Current Clinical Role of Genetic Profiling in Breast Cancer

  • Ruta Rao
  • Mashrafi Ahmed
  • William T. Leslie
Part of the Medical Radiology book series (MEDRAD)


Genetic profiling of breast cancer is emerging as an important prognostic and predictive tool, especially for patients with early-stage breast cancer. Several genetic profile assays are already commercially available, and others are being developed and tested. OncotypeDx, a 21-gene assay, and MammaPrint, a 70-gene assay are the most extensively evaluated tests. Currently, three prospective trials to assess the predictive value of gene signature assays in certain subgroups of breast cancer are ongoing. These are the Trial Assigning Individualized Options for Treatment (Rx) (TAILORx) trial, the endocrine-responsive breast cancer (RxPONDER) trial for 21-gene recurrence score and Microarray In Node-negative Disease may Avoid ChemoTherapy (MINDACT) trial using the 70-gene signature.


Breast Cancer Distant Recurrence Clinical High Risk Genomic Grade Index Molecular Grade Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adjuvant!! Inc. Adjuvant Online.Decision making tools for health care professionals. Accessed at on February 10, 2012
  2. Albain KS, Barlow WE, Shak S et al (2010) Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol 11:55–65CrossRefPubMedCentralPubMedGoogle Scholar
  3. American cancer society (2011). Cancer facts and figures 2011. Accessed December 28, 2011
  4. Asad J, Jacobson A, Estabrook A et al (2008) Does oncotype DX recurrence score affect the management of patients with early stage breast cancer? Am J Surg 196:527–529CrossRefPubMedGoogle Scholar
  5. Badve SS, Baehner FL, Gray RP et al (2008) Estrogen- and progesterone-receptor status in ECOG 2197: comparison of immunohistochemistry by local and central laboratories and quantitative reverse transcription polymerase chain reaction by central laboratory. J Clin Oncol 26:2473–2481CrossRefPubMedGoogle Scholar
  6. Baehner FL, Achacoso N, Madalla T et al (2010) Human epidermal growth factor receptor 2 assessment in a case-control study: comparison of fluorescence in situ hybridization and quantitative reverse transcription polymerase chain reaction performed by central laboratories. J Clin Oncol 28:4300–4306CrossRefPubMedGoogle Scholar
  7. Bartlett JMS, Thomas J, Ross DT et al (2010) Mammostrat as a tool to stratify breast cancer patients at risk of recurrence during endocrine treatment. Breast Cancer Res 2010(12):R47CrossRefGoogle Scholar
  8. Bryant J (2005) Toward a more rational selection of tailored adjuvant therapy data from the national surgical adjuvant breast and bowel project. 2005 St. Gallen breast cancer symposium. [Complete slide presentation via genomic health]Google Scholar
  9. Bueno-de-Mesquita JM, Linn SC, Keijzer R et al (2009) Validation of 70-gene prognosis signature in node-negative breast cancer. Breast Cancer Res Treat 117:483–495CrossRefPubMedGoogle Scholar
  10. Buyse M, Loi S, van’t Veer L et al (2006) Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 98:1183–1192CrossRefPubMedGoogle Scholar
  11. Carter CL, Allen C, Henson DE (1989) Relation of tumor size, lymph node status, and survival in 24,740 breast cancer cases. Cancer 63(1):181–187CrossRefPubMedGoogle Scholar
  12. Chang HY, Sneddon JB, Alizadeh AA et al (2004) Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoSBiol 2:E7–E7CrossRefGoogle Scholar
  13. Chang HY, Nuyten DS, Sneddon JB et al (2005) Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. ProcNatlAcadSci USA 102:3738–3743CrossRefGoogle Scholar
  14. Chang JC, Makris A, Gutierrez MC et al (2008) Gene expression patterns in formalin-fixed, paraffin-embedded core biopsies predict docetaxel chemosensitivity in breast cancer patients. Breast Cancer Res Treat 108:233–240CrossRefPubMedGoogle Scholar
  15. Cobleigh MA, Tabesh B, Bitterman P et al (2005) Tumor gene expression and prognosis in breast cancer patients with 10 or more positive lymph nodes. Clin Cancer Res 11:8623–8631CrossRefPubMedGoogle Scholar
  16. Cuzick J, Dowsett M, Pineda S et al (2011) Prognostic value of a combined estrogen receptor, progesterone receptor, Ki-67 and human epidermal growth factor receptor 2 immunohistochemical score and comparison with the genomic health recurrence score in early breast cancer. J Clin Oncol 29:4273–4278CrossRefPubMedGoogle Scholar
  17. Dabbs DJ, Klein ME, Mohsin SK et al (2011) High false-negative rate for HER2 quantitative reverse transcription polymerase chain reaction of the OncotypeDx test: an independent quality assurance study. J Clin Oncol 29:4279–4285CrossRefPubMedGoogle Scholar
  18. Desmedt C, Piette F, Loi S et al (2007) Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res 13:3207–3234CrossRefPubMedGoogle Scholar
  19. Desmedt C, Haibe-Kains B, Wirapati P et al (2008) Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin Cancer Res 14:5158–5165CrossRefPubMedGoogle Scholar
  20. Dowsett M, Cuzick J, Wale C et al (2010) Prediction of risk of distant recurrence using the 21-gene recurrence score in node-negative and node-positive postmenopausal patients with breast cancer treated with anastrozole or tamoxifen: a TransATAC study. J Clin Oncol 28:1829–1834CrossRefPubMedGoogle Scholar
  21. Dowsett M, Lopez-Knowles E, Sidhu K, et al (2011) Comparison of PAM50 risk of recurrence (ROR) score with OncotypeDx and IHC4 for predicting residual risk of RFS and distant-(D)RFS after endocrine therapy: A TransATAC Study. Antonio breast cancer symposium: 2011: abstract S4-5Google Scholar
  22. Early Breast Cancer Trialists’ Collaborative Group (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365:1687–1717CrossRefGoogle Scholar
  23. Eifel P, Axelson JA, Costa J et al (2001) National institutes of health consensus development conference statement: adjuvant therapy for breast cancer, Nov 1–3, 2000. J Natl Cancer Inst 93(13):979–989CrossRefPubMedGoogle Scholar
  24. Erlander MG, Ma XJ, Hilsenbeck SG et al (2005) Validation of HOXB13, IL17B and CHDH as predictors of clinical outcome of adjuvant tamoxifen monotherapy in breast cancer. Breast Cancer Res Treat 94:S33–S34Google Scholar
  25. Esserman LJ, Perou C, Cheang A et al (2009) Breast cancer molecular profiles and tumor response of neoadjuvant doxorubicin and paclitaxel: the I-Spy Trial (CALGB 150007/150012, ACRIN 6657). J Clin Oncol 27(suppl):LBA515Google Scholar
  26. Esteban J, Baker J, Cronin M et al (2003) Tumor gene expression and prognosis in breast cancer: multi-gene RT-PCR assay of paraffin-embedded tissue. Proc Am Soc Clin Oncol 22(850):2003 Abstract 3416Google Scholar
  27. Esteva FJ, Sahin AA, Cristofanilli M et al (2005) Prognostic role of a multigene reverse transcriptase-PCR assay in patients with node-negative breast cancer not receiving adjuvant systemic therapy. Clin Cancer Res 11:3315–3319CrossRefPubMedGoogle Scholar
  28. Fan C, Oh DS, Wessels L et al (2006) Concordance among gene-expression-based predictors for breast cancer. N Engl J Med 355:560–569CrossRefPubMedGoogle Scholar
  29. Filipits M, Rudas M, Jakesz R et al (2011) A new molecular predictor of distant recurrence in ER-positive, HER2-negative breast cancer adds independent information to conventional clinical risk factors. Clin Cancer Res 17:6012–6020CrossRefPubMedGoogle Scholar
  30. Fisher B, Dignam J, Bryant J et al (1996) Five versus more than five years of tamoxifen therapy for breast cancer patients with negative lymph nodes and estrogen receptor-positive tumors. J Natl Cancer Inst 88:1529–1542CrossRefPubMedGoogle Scholar
  31. Fisher B, Dignam J, Wolmark N et al (1999) Tamoxifen in treatment of intraductal breast cancer: national surgical adjuvant breast and bowel project B-24 randomised controlled trial. Lancet 353:1993–2000CrossRefPubMedGoogle Scholar
  32. Fisher B, Jeong J, Dignam J et al (2001a) Findings from recent national surgical adjuvant breast and bowel project adjuvant studies in stage I breast cancer. J Natl Cancer Inst Monogr 30:62–66CrossRefPubMedGoogle Scholar
  33. Fisher B, Dignam J, Bryant J, Wolmark N (2001b) Five versus more than five years of tamoxifen for lymph node-negative breast cancer: updated findings from the National Surgical Adjuvant Breast and Bowel Project B-14 randomized trial. J Natl Cancer Inst 93:684–690CrossRefPubMedGoogle Scholar
  34. Foekens JA, Atkins D, Zhang Y et al (2006) Multicenter validation of a gene expression-based prognostic signature in lymph node-negative primary breast cancer. J Clin Oncol 24(11):1665–1671CrossRefPubMedGoogle Scholar
  35. Gianni L, Zambetti M, Clark K et al (2005) Gene expression profiles in paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer. J Clin Oncol 23:7265–7277CrossRefPubMedGoogle Scholar
  36. Glas AM, Floore A, Delahaye LJ et al (2006) Converting a breast cancer microarray signature into a high-throughput diagnostic test. BMC Genomics 7:278CrossRefPubMedCentralPubMedGoogle Scholar
  37. Goetz M, Suman V, Ingle JN et al (2006) A two gene expression ratio of HOXB13 and IL-17BR for prediction of recurrence and survival in women receiving adjuvant tamoxifen. Clin Cancer Res 12:2080–2087CrossRefPubMedGoogle Scholar
  38. Goldhirsch A, Glick JH, Gelber RD et al (2001) Meeting highlights: international consensus panel on the treatment of primary breast cancer. seventh international conference on adjuvant therapy of primary breast cancer. J ClinOncol 19(18):3817–3827Google Scholar
  39. Goldhirsch A, Glick JH, Gelber RD et al (2005) Meeting highlights: international expert consensus on the primary therapy of early breast cancer 2005. Ann Oncol 16(10):1569–1583CrossRefPubMedGoogle Scholar
  40. Goldhirsch A, Ingle JN, Gelber RD et al (2009) Thresholds for therapies: highlights of the St Gallen international expert consensus on the primary therapy of early breast cancer 2009. Ann Oncol 20:1319–1329CrossRefPubMedCentralPubMedGoogle Scholar
  41. Goldstein LJ, Gray R, Badve S et al (2008) Prognostic utility of the 21-gene assay in hormone receptor-positive operable breast cancer compared with classical clinicopathologic features. J Clin Oncol 26:4063–4071CrossRefPubMedCentralPubMedGoogle Scholar
  42. Habel LA, Shak S, Jacobs MK et al (2006) A population-based study of tumor gene expression and risk of breast cancer death among lymph node-negative patients. Breast Cancer Res 8:R25CrossRefPubMedCentralPubMedGoogle Scholar
  43. Harris L, Fritsche H, Mennel R et al (2007) American society of clinical oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 25:5287–5312CrossRefPubMedGoogle Scholar
  44. Henry L, Stojadinovic A, Swain S et al (2009) The influence of a gene expression profile on breast cancer decisions. J Surg Oncol 99:319–323CrossRefPubMedGoogle Scholar
  45. Hornberger J, Chien R (2010) Meta-analysis of the decision impact of the 21-gene breast cancer recurrence score in clinical practice. San Antonio breast cancer symposium 2010. Abstract-20609Google Scholar
  46. Hornberger JC, Chjien R (2011) Meta-analysis of the decision impact of the 21-gene breast cancer recurrence score in clinical practice. Presented at the 2011 St. Gallen oncology conference. St. Gallen, Switzerland, 2011Google Scholar
  47. Hughes LL, Wang M, Page DL et al (2009) Local excision alone without irradiation for ductal carcinoma in situ of the breast: a trial of the Eastern cooperative oncology group. J Clin Oncol 27(32):5319–5324CrossRefPubMedCentralPubMedGoogle Scholar
  48. Ivshina AC, George J, Senko O et al (2006) Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer. Cancer Res 66:10292–10301CrossRefPubMedGoogle Scholar
  49. Jankowitz R, Chivukula M, Ma XJ et al (2010) Predictive value of the Theros Breast Cancer Index (TBCI) for distant recurrence and overall survival (OS) in comparison to Adjuvant! Online and clinicopathologic characteristics in women with lymph node (LN)-negative, ER-positive breast cancer (BCa). J ClinOncol 28(suppl.):15s abstr 10582Google Scholar
  50. Jansen MPHM, Sieuwerts AM, Look MP et al (2007) HOXB13-to-IL17BR expression ratio is related with tumor aggressiveness and response to tamoxifen of recurrent breast cancer: a retrospective study. J Clin Oncol 25:662–668CrossRefPubMedGoogle Scholar
  51. Jerevall PL, Brommesson S, Strand C et al (2008) Exploring the two-gene ratio in breast cancer-independent roles for HOXB13 and IL17BR in prediction of clinical outcome. Breast Cancer Res Treat 107:225–234CrossRefPubMedGoogle Scholar
  52. Joensuu H, Pylkkanen L, Toikkanen S (1998) Long-term survival in node-positive breast cancer treated by locoregional therapy alone. Br J Cancer 78(6):795–799CrossRefPubMedCentralPubMedGoogle Scholar
  53. Klang S, Hammerman A, Liebermann N et al (2010) Economic implications of 21-gene breast cancer risk assay from the perspective of an Israeli managed healthcare organization. Value Health 13(381):387Google Scholar
  54. Knauer M, Mook S, Rutgers EJ et al (2010) The predictive value of the 70-gene signature for adjuvant chemotherapy in early breast cancer. Breast Cancer Res Treat 120(3):655–661CrossRefPubMedGoogle Scholar
  55. Liang H, Brufsky AM, Lembersky BB et al (2007) A retrospective analysis of the impact of oncotype DX low recurrence score results on treatment decisions in a single academic breast cancer center. Breast Cancer Res Treat 106:S105 [Abstract 2061]CrossRefGoogle Scholar
  56. Liedtke C, Hatzis C, Symmans WF et al (2009) Genomic grade index is associated with response to chemotherapy in patients with breast cancer. J Clin Oncol 27(19):3185–3191CrossRefPubMedCentralPubMedGoogle Scholar
  57. Lo SS, Mumby PB, Norton J et al (2010) Prospective multicenter study of the impact of the 21-gene recurrence score assay on medical oncologist and patient adjuvant breast cancer treatment selection. J ClinOncol 28:1671–1676CrossRefGoogle Scholar
  58. Loi S, Haibe-Kains B, Desmedt C et al (2007) Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade. J Clin Oncol 25:1239–1246CrossRefPubMedGoogle Scholar
  59. Ma XJ, Wang Z, Ryan PD et al (2004) A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 5:607–616CrossRefPubMedGoogle Scholar
  60. Ma XJ, Hilsenbeck SG, Wang W et al (2006) The HOXB13:IL17BR expression index is a prognostic factor in early-stage breast cancer. J Clin Oncol 24:4611–4619CrossRefPubMedGoogle Scholar
  61. Ma XJ, Salunga R, Dahiya S et al (2008) A five-gene molecular grade index and HOXB13:IL17BR are complementary prognostic factors in early stage breast cancer. Clin Cancer Res 14(9):2601–2608CrossRefPubMedGoogle Scholar
  62. Mamounas EP, Tang G, Fisher B et al (2010) Association between the 21-gene recurrence score assay and risk of locoregional recurrence in node-negative, estrogen receptor-positive breast cancer: results from NSABP B-14 and NSABP B-20. J Clin Oncol 28:1677–1683CrossRefPubMedCentralPubMedGoogle Scholar
  63. Mook S, Schmidt MK, Viale G et al (2009) The 70-gene prognosis-signature predicts disease outcome in breast cancer patients with 1–3 positive lymph nodes in an independent validation study. Breast Cancer Res Treat 116:295–302CrossRefPubMedGoogle Scholar
  64. Mook S, Schmidt MK, Weigelt B et al (2010) The 70-gene prognosis signature predicts early metastasis in breast cancer patients between 55 and 70 years of age. Ann Oncol 21:717–722CrossRefPubMedGoogle Scholar
  65. National Institutes of Health (2000) Adjuvant therapy for breast cancer. NIH Consens Statement Online 17:1–23Google Scholar
  66. NCCN clinical practice guidelines in oncology: breast cancer version 2.2011. Available at Accessed December 2011
  67. Nielsen TO, Parker JS, Leung S et al (2010) A comparison of PAM50 intrinsic subtyping with immunohistochemistry and clinical prognostic factors in tamoxifen-treated estrogen receptor–positive breast cancer. Clin Cancer Res 16:5222–5232CrossRefPubMedCentralPubMedGoogle Scholar
  68. Olivotto IA, Bajdik CD, Ravdin PM et al (2005) Population based validation of the prognostic model ADJUVANT! for early breast cancer. J Clin Oncol 23:2716–2725CrossRefPubMedGoogle Scholar
  69. Oratz R, Paul D, Cohn A, Sedlacek S (2007) Impact of a commercial reference laboratory test Recurrence Score on decision making in early-stage breast cancer. J Oncol Pract 3:182–186CrossRefPubMedCentralPubMedGoogle Scholar
  70. Page DL (1991) Prognosis and breast cancer recognition of lethal and favorable prognostic types. Am J SurgPathol 15(4):334–349CrossRefGoogle Scholar
  71. Paik S, Shak S, Tang G, et al (2003) Multi-gene RT-PCR assay for predicting recurrence in node negative breast cancer patients – NSABP studies B-20 and B-14 [abstract].Breast Cancer Res Treat 82:A16. (
  72. Paik S, Shak S, Tang G et al (2004a) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351:2817–2826CrossRefPubMedGoogle Scholar
  73. Paik S, Shak S, Tang G et al (2004b) Expression of the 21 genes in the recurrence score assay and prediction of the clinical benefit from tamoxifen in NSABP study B-14 and chemotherapy in NSABP study B-20. Br Ca Res Treat 88:S15 abstr 24Google Scholar
  74. Paik S, Shak S, Tang G (2005) Risk classification of breast cancer patients by the recurrence score assay: comparison to guidelines based on patient age, tumor size, and tumor grade. Poster presented at the 28th Annual San Antonio Breast Cancer Symposium, San Antonio, Texas, 2005Google Scholar
  75. Paik S, Tang G, Shak S et al (2006) Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol 24:3726–3734CrossRefPubMedGoogle Scholar
  76. Parker JS, Mullins M, Maggie CU et al (2009) Supervised Risk Predictor of Breast Cancer Based on Intrinsic Subtypes. J Clin Oncol 27:1160–1167CrossRefPubMedCentralPubMedGoogle Scholar
  77. Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752CrossRefPubMedGoogle Scholar
  78. Pusztai L, Hatzis C, Cardoso F et al (2008) Combined use of genomic prognostic and treatment response predictors in lymph node-negative breast cancer. J Clin Oncol 26:2008 (May 20 suppl; abstr 527)CrossRefGoogle Scholar
  79. Ravdin PM, Siminoff LA, Davis GJ et al (2001) Computer program to assist in making decisions about adjuvant therapy for women with early breast cancer. J ClinOncol 19(4):980–991Google Scholar
  80. Reid JF, Lusa L, De Cecco L et al (2005) Limits of predictive models using microarray data for breast cancer clinical treatment outcome. J Natl Cancer Inst 97:927–930CrossRefPubMedGoogle Scholar
  81. Reis-Filho JS, Pusztai L (2011) Gene expression profiling in breast cancer: classification, prognostication, and prediction. Lancet 378:1812–1823CrossRefPubMedGoogle Scholar
  82. Reyal F, van Vliet MH, Armstrong NJ et al (2008) A comprehensive analysis of prognostic signatures reveals the high predictive capacity of the proliferation, immune response and RNA splicing modules in breast cancer. Breast Cancer Res 10:R93CrossRefPubMedCentralPubMedGoogle Scholar
  83. Ring BZ, Seitz RS, Beck R et al (2006) Novel prognostic immunohistochemical biomarker panel for estrogen receptor-positive breast cancer. J Clin Oncol 24:3039–3047CrossRefPubMedGoogle Scholar
  84. Rosen PP, Groshen S, Saigo PE et al (1989) Pathological prognostic factors in stage I (T1N0M0) and stage II (T1N1M0) breast carcinoma: a study of 644 patients with median follow-up of 18 years. J ClinOncol 7(9):1239–1251Google Scholar
  85. Ross DT, Kim C-Y, Tang G et al (2008) Chemosensitivity and stratification by a five monoclonal antibody immunohistochemistry test in the NSABP B14 and B20 trials. Clin Cancer Res 14:6602–6609CrossRefPubMedCentralPubMedGoogle Scholar
  86. Solin LJ, Gray R, Baehner FL, et al (2011) A quantitative multigene RT-PCR assay for predicting recurrence risk after surgical excision alone without irradiation for ductal carcinoma in situ (DCIS): a prospective validation study of the DCIS score from ECOG E5194. San Antonio breast cancer symposium 2011, abstract # S4-6Google Scholar
  87. Sotiriou C, Wirapati P, Loi S et al (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98:262–272CrossRefPubMedGoogle Scholar
  88. Straver ME, Glas AM, Hannemann J et al (2010) The 70-gene signature as a response predictor for neoadjuvant chemotherapy in breast cancer. Breast Cancer Res Treat 119:551–558CrossRefPubMedGoogle Scholar
  89. Tang G, Cuzick J, Wale C et al (2010) Recurrence risk of node-negative and ER-positive early-stage breast cancer patients by combining recurrence score, pathologic, and clinical information: a meta-analysis approach. J Clin Oncol 28(Suppl):abstr 509Google Scholar
  90. Tang G, Shak S, Paik S et al (2011a) Comparison of the prognostic and predictive utilities of the 21-gene recurrence score assay and adjuvant! for women with node-negative, estrogen receptor-positive breast cancer: results from NSABP B-14 and NSABP B-20. Breast Cancer Res Treat 127:133–142CrossRefPubMedCentralPubMedGoogle Scholar
  91. Tang G, Cuzick J, Constantino JP et al (2011b) Risk of recurrence and chemotherapy benefit for patients with node-negative, estrogen receptor-positive breast cancer: recurrence Score alone and integrated with pathologic and clinical factors. J Clin Oncol 29:4365–4372CrossRefPubMedCentralPubMedGoogle Scholar
  92. Thanasoulis T, Brown A, Frazier T (2008) The role of Oncotype DX assay on appropriate treatment for estrogen positive, lymph node negative invasive breast cancer. American Society of Breast Surgeons Annual Meeting, New York, 2008Google Scholar
  93. Toussaint J, Sieuwerts AM, Haibe-Kains B et al (2009) Improvement of the clinical applicability of the Genomic Grade Index through a qRT-PCR test performed on frozen and formalin-fixed paraffin-embedded tissues. BMC Genomics 10:424CrossRefPubMedCentralPubMedGoogle Scholar
  94. van de Vijver MJ, He YD, van’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009CrossRefPubMedGoogle Scholar
  95. van’t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(530):536Google Scholar
  96. Wang Y, Klijn JG, Zhang Y et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365:671CrossRefPubMedGoogle Scholar
  97. Weigelt B, Horlings HM, Kreike B et al (2008) Refinement of breast cancer classification by molecular characterization of histological special types. J Pathol 216:141–150CrossRefPubMedGoogle Scholar
  98. Wirapati P, Sotiriou C, Kunkel S et al (2008) Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res 10:R65CrossRefPubMedCentralPubMedGoogle Scholar
  99. Wittner BS, Sgroi DC, Ryan PD et al (2008) Analysis of the MammaPrint breast cancer assay in a predominantly postmenopausal cohort. Clin Cancer Res 14:2988–2993CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Rush University Medical CenterChicagoUSA
  2. 2.Saint Joseph HospitalChicagoUnited States

Personalised recommendations