Hypo-fractionation in Prostate Cancer: Biological Aspects

Part of the Medical Radiology book series (MEDRAD)


Recent radiobiological modeling of experimental and clinical data suggests a low α/ß ratio for prostate cancer. If this assumption holds true, it represents a unique opportunity for exploiting a therapeutic window with hypo-fractionated radiotherapy schedules, especially in case α/ß for prostate cancer is lower than that for rectal complications. This chapter will—after general considerations on fractionation and the α/ß ratio—summarize the current scientific status on the assumed α/ß for prostate cancer and relevant normal tissue complications and discuss the potential and the caveats of hypo-fractionation for prostate cancer.


Prostate Cancer Dose Distribution Local Tumor Control Fractionation Schedule Rectal Toxicity 


  1. Arcangeli S, Strigari L, Gomellini S, et al (2012) Updated results and patterns of failure in a randomized hypofractionation trial for high-risk prostate cancer. Int J Radiat Oncol Biol Phys 84:1172–1178Google Scholar
  2. Baumann M, Holscher T, Denham J (2010) Fractionation in prostate cancer is it time after all? Radiother Oncol 96:1–5PubMedCrossRefGoogle Scholar
  3. Bentzen SM, Overgaard J, Thames HD et al (1989) Clinical radiobiology of malignant melanoma. Radiother Oncol 16:169–182PubMedCrossRefGoogle Scholar
  4. Bentzen SM, Ritter MA (2005) The alpha/beta ratio for prostate cancer: what is it, really? Radiother Oncol 76:1–3PubMedCrossRefGoogle Scholar
  5. Brenner DJ, Hall EJ (1999) Fractionation and protraction for radiotherapy of prostate carcinoma. Int J Radiat Oncol Biol Phys 43:1095–1101PubMedCrossRefGoogle Scholar
  6. Brenner DJ, Martinez AA, Edmundson GK et al (2002) Direct evidence that prostate tumors show high sensitivity to fractionation (low alpha/beta ratio), similar to late-responding normal tissue. Int J Radiat Oncol Biol Phys 52:6–13PubMedCrossRefGoogle Scholar
  7. Chappell R, Fowler J, Ritter M (2004) New data on the value of alpha/beta-evidence mounts that it is low. Int J Radiat Oncol Biol Phys 60:1002–1003PubMedCrossRefGoogle Scholar
  8. Dubray BM, Thames HD (1994) Chronic radiation damage in the rat rectum: an analysis of the influences of fractionation, time and volume. Radiother Oncol 33:41–47PubMedCrossRefGoogle Scholar
  9. Elkind MM, Sutton H (1960) Radiation response of mammalian cells grown in culture. 1. Repair of X-ray damage in surviving Chinese hamster cells. Radiat Res 13:556–593PubMedCrossRefGoogle Scholar
  10. Fowler J, Chappell R, Ritter M (2001) Is alpha/beta for prostate tumors really low? Int J Radiat Oncol Biol Phys 50:1021–1031PubMedCrossRefGoogle Scholar
  11. Habermalz HJ (1981) Irradiation of malignant melanoma: experience in the past and present. Int J Radiat Oncol Biol Phys 7:131–133PubMedCrossRefGoogle Scholar
  12. Haustermans KM, Hofland I, Van Poppel H et al (1997) Cell kinetic measurements in prostate cancer. Int J Radiat Oncol Biol Phys 37:1067–1070PubMedCrossRefGoogle Scholar
  13. Haviland JS, Owen JR, Dewar JA et al (2013) The UK standardisation of breast radiotherapy (START) trials of radiotherapy hypofractionation for treatment of early breast cancer: 10-year follow-up results of two randomised controlled trials. Lancet Oncol 14:1086–1094PubMedCrossRefGoogle Scholar
  14. Khoo VS, Dearnaley DP (2008) Question of dose, fractionation and technique: ingredients for testing hypofractionation in prostate cancer—the CHHiP trial. Clin Oncol (R Coll Radiol) 20:12–14CrossRefGoogle Scholar
  15. Kummermehr J, Trott KR (1994) Chronic radiation damage in the rat rectum: an analysis of the influences of fractionation, time and volume. Radiother Oncol 33:91–92PubMedCrossRefGoogle Scholar
  16. King CR (2000) What is the T(pot) for prostate cancer? Radiobiological implications of the equivalent outcome with(125)I or (103)Pd. Int J Radiat Oncol Biol Phys 47:1165–1167PubMedCrossRefGoogle Scholar
  17. Leborgne F, Fowler J, Leborgne JH et al (2012) Later outcomes and alpha/beta estimate from hypofractionated conformal three-dimensional radiotherapy versus standard fractionation for localized prostate cancer. Int J Radiat Oncol Biol Phys 82:1200–1207PubMedCrossRefGoogle Scholar
  18. Livsey JE, Cowan RA, Wylie JP et al (2003) Hypofractionated conformal radiotherapy in carcinoma of the prostate: five-year outcome analysis. Int J Radiat Oncol Biol Phys 57:1254–1259PubMedCrossRefGoogle Scholar
  19. Lukka H, Hayter C, Julian JA et al (2005) Randomized trial comparing two fractionation schedules for patients with localized prostate cancer. J Clin Oncol 23:6132–6138PubMedCrossRefGoogle Scholar
  20. Marzi S, Saracino B, Petrongari MG et al (2009) Modeling of alpha/beta for late rectal toxicity from a randomized phase II study: conventional versus hypofractionated scheme for localized prostate cancer. J Exp Clin Cancer Res 28:117PubMedCentralPubMedCrossRefGoogle Scholar
  21. McBride SM, Wong DS, Dombrowski JJ et al (2011) Hypofractionated stereotactic body radiotherapy in low-risk prostate adenocarcinoma: preliminary results of a multi-institutional phase 1 feasibility trial. Cancer 118:3681–3690PubMedCrossRefGoogle Scholar
  22. Miralbell R, Roberts SA, Zubizarreta E, et al (2012) Dose-Fractionation sensitivity of prostate cancer deduced from radiotherapy outcomes of 5,969 patients in seven international institutional datasets: alpha/beta = 1.4 (0.9–2.2) Gy. Int J Radiat Oncol Biol Phys 82(1):e17–e24Google Scholar
  23. Nickers P, Hermesse J, Deneufbourg JM et al (2010) Which alpha/beta ratio and half-time of repair are useful for predicting outcomes in prostate cancer? Radiother Oncol 97:462–466PubMedCrossRefGoogle Scholar
  24. Overgaard J, Overgaard M, Hansen PV et al (1986) Some factors of importance in the radiation treatment of malignant melanoma. Radiother Oncol 5:183–192PubMedCrossRefGoogle Scholar
  25. Pawlicki T, Cotrutz C, King C (2007) Prostate cancer therapy with stereotactic body radiation therapy. Front Radiat Ther Oncol 40:395–406PubMedCrossRefGoogle Scholar
  26. Pollack A, Hanlon AL, Horwitz EM et al (2006) Dosimetry and preliminary acute toxicity in the first 100 men treated for prostate cancer on a randomized hypofractionation dose escalation trial. Int J Radiat Oncol Biol Phys 64:518–526PubMedCentralPubMedCrossRefGoogle Scholar
  27. Pollack A, Zagars GK, Kavadi VS (1994) Prostate specific antigen doubling time and disease relapse after radiotherapy for prostate cancer. Cancer 74:670–678PubMedCrossRefGoogle Scholar
  28. Proust-Lima C, Taylor JM, Secher S et al (2011) Confirmation of a low alpha/beta ratio for prostate cancer treated by external beam radiation therapy alone using a post-treatment repeated-measures model for PSA dynamics. Int J Radiat Oncol Biol Phys 79:195–201PubMedCentralPubMedCrossRefGoogle Scholar
  29. Ritter MA, Forman JD, Kupelian PA et al (2007) A phase I/II trial of dose-per-fraction escalation for prostate adenocarcinoma. Int J Radiat Oncol Biol Phys 69:S174CrossRefGoogle Scholar
  30. Rofstad EK (1986) Radiation biology of malignant melanoma. Acta Radiol Oncol 25:1–10PubMedCrossRefGoogle Scholar
  31. Rossi HH (1979) The role of microdosimetry in radiobiology. Radiat Environ Biophys 17:29–40PubMedCrossRefGoogle Scholar
  32. Sause WT, Cooper JS, Rush S et al (1991) Fraction size in external beam radiation therapy in the treatment of melanoma. Int J Radiat Oncol Biol Phys 20:429–432PubMedCrossRefGoogle Scholar
  33. Shaffer R, Pickles T, Lee R et al (2011) Deriving prostate alpha-beta ratio using carefully matched groups, long followup and the phoenix definition of biochemical failure. Int J Radiat Oncol Biol Phys 79:1029–1036PubMedCrossRefGoogle Scholar
  34. Stuschke M, Thames HD (1999) Fractionation sensitivities and dose-control relations of head and neck carcinomas: analysis of the randomized hyperfractionation trials. Radiother Oncol 51:113–121PubMedCrossRefGoogle Scholar
  35. Thames HD, Kuban D, Levy LB, et al (2010) The role of overall treatment time in the outcome of radiotherapy of prostate cancer: an analysis of biochemical failure in 4,839 men treated between 1987 and 1995. Radiother Oncol 96:6–12Google Scholar
  36. Trott KR, Doerr W, Facoetti A et al (2012) Biological mechanisms of normal tissue damage: importance for the design of NTCP models. Radiother Oncol 105:79–85PubMedCrossRefGoogle Scholar
  37. Trott KR, von Lieven H, Kummermehr J et al (1981) The radiosensitivity of malignant melanomas part I: experimental studies. Int J Radiat Oncol Biol Phys 7:9–13PubMedCrossRefGoogle Scholar
  38. Tucker SL, Dong L, Bosch WR et al (2011) Late rectal toxicity on RTOG 94-06: analysis using a mixture Lyman model. Int J Radiat Oncol Biol Phys 78:1253–1260CrossRefGoogle Scholar
  39. Valdagni R, Italia C, Montanaro P et al (2005) Is the alpha-beta ratio of prostate cancer really low? A prospective, non-randomized trial comparing standard and hyperfractionated conformal radiation therapy. Radiother Oncol 75:74–82PubMedCrossRefGoogle Scholar
  40. Van Gellekom MP, Moerland MA, Kal HB et al (2002) Biologically effective dose for permanent prostate brachytherapy taking into account postimplant edema. Int J Radiat Oncol Biol Phys 53:422–433PubMedCrossRefGoogle Scholar
  41. Vogelius IR, Bentzen SM (2012) Meta-analysis of the alpha/beta ratio for prostate cancer in the presence of an overall time factor: bad news, good news, or no news? Int J Radiat Oncol Biol Phys 118(21):5432–5440Google Scholar
  42. Wang JZ, Li XA, Yu CX et al (2003) The low alpha/beta ratio for prostate cancer: what does the clinical outcome of HDR brachytherapy tell us? Int J Radiat Oncol Biol Phys 57:1101–1108PubMedCrossRefGoogle Scholar
  43. Whelan T, MacKenzie R, Julian J et al (2002) Randomized trial of breast irradiation schedules after lumpectomy for women with lymph node-negative breast cancer. J Natl Cancer Inst 94:1143–1150PubMedCrossRefGoogle Scholar
  44. Williams MV, Denekamp J, Fowler JF (1985) A review of alpha/beta ratios for experimental tumors: implications for clinical studies of altered fractionation. Int J Radiat Oncol Biol Phys 11:87–96PubMedCrossRefGoogle Scholar
  45. Williams SG, Taylor JM, Liu N et al (2007) Use of individual fraction size data from 3,756 patients to directly determine the alpha/beta ratio of prostate cancer. Int J Radiat Oncol Biol Phys 68:24–33PubMedCrossRefGoogle Scholar
  46. Withers HR (1975) The four R’s of radiotherapy. Adv Radiat Biol 5:241–247CrossRefGoogle Scholar
  47. Withers HR (1985) Biologic basis for altered fractionation schemes. Cancer 55:2086–2095PubMedCrossRefGoogle Scholar
  48. Withers HR, Thames HD Jr, Peters LJ (1983) A new isoeffect curve for change in dose per fraction. Radiother Oncol 1:187–191PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Radiation OncologyUniversity Hospital ZurichZürichSwitzerland
  2. 2.Department of OncologyUniversity College LondonLondonUK

Personalised recommendations