MR Spectroscopic Imaging

  • Elke Hattingen
  • Ulrich Pilatus
Part of the Medical Radiology book series (MEDRAD)


MR spectroscopy (MRS) allows the noninvasive measurement of the concentrations from selected metabolites in vivo. Till now, MR spectroscopy is applied for specific purposes in brain tumor diagnostics. The metabolic profile of a brain tumor not only characterizes tumor entity, but it may also be crucial for prognosis and for therapeutic decisions. In the last decades, it has become evident that molecular genetic markers of a brain tumor may be prognostic or even predictive for a specific therapy (Weller et al. 2009; Reifenberger et al. 2012). Therefore, therapy of brain tumors is becoming increasingly complex, and histopathological features should not be the only aspect of establishing therapeutic decisions in the future.


Brain Tumor Metabolite Concentration Partial Volume Effect Lipid Signal Gliomatosis Cerebri 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Atypical teratoid rhabdoid tumor


Bis-chloroethylnitrosourea (carmustine)


Glioblastoma multiforme


Hypoxia-inducible factor 1-alpha


Progression-free survival


Primitive neuroectodermal tumor


Point resolved spectroscopy


Recurrent glioblastoma multiforme


Stimulated echo acquisition mode




  1. Aiken NR, Gillies RJ (1996) Phosphomonoester metabolism as a function of cell proliferative status, exogenous precursors. Anticancer Res 16:1393–1397PubMedGoogle Scholar
  2. Barker PB, Soher B, Blackb SJ, Chatham JC, Mathews VP, Bryan RN (1993) Quantitation of proton NMR spectra of the human brain using tissue water as an internal concentration reference. NMR Biomed 6:89–94PubMedCrossRefGoogle Scholar
  3. Behar KL, den Hollander JA, Stromski ME, Ogino T, Shulman RG, Petroff OA, Prichard JW (1983) High-resolution 1H nuclear magnetic resonance study of cerebral hypoxia in vivo. Proc Natl Acad Sci U S A 80:4945–4948PubMedCrossRefPubMedCentralGoogle Scholar
  4. Blasel S, Pfeilschifter W, Jansen V, Mueller K, Zanella F, Hattingen E (2011a) Metabolism and regional cerebral blood volume in autoimmune inflammatory demyelinating lesions mimicking malignant gliomas. J Neurol 258:113–122PubMedCrossRefGoogle Scholar
  5. Blasel S, Franz K, Ackermann H, Weidauer S, Zanella F, Hattingen E (2011b) Stripe-like increase of rCBV beyond the visible border of glioblastomas: site of tumor infiltration growing after neurosurgery. J Neurooncol 103:575–584PubMedCrossRefGoogle Scholar
  6. Blasel S, Jurcoane A, Bähr O, Weise L, Harter PN, Hattingen E (2013) MR perfusion in and around the contrast-enhancement of primary CNS lymphomas. J Neurooncol 114:127–134PubMedCrossRefGoogle Scholar
  7. Bottomley PA, Edelstein WA, Foster TH, Adams WA (1985) In vivo solvent-suppressed localized hydrogen nuclear magnetic resonance spectroscopy: a window to metabolism? Proc Natl Acad Sci U S A 82:2148–2152PubMedCrossRefPubMedCentralGoogle Scholar
  8. Brandes AA, Tosoni A, Spagnolli F, Frezza G, Leonardi M, Calbucci F, Franceschi E (2008) Disease progression or pseudoprogression after concomitant radiochemotherapy treatment: pitfalls in neurooncology. Neuro Oncol 10:361–367PubMedCrossRefPubMedCentralGoogle Scholar
  9. Brown TR, Kincaid BM, Ugurbil K (1982) NMR chemical shift imaging in three dimensions. Proc Natl Acad Sci U S A 79:3523–3526PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bruhn H, Frahm J, Gyngell ML, Merboldt KD, Hänicke W, Sauter R, Hamburger C (1989) Noninvasive differentiation of tumors with use of localized H-1 MR spectroscopy in vivo: initial experience in patients with cerebral tumors. Radiology 172:541–548PubMedCrossRefGoogle Scholar
  11. Castillo M, Smith JK, Kwock L (2000) Correlation of myo-inositol levels and grading of cerebral astrocytomas. AJNR Am J Neuroradiol 21:1645–1649PubMedGoogle Scholar
  12. Chan AA, Lau A, Pirzkall A, Chang SM, Verhey LJ, Larson D, McDermott MW, Dillon WP, Nelson SJ (2004) Proton magnetic resonance spectroscopy imaging in the evaluation of patients undergoing gamma knife surgery for Grade IV glioma. J Neurosurg 101:467–475PubMedCrossRefGoogle Scholar
  13. Chance B, Nakase Y, Bond M, Leigh J Jr, McDonald G (1978) Detection of 31P nuclear magnetic resonance signals in brain by in vivo and freeze-trapped assays. Proc Natl Acad Sci U S A 75:4925–4929PubMedCrossRefPubMedCentralGoogle Scholar
  14. Chang SM, Nelson S, Vandenberg S, Cha S, Prados M, Butowski N, McDermott M, Parsa AT, Aghi M, Clarke J, Berger M (2009) Integration of preoperative anatomic, metabolic physiologic imaging of newly diagnosed glioma. J Neurooncol 92:401–415PubMedCrossRefPubMedCentralGoogle Scholar
  15. Chiche J, Ilc K, Laferrière J, Trottier E, Dayan F, Mazure NM, Brahimi-Horn MC, Pouysségur J (2009) Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res 69:358–368PubMedCrossRefGoogle Scholar
  16. Constantin A, Elkhaled A, Jalbert L, Srinivasan R, Cha S, Chang SM, Bajcsy R, Nelson SJ (2012) Identifying malignant transformations in recurrent low grade gliomas using high resolution magic angle spinning spectroscopy. Artif Intell Med 55:61–70PubMedCrossRefPubMedCentralGoogle Scholar
  17. Cuadrado A, Carnero A, Dolfi F, Jiménez B, Lacal JC (1993) Phosphorylcholine: a novel second messenger essential for mitogenic activity of growth factors. Oncogene 8:2959–2968PubMedGoogle Scholar
  18. Davies NP, Wilson M, Natarajan K, Sun Y, MacPherson L, Brundler M-A, Arvanitis TN, Grundy RG, Peet AC (2010) Non-invasive detection of glycine as a biomarker of malignancy in childhood brain tumours using in-vivo 1H MRS at 15 tesla confirmed by ex-vivo high-resolution magic-angle spinning NMR. NMR Biomed 23:80–87PubMedCrossRefGoogle Scholar
  19. Di Costanzo A, Scarabino T, Trojsi F, Popolizio T, Catapano D, Giannatempo GM, Bonavita S, Portaluri M, Tosetti M, d’Angelo VA, Salvolini U, Tedeschi G (2008) Proton MR spectroscopy of cerebral gliomas at 3 T: spatial heterogeneity, tumour grade and extent. Eur Radiol 18:1727–1735PubMedCrossRefGoogle Scholar
  20. Duyn JH, Moonen CT (1993) Fast proton spectroscopic imaging of human brain using multiple spin-echoes. Magn Reson Med 30:409–414PubMedCrossRefGoogle Scholar
  21. Elkhaled A, Jalbert L, Constantin A, Yoshihara HA, Phillips JJ, Molinaro AM, Chang SM, Nelson SJ (2014) Characterization of metabolites in infiltrating gliomas using ex vivo 1H high-resolution magic angle spinning spectroscopy. NMR Biomed 27:578–593Google Scholar
  22. Frahm J, Bruhn H, Gyngell ML, Merboldt K, Hänicke W, Sauter R (1989) Localized high-resolution proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magn Reson Med 9:79–93Google Scholar
  23. Fulham M, Bizzi A, Dietz MJ, Shih HH, Raman R, Sobering GS, Frank JA, Dwyer AJ, Alger JR, Di Chiro G (1992) Mapping of brain tumor metabolites with proton MR spectroscopic imaging: clinical relevance. Radiology 185:675–686PubMedCrossRefGoogle Scholar
  24. Gillies RJ, Barry JA, Ross BD (1994) In vitro, in vivo 13C and 31P NMR analyses of phosphocholine metabolism in rat glioma cells. Magn Reson Med 32:310–318PubMedCrossRefGoogle Scholar
  25. Glunde K, Bhujwalla ZM (2007) Choline kinase alpha in cancer prognosis and treatment. Lancet Oncol 8:855–857PubMedCrossRefGoogle Scholar
  26. Glunde K, Shah T, Winnard PT Jr, Raman V, Takagi T, Vesuna F, Artemov D, Bhujwalla ZM (2008) Hypoxia regulates choline kinase expression through hypoxia-inducible factor-1 alpha signaling in a human prostate cancer model. Cancer Res 68:172–180PubMedCrossRefGoogle Scholar
  27. Golay X, Gillen J, van Zijl PCM, Barker PB (2002) Scan time reduction in proton magnetic resonance spectroscopic imaging of the human brain. Magn Reson Med 47:384–387PubMedCrossRefGoogle Scholar
  28. Graves EE, Nelson SJ, Vigneron DB, Verhey L, McDermott M, Larson D, Chang S, Prados MD, Dillon WP (2001) Serial proton MR spectroscopic imaging of recurrent malignant gliomas after gamma knife radiosurgery. AJNR Am J Neuroradiol 22:613–624PubMedGoogle Scholar
  29. Guillevin R, Menuel C, Duffau H, Kujas M, Capelle L, Aubert A, Taillibert S, Idbaih A, Pallud J, Demarco G, Costalat R, Hoang-Xuan K, Chiras J, Vallée J-N (2008) Proton magnetic resonance spectroscopy predicts proliferative activity in diffuse low-grade gliomas. J Neurooncol 87:181–187PubMedCrossRefGoogle Scholar
  30. Harting I, Hartmann M, Jost G, Sommer C, Ahmadi R, Heiland S, Sartor K (2003) Differentiating primary central nervous system lymphoma from glioma in humans using localised proton magnetic resonance spectroscopy. Neurosci Lett 342:163–166PubMedCrossRefGoogle Scholar
  31. Hattingen E, Pilatus U, Franz K, Zanella FE, Lanfermann H (2007) Evaluation of optimal echo time for 1H-spectroscopic imaging of brain tumors at 3 Tesla. J Magn Reson Imaging 26:427–431PubMedCrossRefGoogle Scholar
  32. Hattingen E, Raab P, Franz K, Zanella FE, Lanfermann H, Pilatus U (2008) Myo-inositol: a marker of reactive astrogliosis in glial tumors? NMR Biomed 21:233–241PubMedCrossRefGoogle Scholar
  33. Hattingen E, Lanfermann H, Quick J, Franz K, Zanella FE, Pilatus U (2009) (1)H MR spectroscopic imaging with short and long echo time to discriminate glycine in glial tumours. MAGMA 22:33–41PubMedCrossRefGoogle Scholar
  34. Hattingen E, Delic O, Franz K, Pilatus U, Raab P, Lanfermann H, Gerlach R (2010) (1)H MRSI and progression-free survival in patients with WHO grades II and III gliomas. Neurol Res 32:593–602PubMedCrossRefGoogle Scholar
  35. Hattingen E, Jurcoane A, Bähr O, Rieger J, Magerkurth J, Anti S, Steinbach JP, Pilatus U (2011) Bevacizumab impairs oxidative energy metabolism and shows antitumoral effects in recurrent glioblastomas: a 31P/1H MRSI and quantitative magnetic resonance imaging study. Neuro Oncol 13(12):1349–1363PubMedCrossRefPubMedCentralGoogle Scholar
  36. Hattingen E, Bähr O, Rieger J, Blasel S, Steinbach J, Pilatus U (2013) Phospholipid metabolites in recurrent glioblastoma: in vivo markers detect different tumor phenotypes before and under antiangiogenic therapy. PLoS One 8:e56439PubMedCrossRefPubMedCentralGoogle Scholar
  37. Hermann EJ, Hattingen E, Krauss JK, Marquardt G, Pilatus U, Franz K, Setzer M, Gasser T, Tews DS, Zanella FE, Seifert V, Lanfermann H (2008) Stereotactic biopsy in gliomas guided by 3-tesla 1H-chemical-shift imaging of choline. Stereotact Funct Neurosurg 86:300–307PubMedCrossRefGoogle Scholar
  38. Herminghaus S, Pilatus U, Möller-Hartmann W, Raab P, Lanfermann H, Schlote W, Zanella FE (2002) Increased choline levels coincide with enhanced proliferative activity of human neuroepithelial brain tumors. NMR Biomed 15:385–392PubMedCrossRefGoogle Scholar
  39. Horská A, Barker PB (2010) Imaging of brain tumors: MR spectroscopy and metabolic imaging. Neuroimaging Clin N Am 20:293–310PubMedCrossRefPubMedCentralGoogle Scholar
  40. Horská A, Calhoun VD, Bradshaw DH, Barker PB (2002) Rapid method for correction of CSF partial volume in quantitative proton MR spectroscopic imaging. Magn Reson Med 48:555–558PubMedCrossRefGoogle Scholar
  41. Hygino da Cruz L Jr, Rodriguez I, Domingues RC, Gasparetto EL, Sorensen AG (2011) Pseudoprogression, pseudoresponse: imaging challenges in the assessment of posttreatment glioma. AJNR Am J Neuroradiol 32:1978–1985PubMedCrossRefGoogle Scholar
  42. Isobe T, Matsumura A, Anno I, Yoshizawa T, Nagatomo Y, Itai Y, Nose T (2002) Quantification of cerebral metabolites in glioma patients with proton MR spectroscopy using T2 relaxation time correction. Magn Reson Imaging 20:343–349PubMedCrossRefGoogle Scholar
  43. Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T, Souza AL, Kafri R, Kirschner MW, Clish CB, Mootha VK (2012) Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336:1040–1044PubMedCrossRefPubMedCentralGoogle Scholar
  44. Kennedy EP (1957) Metabolism of lipides. Annu Rev Biochem 26:119–148PubMedCrossRefGoogle Scholar
  45. Kinoshita Y, Kajiwara H, Yokota A, Koga Y (1994) Proton magnetic resonance spectroscopy of brain tumors: an in vitro study. Neurosurgery 35:606–613; discussion 613–614PubMedCrossRefGoogle Scholar
  46. Kinoshita Y, Yokota A, Koga Y (1994) Phosphorylethanolamine content of human brain tumors. Neurol Med Chir (Tokyo) 34:803–806CrossRefGoogle Scholar
  47. Kohl RL, Perez-Polo JR, Quay WB (1980) Effect of methionine glycine and serine on serine hydroxymethyltransferase activity in rat glioma and human neuroblastoma cells. J Neurosci Res 5:271–280PubMedCrossRefGoogle Scholar
  48. Kovanlikaya A, Panigrahy A, Krieger MD, Gonzalez-Gomez I, Ghugre N, McComb JG, Gilles FH, Nelson MD, Blüml S (2005) Untreated pediatric primitive neuroectodermal tumor in vivo: quantitation of taurine with MR spectroscopy. Radiology 236:1020–1025PubMedCrossRefGoogle Scholar
  49. Kreis R (2004) Issues of spectral quality in clinical 1H-magnetic resonance spectroscopy and a gallery of artifacts. NMR Biomed 17:361–381PubMedCrossRefGoogle Scholar
  50. Kuesel AC, Briere KM, Halliday WC, Sutherland GR, Donnelly SM, Smith IC (1996) Mobile lipid accumulation in necrotic tissue of high grade astrocytomas. Anticancer Res 16:1485–1489PubMedGoogle Scholar
  51. Kugel H, Heindel W, Ernestus RI, Bunke J, du Mesnil R, Friedmann G (1992) Human brain tumors: spectral patterns detected with localized H-1 MR spectroscopy. Radiology 183:701–709PubMedCrossRefGoogle Scholar
  52. Lehnhardt F-G, Bock C, Röhn G, Ernestus R-I, Hoehn M (2005) Metabolic differences between primary and recurrent human brain tumors: a 1H NMR spectroscopic investigation. NMR Biomed 18:371–382PubMedCrossRefGoogle Scholar
  53. Maudsley AA, Matson GB, Hugg JW, Weiner MW (1994) Reduced phase encoding in spectroscopic imaging. Magn Reson Med 31:645–651PubMedCrossRefGoogle Scholar
  54. Maudsley AA, Gupta RK, Stoyanova R, Parra NA, Roy B, Sheriff S, Hussain N, Behari S (2014) Mapping of glycine distributions in gliomas. AJNR Am J Neuroradiol 35:S31–S36Google Scholar
  55. McKnight TR, Smith KJ, Chu PW, Chiu KS, Cloyd CP, Chang SM, Phillips J, Berger MS (2011) Choline metabolism proliferation and angiogenesis in nonenhancing grades 2 and 3 astrocytoma. J Magn Reson Imaging 33:808–816PubMedCrossRefPubMedCentralGoogle Scholar
  56. McLean LA, Roscoe J, Jorgensen NK, Gorin FA, Cala PM (2000) Malignant gliomas display altered pH regulation by NHE1 compared with nontransformed astrocytes. Am J Physiol Cell Physiol 278:C676–C688PubMedGoogle Scholar
  57. Michaelis T, Merboldt KD, Bruhn H, Hänicke W, Frahm J (1993) Absolute concentrations of metabolites in the adult human brain in vivo: quantification of localized proton MR spectra. Radiology 187:219–227PubMedCrossRefGoogle Scholar
  58. Mintz A, Wang L, Ponde DE (2008) Comparison of radiolabeled choline and ethanolamine as probe for cancer detection. Cancer Biol Ther 7:742–747PubMedCrossRefGoogle Scholar
  59. Moonen CT, von Kienlin M, van Zijl PC, Cohen J, Gillen J, Daly P, Wolf G (1989) Comparison of single-shot localization methods (STEAM and PRESS) for in vivo proton NMR spectroscopy. NMR Biomed 2:201–208PubMedCrossRefGoogle Scholar
  60. Murphy PS, Dzik-Jurasz ASK, Leach MO, Rowl IJ (2002) The effect of Gd-DTPA on T(1)-weighted choline signal in human brain tumours. Magn Reson Imaging 20:127–130PubMedCrossRefGoogle Scholar
  61. Naressi A, Couturier C, Devos JM, Janssen M, Mangeat C, de Beer R, Graveron-Demilly D (2001) Java-based graphical user interface for the MRUI quantitation package. MAGMA 12:141–152PubMedCrossRefGoogle Scholar
  62. Negendank W (1992) Studies of human tumors by MRS: a review. NMR Biomed 5:303–324PubMedCrossRefGoogle Scholar
  63. Naruse S, Hirakawa K, Horikawa Y, Tanaka C, Higuchi T, Ueda S, Nishikawa H, Watari H (1985) Measurements of in vivo 31P nuclear magnetic resonance spectra in neuroectodermal tumors for the evaluation of the effects of chemotherapy. Cancer Res 45:2429–2433PubMedGoogle Scholar
  64. Nelson SJ (2001) Analysis of volume MRI and MR spectroscopic imaging data for the evaluation of patients with brain tumors. Magn Reson Med 46:228–239PubMedCrossRefGoogle Scholar
  65. Oberhaensli RD, Hilton-Jones D, Bore PJ, Hands LJ, Rampling RP, Radda GK (1986) Biochemical investigation of human tumours in vivo with phosphorus-31 magnetic resonance spectroscopy. Lancet 2(8497):8–11PubMedCrossRefGoogle Scholar
  66. Opstad KS, Ladroue C, Bell BA, Griffiths JR, Howe FA (2007) Linear discriminant analysis of brain tumour (1)H MR spectra: a comparison of classification using whole spectra versus metabolite quantification. NMR Biomed 20:763–770PubMedCrossRefGoogle Scholar
  67. Ordidge RJ, Mansfield P, Lohman JA, Prime SB (1987) Volume selection using gradients and selective pulses. Ann N Y Acad Sci 508:376–385PubMedCrossRefGoogle Scholar
  68. Ozturk E, Banerjee S, Majumdar S, Nelson SJ (2006) Partially parallel MR spectroscopic imaging of gliomas at 3T. Conf Proc IEEE Eng Med Biol Soc 1:493–496PubMedCrossRefGoogle Scholar
  69. Panigrahy A, Krieger MD, Gonzalez-Gomez I, Liu X, McComb JG, Finlay JL, Nelson MD, Gilles FH Jr, Blüml S (2006) Quantitative short echo time 1H-MR spectroscopy of untreated pediatric brain tumors: preoperative diagnosis and characterization. AJNR Am J Neuroradiol 27:560–672PubMedGoogle Scholar
  70. Papanagiotou P, Backens M, Grunwald IQ, Farmakis G, Politi M, Roth C, Reith W (2007) MR spectroscopy in brain tumors. Radiologe 47:520–529PubMedCrossRefGoogle Scholar
  71. Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3:187–197PubMedCrossRefGoogle Scholar
  72. Podo F (1999) Tumour phospholipid metabolism. NMR Biomed 12:413–439PubMedCrossRefGoogle Scholar
  73. Poptani H, Gupta RK, Roy R, Pandey R, Jain VK, Chhabra DK (1995) Characterization of intracranial mass lesions with in vivo proton MR spectroscopy. AJNR Am J Neuroradiol 16:1593–1603PubMedGoogle Scholar
  74. Porto L, Kieslich M, Franz K, Lehrbecher T, Pilatus U, Hattingen E (2010) Proton magnetic resonance spectroscopic imaging in pediatric low-grade gliomas. Brain Tumor Pathol 27:65–70PubMedCrossRefGoogle Scholar
  75. Posse S, Tedeschi G, Risinger R, Ogg R, Le Bihan D (1995) High speed 1H spectroscopic imaging in human brain by echo planar spatial-spectral encoding. Magn Reson Med 33:34–40PubMedCrossRefGoogle Scholar
  76. Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679PubMedCrossRefGoogle Scholar
  77. Reifenberger G, Hentschel B, Felsberg J, Schackert G, Simon M, Schnell O, Westphal M, Wick W, Pietsch T, Loeffler M, Weller M, German Glioma Network (2012) Predictive impact of MGMT promoter methylation in glioblastoma of the elderly. Int J Cancer 131:1342–1350PubMedCrossRefGoogle Scholar
  78. Righi V, Roda JM, Paz J, Mucci A, Tugnoli V, Rodriguez-Tarduchy G, Barrios L, Schenetti L, Cerdán S, García-Martín ML (2009) 1H HR-MAS and genomic analysis of human tumor biopsies discriminate between high and low grade astrocytomas. NMR Biomed 22:629–637PubMedCrossRefGoogle Scholar
  79. Rock JP, Hearshen D, Scarpace L, Croteau D, Gutierrez J, Fisher JL, Rosenblum ML, Mikkelsen T (2002) Correlations between magnetic resonance spectroscopy and image-guided histopathology with special attention to radiation necrosis. Neurosurgery 51:912–919; discussion 919–920PubMedGoogle Scholar
  80. Ross BD, Higgins RJ, Boggan JE, Knittel B, Garwood M (1988) 31P NMR spectroscopy of the in vivo metabolism of an intracerebral glioma in the rat. Magn Reson Med 6:403–417PubMedCrossRefGoogle Scholar
  81. Sabati M, Zhan J, Govind V, Arheart KL, Maudsley AA (2014) Impact of reduced k-space acquisition on pathologic detectability for volumetric MR spectroscopic imaging. J Magn Reson Imaging 39:224–234PubMedCrossRefGoogle Scholar
  82. Senft C, Hattingen E, Pilatus U, Franz K, Schänzer A, Lanfermann H, Seifert V, Gasser T (2009) Diagnostic value of proton magnetic resonance spectroscopy in the noninvasive grading of solid gliomas: comparison of maximum and mean choline values. Neurosurgery 65:908–913; discussion 913PubMedCrossRefGoogle Scholar
  83. Server A, Josefsen R, Kulle B, Maehlen J, Schellhorn T, Gadmar Ø, Kumar T, Haakonsen M, Langberg CW, Nakstad PH (2010) Proton magnetic resonance spectroscopy in the distinction of high-grade cerebral gliomas from single metastatic brain tumors. Acta Radiol 51:316–325PubMedCrossRefGoogle Scholar
  84. Sijens PE, van den Bent MJ, Nowak PJ, van Dijk P, Oudkerk M (1997) 1H chemical shift imaging reveals loss of brain tumor choline signal after administration of Gd-contrast. Magn Reson Med 37:222–225PubMedCrossRefGoogle Scholar
  85. Smith JK, Kwock L, Castillo M (2000) Effects of contrast material on single-volume proton MR spectroscopy. AJNR Am J Neuroradiol 21:1084–1089PubMedGoogle Scholar
  86. Snell K (1984) Enzymes of serine metabolism in normal developing and neoplastic rat tissues. Adv Enzyme Regul 22:325–400PubMedCrossRefGoogle Scholar
  87. Stadlbauer A, Nimsky C, Buslei R, Pinker K, Gruber S, Hammen T, Buchfelder M, Ganslandt O (2007) Proton magnetic resonance spectroscopic imaging in the border zone of gliomas: correlation of metabolic and histological changes at low tumor infiltration–initial results. Invest Radiol 42:218–223PubMedCrossRefGoogle Scholar
  88. Susa M, Olivier AR, Fabbro D, Thomas G (1989) EGF induces biphasic S6 kinase activation: late phase is protein kinase C-dependent, contributes to mitogenicity. Cell 57:817–824PubMedCrossRefGoogle Scholar
  89. Tate AR, Griffiths JR, Martínez-Pérez I, Moreno A, Barba I, Cabañas ME, Watson D, Alonso J, Bartumeus F, Isamat F, Ferrer I, Vila F, Ferrer E, Capdevila A, Arús C (1998) Towards a method for automated classification of 1H MRS spectra from brain tumours. NMR Biomed 11:177–191PubMedCrossRefGoogle Scholar
  90. Tate AR, Underwood J, Acosta M, Julià-Sapé M, Majós C, Moreno-Torres A, Howe FA, van der Graaf M, Lefournier V, Murphy MM, Loosemore A, Ladroue C, Wesseling P, Bosson JL, Cabañas ME, Simonetti AW, Gajewicz W, Calvar J, Capdevila A, Wilkins PR, Bell BA, Rémy C, Heerschap A, Watson D, Griffiths JR, Arús C (2006) Development of a decision support system for diagnosis, grading of brain tumours using in vivo magnetic resonance single voxel spectra. NMR Biomed 19:411–434PubMedCrossRefGoogle Scholar
  91. Tedeschi G, Lundbom N, Raman R, Bonavita S, Duyn JH, Alger JR, Di Chiro G (1997) Increased choline signal coinciding with malignant degeneration of cerebral gliomas: a serial proton magnetic resonance spectroscopy imaging study. J Neurosurg 87:516–524PubMedCrossRefGoogle Scholar
  92. Tennant DA, Durán RV, Gottlieb E (2010) Targeting metabolic transformation for cancer therapy. Nat Rev Cancer 10:267–277PubMedCrossRefGoogle Scholar
  93. Träber F, Block W, Lamerichs R, Gieseke J, Schild HH (2004) 1H metabolite relaxation times at 3.0 tesla: measurements of T1, T2 values in normal brain and determination of regional differences in transverse relaxation. J Magn Reson Imaging 19:537–545PubMedCrossRefGoogle Scholar
  94. Tzika AA, Astrakas LG, Zarifi MK, Petridou N, Young-Poussaint T, Goumnerova L, Zurakowski D, Anthony DC, Black PM (2003) Multiparametric MR assessment of pediatric brain tumors. Neuroradiology 45:1–10PubMedCrossRefGoogle Scholar
  95. Valonen PK, Griffin JL, Lehtimäki KK, Liimatainen T, Nicholson JK, Gröhn OH, Kauppinen RA (2005) High-resolution magic-angle-spinning 1H NMR spectroscopy reveals different responses in choline-containing metabolites upon gene therapy-induced programmed cell death in rat brain glioma. NMR Biomed 18:252–259PubMedCrossRefGoogle Scholar
  96. Vanhamme L, van den Boogaart A, Van Huffel S (1997) Improved method for accurate, efficient quantification of MRS data with use of prior knowledge. J Magn Reson 129:35–43PubMedCrossRefGoogle Scholar
  97. Venkatesh HS, Chaumeil MM, Ward CS, Haas-Kogan DA, James CD, Ronen SM (2012) Reduced phosphocholine and hyperpolarized lactate provide magnetic resonance biomarkers of PI3K/Akt/mTOR inhibition in glioblastoma. Neuro Oncol 14:315–325PubMedCrossRefPubMedCentralGoogle Scholar
  98. Vettukattil R, Gulati M, Sjøbakk TE, Jakola AS, Kvernmo NAM, Torp SH, Bathen TF, Gulati S, Gribbestad IS (2013) Differentiating diffuse World Health Organization grade II and IV astrocytomas with ex vivo magnetic resonance spectroscopy. Neurosurgery 72:186–195; discussion 195PubMedCrossRefGoogle Scholar
  99. Vuori K, Kankaanranta L, Häkkinen A-M, Gaily E, Valanne L, Granström M-L, Joensuu H, Blomstedt G, Paetau A, Lundbom N (2004) Low-grade gliomas and focal cortical developmental malformations: differentiation with proton MR spectroscopy. Radiology 230:703–708PubMedCrossRefGoogle Scholar
  100. Warburg O (1956) On the origin of cancer cells. Science 123:309–314PubMedCrossRefGoogle Scholar
  101. Weller M, Felsberg J, Hartmann C, Berger H, Steinbach JP, Schramm J, Westphal M, Schackert G, Simon M, Tonn JC, Heese O, Krex D, Nikkhah G, Pietsch T, Wiestler O, Reifenberger G, von Deimling A, Loeffler M (2009) Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma: a prospective translational study of the German Glioma Network. J Clin Oncol 27:5743–5750PubMedCrossRefGoogle Scholar
  102. Zierhut ML, Ozturk-Isik E, Chen AP, Park I, Vigneron D, Nelson SJ (2009) (1)H spectroscopic imaging of human brain at 3 Tesla: comparison of fast three-dimensional magnetic resonance spectroscopic imaging techniques. J Magn Reson Imaging 30:473–480PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Neuroradiology, Clinic of RheinischeFriedrich-Wilhelms-UniversityBonnGermany
  2. 2.NeuroradiologyGoethe University FrankfurtFrankfurt/MainGermany

Personalised recommendations