Value of Patient Immobilization in External Beam Radiotherapy for Prostate Cancer

  • Matthias Guckenberger
Part of the Medical Radiology book series (MEDRAD)


Recent developments in external beam radiotherapy for prostate cancer (dose escalation, hypo fractionation) require more accurate treatment delivery. This chapter summarizes the value of external patient positioning devices as well as diets to reduce prostate position variability.


Immobilization Device Prostate Motion Prostate Position Ankle Support Knee Support 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abdollah F, Suardi N, Cozzarini C, Gallina A, Capitanio U, Bianchi M, Sun M, Fossati N, Passoni NM, Fiorino C et al (2012) Selecting the optimal candidate for adjuvant radiotherapy after radical prostatectomy for prostate cancer: a long-term survival analysis. Eur Urol 63(6):998–1008Google Scholar
  2. Arcangeli S, Strigari L, Gomellini S, Saracino B, Petrongari MG, Pinnaro P, Pinzi V, Arcangeli G (2012) Updated results and patterns of failure in a randomized hypofractionation trial for high-risk prostate cancer. Int J Radiat Oncol Biol Phys 84(5):1172–1178PubMedCrossRefGoogle Scholar
  3. Bayley AJ, Catton CN, Haycocks T, Kelly V, Alasti H, Bristow R, Catton P, Crook J, Gospodarowicz MK, McLean M et al (2004) A randomized trial of supine vs. prone positioning in patients undergoing escalated dose conformal radiotherapy for prostate cancer. Radiot Oncol J Eur Soc Ther Radiol Oncol 70(1):37–44CrossRefGoogle Scholar
  4. Beltran C, Herman MG, Davis BJ (2008) Planning target margin calculations for prostate radiotherapy based on intrafraction and interfraction motion using four localization methods. Int J Radiat Oncol Biol Phys 70(1):289–295PubMedCrossRefGoogle Scholar
  5. Dearnaley D, Syndikus I, Sumo G, Bidmead M, Bloomfield D, Clark C, Gao A, Hassan S, Horwich A, Huddart R et al (2012) Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: preliminary safety results from the CHHiP randomised controlled trial. Lancet Oncol 13(1):43–54PubMedCrossRefGoogle Scholar
  6. Kneebone A, Gebski V, Hogendoorn N, Turner S (2003) A randomized trial evaluating rigid immobilization for pelvic irradiation. Int J Radiat Oncol Biol Phys 56(4):1105–1111PubMedCrossRefGoogle Scholar
  7. Kuban DA, Levy LB, Cheung MR, Lee AK, Choi S, Frank S, Pollack A (2011) Long-term failure patterns and survival in a randomized dose-escalation trial for prostate cancer. Who dies of disease? Int J Radiat Oncol Biol Phys 79(5):1310–1317PubMedCrossRefGoogle Scholar
  8. Lips IM, Kotte AN, van Gils CH, van Leerdam ME, van der Heide UA, van Vulpen M (2011) Influence of antiflatulent dietary advice on intrafraction motion for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 81(4):e401–e406PubMedCrossRefGoogle Scholar
  9. McNair HA, Wedlake L, McVey GP, Thomas K, Andreyev J, Dearnaley DP (2011) Can diet combined with treatment scheduling achieve consistency of rectal filling in patients receiving radiotherapy to the prostate? Radiot Oncol 101(3):471–478CrossRefGoogle Scholar
  10. Miralbell R, Roberts SA, Zubizarreta E, Hendry JH (2012) Dose-fractionation sensitivity of prostate cancer deduced from radiotherapy outcomes of 5,969 patients in seven international institutional datasets: alpha/beta = 1.4 (0.9-2.2) Gy. Int J Radiat Oncol Biol Phys 82(1):e17–e24PubMedCrossRefGoogle Scholar
  11. Morikawa LK, Roach M 3rd (2011) Pelvic nodal radiotherapy in patients with unfavorable intermediate and high-risk prostate cancer: evidence, rationale, and future directions. Int J Radiat Oncol Biol Phys 80(1):6–16PubMedCrossRefGoogle Scholar
  12. Nichol AM, Warde PR, Lockwood GA, Kirilova AK, Bayley A, Bristow R, Crook J, Gospodarowicz M, McLean M, Milosevic M et al (2010) A cinematic magnetic resonance imaging study of milk of magnesia laxative and an antiflatulent diet to reduce intrafraction prostate motion. Int J Radiat Oncol Biol Phys 77(4):1072–1078PubMedCrossRefGoogle Scholar
  13. Nutting CM, Khoo VS, Walker V, McNair H, Beardmore C, Norman A, Dearnaley DP (2000) A randomized study of the use of a customized immobilization system in the treatment of prostate cancer with conformal radiotherapy. Radiot Oncol J Eur Soc Ther Radiol Oncol 54(1):1–9CrossRefGoogle Scholar
  14. O’Daniel JC, Dong L, Zhang L, de Crevoisier R, Wang H, Lee AK, Cheung R, Tucker SL, Kudchadker RJ, Bonnen MD et al (2006) Dosimetric comparison of four target alignment methods for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 66(3):883–891PubMedCrossRefGoogle Scholar
  15. Rosewall T, Chung P, Bayley A, Lockwood G, Alasti H, Bristow R, Kong V, Milosevic M, Catton C (2008) A randomized comparison of interfraction and intrafraction prostate motion with and without abdominal compression. Radiot Oncol J Eur Soc Ther Radiol Oncol 88(1):88–94CrossRefGoogle Scholar
  16. Smitsmans MH, Pos FJ, de Bois J, Heemsbergen WD, Sonke JJ, Lebesque JV, van Herk M (2008) The influence of a dietary protocol on cone beam CT-guided radiotherapy for prostate cancer patients. Int J Radiat Oncol Biol Phys 71(4):1279–1286PubMedCrossRefGoogle Scholar
  17. Steenbakkers RJ, Duppen JC, Betgen A, Lotz HT, Remeijer P, Fitton I, Nowak PJ, van Herk M, Rasch CR (2004) Impact of knee support and shape of tabletop on rectum and prostate position. Int J Radiat Oncol Biol Phys 60(5):1364–1372PubMedCrossRefGoogle Scholar
  18. Zelefsky MJ, Pei X, Chou JF, Schechter M, Kollmeier M, Cox B, Yamada Y, Fidaleo A, Sperling D, Happersett L et al (2011) Dose escalation for prostate cancer radiotherapy: predictors of long-term biochemical tumor control and distant metastases-free survival outcomes. Eur Urol 60(6):1133–1139PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Radiation OncologyUniversity Hospital Zurich (USZ)ZurichSwitzerland

Personalised recommendations