, Lustig M, Alley MT et al (2012) Rapid pediatric cardiac assessment of flow and ventricular volume with compressed sensing parallel imaging volumetric cine phase contrast MRI. AJR Am J Roentgenol 198:W250–W259PubMedCentralPubMedGoogle Scholar
  56. Hundley WG, Li HF, Lange RA et al (1995) Assessment of left-to-right intracardiac shunting by velocity-encoded, phase-difference magnetic resonance imaging. A comparison with oximetric and indicator dilution techniques. Circulation 91:2955–2960PubMedGoogle Scholar
  57. Jahnke C, Paetsch I, Gebker R et al (2006) Accelerated 4D dobutamine stress MR imaging with k-t BLAST: feasibility and diagnostic performance. Radiology 241:718–728PubMedGoogle Scholar
  58. Kaiser T, Kellenberger C, Albisetti M, Bergstrasser E, Valsangiacomo Buechel E (2008) Normal values for aortic diameters in children and adolescents—assessment in vivo by contrast-enhanced CMR-angiography. J Cardiovasc Magn Reson 10:56PubMedCentralPubMedGoogle Scholar
  59. Kellenberger CJ, Macgowan CK, Roman KS et al (2005) Hemodynamic evaluation for the peripheral pulmonary circulation by cine phase contrast magnetic resonance imaging. J Magn Reson Imaging 22:780–787PubMedGoogle Scholar
  60. Kellman P, Arai AE, McVeigh ER, Aletras AH (2002) Phase sensitive inversion recovery for detecting myocardial infarction using gadolinium delayed hyperenhancement. Magn Reson Med 47:372–383PubMedCentralPubMedGoogle Scholar
  61. Kersting-Sommerhoff BA, Diethelm L, Stanger P et al (1990a) Evaluation of complex congenital ventricular anomalies with magnetic resonance imaging. Am Heart J 120:133–142PubMedGoogle Scholar
  62. Kersting-Sommerhoff B, Seelos KC, Hardy C et al (1990b) Evaluation of surgical procedures for cyanotic congenital heart disease by using MR imaging. AJR Am J Roentgenol 155:259–266PubMedGoogle Scholar
  63. Kiaffas MG, Powell AJ, Geva T (2002) Magnetic resonance imaging evaluation of cardiac tumor characteristics in infants and children. Am J Cardiol 89:1229–1233PubMedGoogle Scholar
  64. Kim RJ, Wu E, Rafael A et al (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343:1445–1453PubMedGoogle Scholar
  65. Kim WY, Danias PG, Stuber M et al (2001) Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med 345:1445–1453Google Scholar
  66. Kondo C, Caputo GR, Semelka R et al (1991a) Right and left ventricular stroke volume measurements with velocity encoded cine MR imaging: in vitro and in vivo validation. AJR Am J Roentgenol 157:9–16PubMedGoogle Scholar
  67. Kondo C, Hardy C, Higgins SS et al (1991b) Nuclear magnetic resonance imaging of the palliative operation for hypoplastic left heart syndrome. J Am Coll Cardiol 18:817–823PubMedGoogle Scholar
  68. Korcyk D, Edwards CC, Armstrong G et al (2004) Contrast-enhanced cardiac magnetic resonance in a patient with familial isolated ventricular noncompaction. J Cardiovasc Magn Reson 6:569–576PubMedGoogle Scholar
  69. Korperich H, Gieseke J, Barth P et al (2004) Flow volume and shunt quantification in pediatric congenital heart disease by real-time magnetic resonance velocity mapping. Circulation 109:1987–1993PubMedGoogle Scholar
  70. Krishnamurthy R, Slesnick T, Browne L, Taylor MD, Nutting A, Muthupillai R (2010) Free-breathing high temporal resolution time resolved contrast-enhanced MRA (4D MRA) at high heart rates using keyhole SENSE CENTRA in congenital heart disease. J Cardiovasc Magn Reson 12(Suppl 1):O31Google Scholar
  71. Krishnamurthy R, Pednekar A, Vogelius E et al (2012) Clinical validation of free-breathing respiratory triggered retrospectively cardiac gated cine steady state free precession (RT-SSFP) imaging in sedated children. J Cardiovasc Magn Reson 15 (Suppl 1):O98Google Scholar
  72. Lee KH, Yoon CS, Chow KO et al (2001) Use of imaging for assessing anatomical relationships of tracheobronchial anomalies associated with left pulmonary artery sling. Pediatr Radiol 31:269–278PubMedGoogle Scholar
  73. Link KM, Herrera MA, D’Souza VJ et al (1988) MR imaging of Ebstein anomaly: results in four cases. AJR Am J Roentgenol 150:363–367PubMedGoogle Scholar
  74. Makowski MR, Wiethoff AJ, Uribe S et al (2011) Congenital heart disease: cardiovascular MR imaging by using an intravascular blood pool contrast agent. Radiology 260:681–688Google Scholar
  75. Markl M, Pelc NJ (2004) On flow effects in balanced steady state free precession imaging: pictorial description, parameter dependence and clinical implications. J Magn Reson Imaging 20:697–705PubMedGoogle Scholar
  76. Markl M, Kilner P, Ebbers T (2011) Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 13:7PubMedCentralPubMedGoogle Scholar
  77. Mayo JR, Roberson D, Sommerhoff B et al (1990) MR imaging of double outlet right ventricle. J Comput Assist Tomogr 14:336–339PubMedGoogle Scholar
  78. Menteer J, Weinberg PM, Fogel MA (2005) Quantifying regional right ventricular function in tertralogy of Fallot. J Cardiovasc Magn Reson 7:753–761PubMedGoogle Scholar
  79. Messroghli DR, Greiser A, Fröhlich M, Dietz R, Schulz-Menger J (2007) Optimization and validation of a fully-integrated pulse sequence for modified Look-Locker inversion-recovery (MOLLI) T1 mapping of the heart. J Magn Reson Imaging MRI 4:1081–1086Google Scholar
  80. Mirowitz SA, Gutierrez FR, Canter CE et al (1989) Tetralogy of Fallot: MR findings. Radiology 171:207–212PubMedGoogle Scholar
  81. Mueller A, Kouwenhoven M, Naehle CP et al (2012) Dual-Source radiofrequency transmission with patient-adaptive local radiofrequency shimming for 3.0T cardiac MR. Radiology 263:77–85PubMedGoogle Scholar
  82. Muthupillai R, Vick GW, Flamm SD et al (2003) Time-resolved contrast-enhanced magnetic resonance angiography in pediatric patients using sensitivity encoding. J Magn Reson Imaging 17:559–564PubMedGoogle Scholar
  83. Nazarian S, Roguin A, Zviman MM et al (2006) Clinical utility and safety of a protocol for noncardiac and cardiac magnetic resonance imaging of patients with permanent pacemakers and implantable-cardioverter defibrillators at 1.5 tesla. Circulation 114:1277–1284PubMedCentralPubMedGoogle Scholar
  84. Niezen RA, Helbing WA, van der Wall EE et al (1996) Biventricular systolic function and mass studied with MR imaging in children with pulmonary regurgitation after repair for tetralogy of Fallot. Radiology 201:135–140PubMedGoogle Scholar
  85. Nordmeyer S, Riesenkampff E, Messroghli D et al (2013) Four-dimensional velocity-encoded magnetic resonance imaging improves blood flow quantification in patients with complex accelerated flow. J Magn Reson Imaging 37:208–216PubMedGoogle Scholar
  86. Ntsinjana HN, Hughes ML, Taylor AM (2011) The role of cardiovascular magnetic resonance in pediatric congenital heart disease. J Cardiovasc Magn Reson 13:51PubMedCentralPubMedGoogle Scholar
  87. Oosterhof T, Mulder BJM, Hubert WV et al (2006) Cardiovascular magnetic resonance in the follow-up of patients with corrected tetralogy of Fallot: a review. Am Heart J 151:265–272PubMedGoogle Scholar
  88. Oppelt A, Graumann R. Barfuss H (1986) Fisp—a new fast MRI sequence. Electromedica 54:15–18Google Scholar
  89. Oshinski JN, Parks WJ, Markou CP et al (1996) Improved measurement of pressure gradients in aortic coarctation by magnetic resonance imaging. J Am Coll Cardiol 28:1818–1826PubMedGoogle Scholar
  90. Petersen SE, Selvanayagam JB, Wiesmann F et al (2005) Left ventricular noncompaction: insights from cardiovascular magnetic resonance imaging. J Am Coll Cardiol 46:101–105PubMedGoogle Scholar
  91. Piaw CS, Kiam OT, Rapaee A et al (2006) Use of noninvasive phase contrast magnetic resonance imaging for estimation of atrial septal defect size and morphology: a comparison with transesophageal echo. Cardiovasc Intervent Radiol 29:230–234PubMedGoogle Scholar
  92. Powell AJ, Geva T (2000) Blood flow measurement by magnetic resonance imaging in congenital heart disease. Pediatr Cardiol 21:47–58PubMedGoogle Scholar
  93. Powell AJ, Maier SE, Chung T et al (2000) Phase-velocity cine magnetic resonance imaging measurement of pulsatile blood flow in children and young adults: in vitro and in vivo validation. Pediatr Cardiol 21:104–110PubMedGoogle Scholar
  94. Prakash A, Garg R, Marcus EN et al (2006) Faster flow quantification using sensitivity encoding for velocity-encoded cine magnetic resonance imaging: in vitro and in vivo validation. J Magn Reson Imaging 24:676–682PubMedGoogle Scholar
  95. Prakash A, Powell AJ, Krishnamurthy R et al (2004) Magnetic resonance imaging evaluation of myocardial perfusion and viability in congenital and acquired pediatric heart disease. Am J Cardiol 93:657–661PubMedGoogle Scholar
  96. Prince MR, Yucel E, Kaufman J et al (1993) Dynamic gadolinium-enhanced three-dimensional abdominal MR arteriography. J Magn Reson Imaging 3:877–881PubMedGoogle Scholar
  97. Pruessmann KP, Weiger M, Schiedegger MB et al (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962PubMedGoogle Scholar
  98. Rathod RH, Prakash A, Powell AJ, Geva T (2010) Myocardial fibrosis identified by cardiac magnetic resonance late gadolinium enhancement is associated with adverse ventricular mechanics and ventricular tachycardia late after Fontan operation. J Am Coll Cardiol 55:1721–1728PubMedGoogle Scholar
  99. Razavi R, Hill DL, Keevil SF et al (2003) Cardiac catheterization guided by MRI in children and adults with congenital heart disease. Lancet 362:1877–1882PubMedGoogle Scholar
  100. Rebergen SA, Chin J, Ottenkamp J et al (1993a) Pulmonary regurgitation in the late postoperative follow-up of tetralogy of Fallot. Volumetric quantitation by nuclear magnetic resonance velocity mapping. Circulation 88:2257–2266PubMedGoogle Scholar
  101. Rebergen SA, Ottenkamp J, Doornbos J et al (1993b) Postoperative pulmonary flow dynamics after Fontan surgery: assessment with nuclear magnetic resonance velocity mapping. J Am Coll Cardiol 21:123–131PubMedGoogle Scholar
  102. Rebergen SA, Helbing WA, van der Wall EE et al (1995) MR velocity mapping of tricuspid flow in healthy children and in patients who have undergone Mustard or Senning repair. Radiology 194:505–512PubMedGoogle Scholar
  103. Rickers C, Wilke NM, Jerosch-Herold M et al (2005) Utility of cardiac magnetic resonance imaging in the diagnosis of hypertrophic cardiomyopathy. Circulation 112:855–861PubMedGoogle Scholar
  104. Robinson JD, Del Nido PJ, Geggel RL, Perez-Atayde AR, Lock JE, Powell AJ (2010) Left ventricular diastolic heart failure in teenagers who underwent balloon aortic valvuloplasty in early infancy. Am J Cardiol 106:426–429PubMedGoogle Scholar
  105. Roman KS, Kellenberger CJ, Farooq S et al (2005) Comparative imaging of differential pulmonary blood flow in patients with congenital heart disease: magnetic resonance imaging versus lung perfusion scinitigraphy. Pediatr Radiol 25:295–301Google Scholar
  106. Sakuma H, Yasutaka I, Suzawa N et al (2005) Assessment of coronary arteries with total study time of less than 30 min by using whole-heart coronary MR angiography. Radiology 237:316–321PubMedGoogle Scholar
  107. Schlesinger AE, Krishnamurthy R, Sena LM, Guillerman RP, Chung T et al (2005) Incomplete double aortic arch with atresia of the distal left arch: distinctive imaging appearance. AJR Am J Roentgenol 184:1634–1639PubMedGoogle Scholar
  108. Schwitter J (2006) Myocardial perfusion. J Magn Reson Imaging 24:953–963PubMedGoogle Scholar
  109. Sechtem U, Pfl ugfelder P, Cassidy MC et al (1987) Ventricular septal defect: visualization of shunt flow and determination of shunt size by cine MR imaging. AJR Am J Roentgenol 149:689–692Google Scholar
  110. Sieverding L, Jung WI, Klose U et al (1992) Noninvasive blood flow measurement and quantification of shunt volume by cine magnetic resonacne in congenital heart disease. Preliminary results. Pediatr Radiol 22:48–54PubMedGoogle Scholar
  111. Simonetti OP, Finn JP, White RD et al (1996) “Black blood” T2-weighted inversion-recovery MR imaging of the heart. Radiology 199:45–57Google Scholar
  112. Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): ultra-fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603PubMedGoogle Scholar
  113. Sorensen TS, Korperich H, Greil GF et al (2004) Operator-independent isotropic three-dimensional magnetic resonance imaging for morphology in congenital heart disease. Circulation 110:163–169PubMedGoogle Scholar
  114. Sorensen TS, Beerbaum P, Korperich H et al (2005) Three dimensional, isotropic MRI: a unified approach to quantification and visualization in congenital heart disease. Int J Cardiovasc Imag 21:283–292Google Scholar
  115. Spuentrup E, Fausten B, Kinzel S et al (2005) Molecular magnetic resonance imaging of atrial clots in a swine model. Circulation 112:396–399PubMedGoogle Scholar
  116. Sridharan S, Derrick G, Deanfield J et al (2006) Assessment of differential branch pulmonary blood flow: a comparative study of phase contrast magnetic resonance imaging and radionuclide lung perfusion imaging. Heart 92:963–968PubMedCentralPubMedGoogle Scholar
  117. Steffens JC, Bourne MW, Sakuma H et al (1994) Quantification of collateral blood flow in coarctation of the aorta by velocity encoded cine magnetic resonance imaging. Circulation 90:937–943PubMedGoogle Scholar
  118. Stuber M, Botnar RM, Kissinger KV et al (2001) Free-breathing black blood coronary MR angiography: initial results. Radiology 219:278–283PubMedGoogle Scholar
  119. Su JT, Chung T, Muthupillai R et al (2005) Usefulness of real-time navigator magnetic resonance imaging for evaluating coronary artery origins in pediatric patients. Am J Cardiol 95:679–682PubMedGoogle Scholar
  120. Su JT, Chung T, Kovalchin JP (2004) Magnetic resonance imaging of coronary and systemic aneurysms in Kawasaki disease. Cardiol Young 14:198–199PubMedGoogle Scholar
  121. Su JT, Krishnamurthy R, Chung T et al (2007) Anomalous right coronary artery from the pulmonary artery: noninvasive diagnosis and serial evaluation. J Cardiovasc Magn Reson 9:57–61PubMedGoogle Scholar
  122. Tandri H, Saranathan M, Rodriguez ER et al (2005) Noninvasive detection of myocardial fibrosis in arrhythmogenic right ventricular cardiomyopathy using delayed-enhancement magnetic resonance imaging. J Am Coll Cardiol 45:98–103PubMedGoogle Scholar
  123. Taylor AM, Dymarkowski S, MeerleerK De et al (2005a) Validation and application of single breath-hold cine cardiac MR for ventricular function assessment in children with congenital heart disease at rest and during adenosine stress. J Cardiovasc Magn Reson 7:743–751PubMedGoogle Scholar
  124. Taylor AM, Dymarkowski S, Hamaekers P et al (2005b) MR coronary angiography and late-enhancement myocardial MR in children who underwent arterial switch surgery for transposition of great arteries. Radiology 234:542–547PubMedGoogle Scholar
  125. Teraoka K (2005) Delayed contrast enhancement of MRI in hypertrophic cardiomyopathy. Magn Reson Imaging 23:701PubMedGoogle Scholar
  126. Valeti VU, Chun W, Potter DD et al (2006) Myocardial tagging and strain analysis at 3 Telsa: comparison with 1.5 Tesla imaging. J Magn Reson Imaging 23:477–480PubMedGoogle Scholar
  127. van der Loo B, Jenni R (2003) Isolated noncompaction of the myocardium. Circulation 107:e50PubMedGoogle Scholar
  128. Van Praagh R (1984) The segmental approach clarified. Cardiovasc Intervent Radiol 7:320–325PubMedGoogle Scholar
  129. Valsangiocomo ER, Barrea C, MacGowan CK et al (2003) Phase contrast MR assessment of pulmonary venous blood flow in children with surgically repaired pulmonary veins. Pediatr Radiol 33:607–613Google Scholar
  130. Weber OM, Martin AJ, Higgins CB (2003) Whole-heart steady state free precession coronary artery magnetic resonance angiography. Magn Reson Med 50:1223–1228PubMedGoogle Scholar
  131. Westwood MA, Firmin DN, Gildo M et al (2005a) Intercenter reproducibility of magnetic resonance T2* measurements of myocardial iron in thalassaemia. Int J Cardiovasc Imaging 21:531–538PubMedGoogle Scholar
  132. Westwood MA, Wonke B, Maceira AM et al (2005b) Left ventricular diastolic function compared with T2* cardiovascular magnetic resonance for early detection of myocardial iron overload in thalassemia major. J Magn Reson Imaging 22:229–233PubMedGoogle Scholar
  133. Westwood M, Anderson LJ, Firmin DN et al (2003) A single breath-hold multiecho T2* cardiovascular magnetic resonance technique for diagnosis of myocardial iron overload. J Magn Reson Imaging 18:33–39PubMedGoogle Scholar
  134. Wood JC (2006) Anatomical assessment of congenital heart disease. J Cardiovasc Magn Reson 8:595–606PubMedGoogle Scholar
  135. Wood JC (2009) History and current impact of cardiac magnetic resonance imaging on the management of iron overload. Circulation 120:1937–1939PubMedCentralPubMedGoogle Scholar
  136. Yoo SJ, Kim YM, Choe YH (1999) Magnetic resonance imaging of complex congenital heart disease. Int J Card Imaging 15:151–160PubMedGoogle Scholar
  137. Zerhouni EA, Parish DM, Rogers WJ et al (1988) Human heart: tagging with MR imaging—a method of noninvasive assessment of myocardial motion. Radiology 169:59–63PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Pediatric Radiology, Texas Children’s Hospital, Associate Professor of Radiology and PediatricsBaylor College of MedicineHoustonUSA
  2. 2.Body and Cardiovascular Imaging, Department of Diagnostic ImagingChildren’s Hospital and Research Center OaklandOaklandUSA

Personalised recommendations