Skip to main content

MR Perfusion Imaging

  • Chapter
Brain Tumor Imaging

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

Perfusion imaging is a powerful tool in the imaging of brain tumors, improving differential diagnostics, tumor grading, and the planning and monitoring of different therapy modalities. Several technical approaches are available to characterize tumor perfusion; these methods are widely available, easy to apply, and the results provide essential additional information on brain tumor pathophysiology. This chapter provides a review of different perfusion measurement techniques with exogenous or endogenous tracers. The clinical application of perfusion measurements in neuro-oncological imaging is discussed in view of the pathophysiological background. The practical use of perfusion imaging in differential diagnosis and tumor grading is presented with regard to the prognostic value of the method. Applications in biopsy targeting and therapy planning are also discussed. In the last section of this chapter, advantages and limitations of perfusion imaging in the follow-up of brain tumors are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DSC:

Dynamic susceptibility contrast

DCE:

Dynamic contrast enhanced

CBF:

Cerebral blood flow [mL/100 mL/min]

CBV:

Cerebral blood volume [mL/100 mL]

MTT:

Mean transit time

TTP:

Time to peak

AIF:

Arterial input function

K trans :

Transfer coefficient

References

  • Alsop DC, Detre JA (1996) Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab 16:1236–1249

    Article  PubMed  CAS  Google Scholar 

  • Armitage PA, Schwindack C, Bastin ME et al (2007) Quantitative assessment of intracranial tumor response to dexamethasone using diffusion, perfusion and permeability magnetic resonance imaging. Magn Reson Imaging 25:303–310

    Article  PubMed  CAS  Google Scholar 

  • Aronen HJ, Gazit IE, Louis DN et al (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191:41–51

    Article  PubMed  CAS  Google Scholar 

  • Barajas RF, Phillips JJ, Parvataneni R et al (2012) Regional variation in histopathologic features of tumor specimens from treatment-naive glioblastoma correlates with anatomic and physiologic MR Imaging. Neuro Oncol 14:942–954

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bassingthwaighte JB, Malone MA, Moffett TC et al (1990) Molecular and particulate depositions for regional myocardial flows in sheep. Circ Res 66:1328–1344

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Belhawi SM, Hoefnagels FW, Baaijen JC et al (2011) Early postoperative MRI overestimates residual tumour after resection of gliomas with no or minimal enhancement. Eur Radiol 21:1526–1534

    Article  PubMed  PubMed Central  Google Scholar 

  • Belliveau JW, Kennedy DN Jr, McKinstry RC et al (1991) Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254:716–719

    Article  PubMed  CAS  Google Scholar 

  • Bisdas S, Kirkpatrick M, Giglio P et al (2009) Cerebral blood volume measurements by perfusion-weighted MR imaging in gliomas: ready for prime time in predicting short-term outcome and recurrent disease? Am J Neuroradiol 30:681–688

    Article  PubMed  CAS  Google Scholar 

  • Bjornerud A, Sorensen AG, Mouridsen K et al (2011) T1- and T2*-dominant extravasation correction in DSC-MRI: part I—theoretical considerations and implications for assessment of tumor hemodynamic properties. J Cereb Blood Flow Metab 31:2041–2053

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Blasel S, Franz K, Mittelbronn M et al (2010) The striate sign: peritumoural perfusion pattern of infiltrative primary and recurrent gliomas. Neurosurg Rev 33:193–203 (discussion 194–203)

    Google Scholar 

  • Blasel S, Jurcoane A, Bähr O et al (2013) MR perfusion in and around the contrast-enhancement of primary CNS lymphomas. J Neurooncol 114:127–134

    Article  PubMed  Google Scholar 

  • Blockley NP, Jiang L, Gardener AG et al (2008) Field strength dependence of R1 and R2* relaxivities of human whole blood to ProHance, Vasovist, and deoxyhemoglobin. Magn Reson Med 60:1313–1320

    Article  PubMed  CAS  Google Scholar 

  • Boxerman JL, Hamberg LM, Rosen BR et al (1995) MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 34:555–566

    Article  PubMed  CAS  Google Scholar 

  • Boxerman JL, Rosen BR, Weisskoff RM (1997) Signal-to-noise analysis of cerebral blood volume maps from dynamic NMR imaging studies. J Magn Reson Imaging 7:528–537

    Article  PubMed  CAS  Google Scholar 

  • Boxerman JL, Schmainda KM, Weisskoff RM (2006) Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. Am J Neuroradiol 27:859–867

    PubMed  CAS  Google Scholar 

  • Boxerman JL, Prah DE, Paulson ES et al (2012) The Role of preload and leakage correction in gadolinium-based cerebral blood volume estimation determined by comparison with MION as a criterion standard. Am J Neuroradiol 33:1081–1087

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brem S (1976) The role of vascular proliferation in the growth of brain tumors. Clin Neurosurg 23:440–453

    PubMed  CAS  Google Scholar 

  • Brix G, Semmler W, Port R et al (1991) Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 15:621–628

    Article  PubMed  CAS  Google Scholar 

  • Brix G, Kiessling F, Lucht R et al (2004) Microcirculation and microvasculature in breast tumors: pharmacokinetic analysis of dynamic MR image series. Magn Reson Med 52:420–429

    Article  PubMed  Google Scholar 

  • Buxton RB (2009a) Contrast agent techniques. Introduction to functional magnetic resonance imaging, 2nd edn. Cambridge University press, Cambridge

    Book  Google Scholar 

  • Buxton RB (2009b) Arterial spin labeling techniques. Introduction to functional magnetic resonance imaging, 2nd edn. Cambridge University press, Cambridge

    Book  Google Scholar 

  • Buxton RB, Frank LR, Wong EC et al (1998) A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 40:383–396

    Article  PubMed  CAS  Google Scholar 

  • Calamante F (2005) Bolus dispersion issues related to the quantification of perfusion MRI data. J Magn Reson Imaging 22:718–722

    Article  PubMed  Google Scholar 

  • Calamante F, Gadian DG, Connelly A (2000) Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med 44:466–473

    Article  PubMed  CAS  Google Scholar 

  • Calamante F, Gadian DG, Connelly A (2002) Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke: assumptions, limitations, and potential implications for clinical use. Stroke 33:1146–1151

    Article  PubMed  CAS  Google Scholar 

  • Calamante F, Morup M, Hansen LK (2004) Defining a local arterial input function for perfusion MRI using independent component analysis. Magn Reson Med 52:789–797

    Article  PubMed  Google Scholar 

  • Caravan P, Ellison JJ, McMurry TJ et al (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99:2293–2352

    Article  PubMed  CAS  Google Scholar 

  • Caseiras GB, Chheang S, Babb J et al (2010) Relative cerebral blood volume measurements of low-grade gliomas predict patient outcome in a multi-institution setting. Eur J Radiol 73:215–220

    Article  PubMed  Google Scholar 

  • Cha S (2004) Perfusion MR imaging of brain tumors. Top Magn Reson Imaging 15:279–289

    Article  PubMed  Google Scholar 

  • Cha S, Johnson G, Wadghiri YZ et al (2003) Dynamic, contrast-enhanced perfusion MRI in mouse gliomas: correlation with histopathology. Magn Reson Med 49:848–855

    Article  PubMed  Google Scholar 

  • Cha S, Tihan T, Crawford F et al (2005) Differentiation of low-grade oligodendrogliomas from low-grade astrocytomas by using quantitative blood-volume measurements derived from dynamic susceptibility contrast-enhanced MR imaging. Am J Neuroradiol 26:266–273

    PubMed  Google Scholar 

  • Chalela JA, Alsop DC, Gonzalez-Atavales JB et al (2000) Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke 31:680–687

    Article  PubMed  CAS  Google Scholar 

  • Choi YJ, Kim HS, Jahng GH et al (2013) Pseudoprogression in patients with glioblastoma: added value of arterial spin labeling to dynamic susceptibility contrast perfusion MR imaging. Acta Radiol 55(3):361–369

    Google Scholar 

  • Darpolor MM, Molthen RC, Schmainda KM (2011) Multimodality imaging of abnormal vascular perfusion and morphology in preclinical 9L gliosarcoma model. PLoS One 6:e16621

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Deibler AR, Pollock JM, Kraft RA et al (2008) Arterial spin-labeling in routine clinical practice, part 1: technique and artifacts. Am J Neuroradiol 29:1228–1234

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Deichmann R (2005) Fast high-resolution T1 mapping of the human brain. Magn Reson Med 54:20–27

    Article  PubMed  Google Scholar 

  • Deshmane A, Gulani V, Griswold MA et al (2012) Parallel MR imaging. J Magn Reson Imaging 36:55–72

    Article  PubMed  PubMed Central  Google Scholar 

  • Detre JA, Leigh JS, Williams DS et al (1992) Perfusion imaging. Magn Reson Med 23:37–45

    Article  PubMed  CAS  Google Scholar 

  • Donahue KM, Weisskoff RM, Chesler DA et al (1996) Improving MR quantification of regional blood volume with intravascular T1 contrast agents: accuracy, precision, and water exchange. Magn Reson Med 36:858–867

    Article  PubMed  CAS  Google Scholar 

  • Donahue KM, Krouwer HG, Rand SD et al (2000) Utility of simultaneously acquired gradient-echo and spin-echo cerebral blood volume and morphology maps in brain tumor patients. Magn Reson Med 43:845–853

    Article  PubMed  CAS  Google Scholar 

  • Duhamel G, Schlaug G, Alsop DC (2006) Measurement of arterial input functions for dynamic susceptibility contrast magnetic resonance imaging using echoplanar images: comparison of physical simulations with in vivo results. Magn Reson Med 55:514–523

    Article  PubMed  Google Scholar 

  • Edelman RR, Siewert B, Adamis M et al (1994) Signal targeting with alternating radiofrequency (STAR) sequences: application to MR angiography. Magn Reson Med 31:233–238

    Article  PubMed  CAS  Google Scholar 

  • Essig M, Wenz F, Scholdei R et al (2002) Dynamic susceptibility contrast-enhanced echo-planar imaging of cerebral gliomas. Effect of contrast medium extravasation. Acta Radiol 43:354–359

    Article  PubMed  CAS  Google Scholar 

  • Faehndrich J, Weidauer S, Pilatus U et al (2011) Neuroradiological viewpoint on the diagnostics of space-occupying brain lesions. Clin Neuroradiol 21:123–139

    Article  PubMed  CAS  Google Scholar 

  • Fatterpekar GM, Galheigo D, Narayana A et al (2012) Treatment-related change versus tumor recurrence in high-grade gliomas: a diagnostic conundrum–use of dynamic susceptibility contrast-enhanced (DSC) perfusion MRI. Am J Roentgenol 198:19–26

    Article  Google Scholar 

  • Folkerth RD (2004) Histologic measures of angiogenesis in human primary brain tumors. Cancer Treat Res 117:79–95

    Article  PubMed  Google Scholar 

  • Frackowiak RS, Lenzi GL, Jones T et al (1980) Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr 4:727–736

    Article  PubMed  CAS  Google Scholar 

  • Fuss M, Wenz F, Scholdei R et al (2000) Radiation-induced regional cerebral blood volume (rCBV) changes in normal brain and low-grade astrocytomas: quantification and time and dose-dependent occurrence. Int J Radiat Oncol Biol Phys 48:53–58

    Article  PubMed  CAS  Google Scholar 

  • Garcia DM, Duhamel G, Alsop DC (2005) Efficiency of inversion pulses for background suppressed arterial spin labeling. Magn Reson Med 54:366–372

    Article  PubMed  Google Scholar 

  • Gempt J, Förschler A, Buchmann N et al (2013a) Postoperative ischemic changes following resection of newly diagnosed and recurrent gliomas and their clinical relevance. J Neurosurg 118:801–808

    Article  PubMed  Google Scholar 

  • Gempt J, Gerhardt J, Toth V et al (2013b) Postoperative ischemic changes following brain metastasis resection as measured by diffusion-weighted magnetic resonance imaging. J Neurosurg 3(5):437–445

    Google Scholar 

  • Golay X, Petersen ET (2006) Arterial spin labeling: benefits and pitfalls of high magnetic field. Neuroimaging Clin N Am 16:259–268, x

    Google Scholar 

  • Golay X, Hendrikse J, Lim TC (2004) Perfusion imaging using arterial spin labeling. Top Magn Reson Imaging 15:10–27

    Article  PubMed  Google Scholar 

  • Golay X, Petersen ET, Hui F (2005) Pulsed star labeling of arterial regions (PULSAR): a robust regional perfusion technique for high field imaging. Magn Reson Med 53:15–21

    Article  PubMed  Google Scholar 

  • Grosu AL, Souvatzoglou M, Röper B et al (2007) Hypoxia imaging with FAZA-PET and theoretical considerations with regard to dose painting for individualization of radiotherapy in patients with head and neck cancer. Int J Radiat Oncol Biol Phys 69:541–551

    Article  PubMed  CAS  Google Scholar 

  • Gunther M, Bock M, Schad LR (2001) Arterial spin labeling in combination with a look-locker sampling strategy: inflow turbo-sampling EPI-FAIR (ITS-FAIR). Magn Reson Med 46:974–984

    Article  PubMed  CAS  Google Scholar 

  • Hakyemez B, Erdogan C, Ercan I et al (2005) High-grade and low-grade gliomas: differentiation by using perfusion MR imaging. Clin Radiol 60:493–502

    Article  PubMed  CAS  Google Scholar 

  • Hardee ME, Zagzag D (2012) Mechanisms of glioma-associated neovascularization. Am J Pathol 181:1126–1141

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Harrer JU, Parker GJ, Haroon HA et al (2004) Comparative study of methods for determining vascular permeability and blood volume in human gliomas. J Magn Reson Imaging 20:748–757

    Article  PubMed  Google Scholar 

  • Hattingen E, Blasel S, Dettmann E et al (2008) Perfusion-weighted MRI to evaluate cerebral autoregulation in aneurysmal subarach-noid haemorrhage. Neuroradiology 50:929–938

    Article  PubMed  Google Scholar 

  • Heiland S, Benner T, Debus J et al (1999) Simultaneous assessment of cerebral hemodynamics and contrast agent uptake in lesions with disrupted blood–brain-barrier. Magn Reson Imaging 17:21–27

    Article  PubMed  CAS  Google Scholar 

  • Heiland S, Wick W, Bendszus M (2010) Perfusion magnetic resonance imaging for parametric response maps in tumors: is it really that easy? J Clin Oncol 28:e591 (author reply e592)

    Google Scholar 

  • Helle M, Rufer S, van Osch MJ et al (2012) Selective multivessel labeling approach for perfusion territory imaging in pseudo-continuous arterial spin labeling. Magn Reson Med 68:214–219

    Article  PubMed  Google Scholar 

  • Henderson E, McKinnon G, Lee TY et al (1999) A fast 3D look-locker method for volumetric T1 mapping. Magn Reson Imaging 17:1163–1171

    Article  PubMed  CAS  Google Scholar 

  • Henderson E, Sykes J, Drost D et al (2000) Simultaneous MRI measurement of blood flow, blood volume, and capillary permeability in mammary tumors using two different contrast agents. J Magn Reson Imaging 12:991–1003

    Article  PubMed  CAS  Google Scholar 

  • Hendrick RE, Haacke EM (1993) Basic physics of MR contrast agents and maximization of image contrast. J Magn Reson Imaging 3:137–148

    Article  PubMed  CAS  Google Scholar 

  • Heymann MA, Payne BD, Hoffman JI et al (1977) Blood flow measurements with radionuclide-labeled particles. Prog Cardiovasc Dis 20:55–79

    Article  PubMed  CAS  Google Scholar 

  • Hu LS, Baxter LC, Smith KA et al (2009) Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. Am J Neuroradiol 30:552–558

    Article  PubMed  CAS  Google Scholar 

  • Jarnum H, Steffensen EG, Knutsson L et al (2010) Perfusion MRI of brain tumours: a comparative study of pseudo-continuous arterial spin labelling and dynamic susceptibility contrast imaging. Neuroradiology 52:307–317

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson KM, Tao JZ, Kennan RP et al (2000) Intravascular susceptibility agent effects on tissue transverse relaxation rates in vivo. Magn Reson Med 44:909–914

    Article  PubMed  CAS  Google Scholar 

  • Johnson G, Wetzel SG, Cha S et al (2004) Measuring blood volume and vascular transfer constant from dynamic, T(2)*-weighted contrast-enhanced MRI. Magn Reson Med 51:961–968

    Article  PubMed  Google Scholar 

  • Ken S, Vieillevigne L, Franceries X et al (2013) Integration method of 3D MR spectroscopy into treatment planning system for glioblastoma IMRT dose painting with integrated simultaneous boost. Radiat Oncol 8:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Kety SS (1951) The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol Rev 3:1–41

    PubMed  CAS  Google Scholar 

  • Kim SG (1995) Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 34:293–301

    Article  PubMed  CAS  Google Scholar 

  • Kiselev VG (2001) On the theoretical basis of perfusion measurements by dynamic susceptibility contrast MRI. Magn Reson Med 46:1113–1122

    Article  PubMed  CAS  Google Scholar 

  • Kiselev VG (2005) Transverse relaxation effect of MRI contrast agents: a crucial issue for quantitative measurements of cerebral perfusion. J Magn Reson Imaging 22:693–696

    Article  PubMed  Google Scholar 

  • Kiselev VG, Strecker R, Ziyeh S et al (2005) Vessel size imaging in humans. Magn Reson Med 53:553–563

    Article  PubMed  CAS  Google Scholar 

  • Kjolby BF, Ostergaard L, Kiselev VG (2006) Theoretical model of intravascular paramagnetic tracers effect on tissue relaxation. Magn Reson Med 56:187–197

    Article  PubMed  CAS  Google Scholar 

  • Knopp EA, Cha S, Johnson G et al (1999) Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 211:791–798

    Article  PubMed  CAS  Google Scholar 

  • Ko L, Salluzzi M, Frayne R et al (2007) Reexamining the quantification of perfusion MRI data in the presence of bolus dispersion. J Magn Reson Imaging 25:639–643

    Article  PubMed  Google Scholar 

  • Kwong KK, Belliveau JW, Chesler DA et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 89:5675–5679

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kwong KK, Chesler DA, Weisskoff RM et al (1995) MR perfusion studies with T1-weighted echo planar imaging. Magn Reson Med 34:878–887

    Article  PubMed  CAS  Google Scholar 

  • Landis CS, Li X, Telang FW et al (2000) Determination of the MRI contrast agent concentration time course in vivo following bolus injection: effect of equilibrium transcytolemmal water exchange. Magn Reson Med 44:563–574

    Article  PubMed  CAS  Google Scholar 

  • Larsen VA, Simonsen HJ, Law I et al (2013) Evaluation of dynamic contrast-enhanced T1-weighted perfusion MRI in the differentiation of tumor recurrence from radiation necrosis. Neuroradiology (Epub ahead of print) 55(3):361–369

    Google Scholar 

  • Larsson HB, Stubgaard M, Frederiksen JL et al (1990) Quantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors. Magn Reson Med 16:117–131

    Article  PubMed  CAS  Google Scholar 

  • Larsson HB, Hansen AE, Berg HK et al (2008) Dynamic contrastenhanced quantitative perfusion measurement of the brain using T1-weighted MRI at 3 T. J Magn Reson Imaging 27:754–762

    Article  PubMed  Google Scholar 

  • Larsson HB, Courivaud F, Rostrup E et al (2009) Measurement of brain perfusion, blood volume, and blood-brain barrier permeability, using dynamic contrast-enhanced T(1)-weighted MRI at 3 tesla. Magn Reson Med 62:1270–1281

    Article  PubMed  Google Scholar 

  • Law M, Cha S, Knopp EA et al (2002) High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology 222:715–721

    Article  PubMed  Google Scholar 

  • Law M, Yang S, Babb JS et al (2004) Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. Am J Neuroradiol 25:746–755

    PubMed  Google Scholar 

  • Law M, Young R, Babb J et al (2006) Comparing perfusion metrics obtained from a single compartment versus pharmacokinetic modeling methods using dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. Am J Neuroradiol 27:1975–1982

    PubMed  CAS  Google Scholar 

  • Law M, Young R, Babb J et al (2007) Histogram analysis versus region of interest analysis of dynamic susceptibility contrast perfusion MR imaging data in the grading of cerebral gliomas. Am J Neuroradiol 28:761–766

    PubMed  CAS  Google Scholar 

  • Law M, Young RJ, Babb JS et al (2008) Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 247:490–498

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Bihan D (1992) Theoretical principles of perfusion imaging. Application to magnetic resonance imaging. Invest Radiol 27(Suppl 2):S6–11

    Article  PubMed  Google Scholar 

  • Lee MC, Cha S, Chang SM et al (2005) Dynamic susceptibility contrast perfusion imaging of radiation effects in normal-appearing MR Perfusion Imaging brain tissue: changes in the first-pass and recirculation phases. J Magn Reson Imaging 21:683–693

    Article  PubMed  Google Scholar 

  • Lemasson B, Valable S, Farion R et al (2013) In vivo imaging of vessel diameter, size, and density: a comparative study between MRI and histology. Magn Reson Med 69:18–26

    Article  PubMed  Google Scholar 

  • Leon SP, Folkerth RD, Black PM (1996) Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer 77:362–372

    Article  PubMed  CAS  Google Scholar 

  • Lev MH, Ozsunar Y, Henson JW et al (2004) Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas (corrected). Am J Neuroradiol 25:214–221

    PubMed  Google Scholar 

  • Levy LM (2005) What is right about MRI permeability studies. Am J Neuroradiol 26:3–4

    PubMed  Google Scholar 

  • Li X, Rooney WD, Varallyay CG et al (2010) Dynamic-contrast-enhanced-MRI with extravasating contrast reagent: rat cerebral glioma blood volume determination. J Magn Reson 206:190–199

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li KL, Buonaccorsi G, Thompson G et al (2012) An improved coverage and spatial resolution—using dual injection dynamic contrast-enhanced (ICE-DICE) MRI: a novel dynamic contrast-enhanced technique for cerebral tumors. Magn Reson Med 68:452–462

    Article  PubMed  Google Scholar 

  • Liao W, Liu Y, Wang X et al (2009) Differentiation of primary central nervous system lymphoma and high-grade glioma with dynamic susceptibility contrast—enhanced perfusion magnetic resonance imaging. Acta Radiol 50:217–225

    Article  PubMed  Google Scholar 

  • Lu H, Law M, Johnson G et al (2005) Novel approach to the measurement of absolute cerebral blood volume using vascularspace-occupancy magnetic resonance imaging. Magn Reson Med 54:1403–1411

    Article  PubMed  Google Scholar 

  • Luh WM, Wong EC, Bandettini PA et al (1999) QUIPSS II with thinslice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling. Magn Reson Med 41:1246–1254

    Article  PubMed  CAS  Google Scholar 

  • Lupo JM, Cha S, Chang SM et al (2005) Dynamic susceptibility-weighted perfusion imaging of high-grade gliomas: characterization of spatial heterogeneity. Am J Neuroradiol 26:1446–1454

    PubMed  Google Scholar 

  • Majchrzak K, Kaspera W, Bobek-Billewicz B et al (2012) The assessment of prognostic factors in surgical treatment of low-grade gliomas: a prospective study. Clin Neurol Neurosurg 114:1135–1144

    Article  PubMed  Google Scholar 

  • Mani S, Pauly J, Conolly S et al (1997) Background suppression with multiple inversion recovery nulling: applications to projective angiography. Magn Reson Med 37:898–905

    Article  PubMed  CAS  Google Scholar 

  • McGehee BE, Pollock JM, Maldjian JA (2012) Brain perfusion imaging: how does it work and what should I use? J Magn Reson Imaging 36:1257

    Article  PubMed  Google Scholar 

  • McLaughlin AC, Ye FQ, Pekar JJ et al (1997) Effect of magnetization transfer on the measurement of cerebral blood flow using steady-state arterial spin tagging approaches: a theoretical investigation. Magn Reson Med 37:501–510

    Article  PubMed  CAS  Google Scholar 

  • Meier P, Zierler KL (1954) On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 6:731–744

    PubMed  CAS  Google Scholar 

  • Mills SJ, Thompson G, Jackson A (2012) Advanced magnetic resonance imaging biomarkers of cerebral metastases. Cancer Imaging 12:245–252

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Miyati T, Banno T, Mase M et al (1997) Dual dynamic contrast-enhanced MR imaging. J Magn Reson Imaging 7:230–235

    Article  PubMed  CAS  Google Scholar 

  • O’Connor JP, Jackson A, Parker GJ et al (2007) DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br J Cancer 96:189–195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ostergaard L (2004) Cerebral perfusion imaging by bolus tracking. Top Magn Reson Imaging 15:3–9

    Article  PubMed  Google Scholar 

  • Ostergaard L (2005) Principles of cerebral perfusion imaging by bolus tracking. J Magn Reson Imaging 22:710–717

    Article  PubMed  Google Scholar 

  • Ostergaard L, Sorensen AG, Kwong KK et al (1996a) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: experimental comparison and preliminary results. Magn Reson Med 36:726–736

    Article  PubMed  CAS  Google Scholar 

  • Ostergaard L, Weisskoff RM, Chesler DA et al (1996b) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med 36:715–725

    Article  PubMed  CAS  Google Scholar 

  • Ostergaard L, Hochberg FH, Rabinov JD et al (1999) Early changes measured by magnetic resonance imaging in cerebral blood flow, blood volume, and blood-brain barrier permeability following dexamethasone treatment in patients with brain tumors. J Neurosurg 90:300–305

    Article  PubMed  CAS  Google Scholar 

  • Paiva FF, Tannus A, Silva AC (2007) Measurement of cerebral perfusion territories using arterial spin labelling. NMR Biomed 20:633–642

    Article  PubMed  Google Scholar 

  • Paiva FF, Tannus A, Talagala SL et al (2008) Arterial spin labeling of cerebral perfusion territories using a separate labeling coil. J Magn Reson Imaging 27:970–977

    Article  PubMed  Google Scholar 

  • Parkes LM (2005) Quantification of cerebral perfusion using arterial spin labeling: two-compartment models. J Magn Reson Imaging 22:732–736

    Article  PubMed  Google Scholar 

  • Parkes LM, Tofts PS (2002) Improved accuracy of human cerebral blood perfusion measurements using arterial spin labeling: accounting for capillary water permeability. Magn Reson Med 48:27–41

    Article  PubMed  Google Scholar 

  • Paulson ES, Schmainda KM (2008) Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors. Radiology 249:601–613

    Article  PubMed  PubMed Central  Google Scholar 

  • Pekar J, Jezzard P, Roberts DA et al (1996) Perfusion imaging with compensation for asymmetric magnetization transfer effects. Magn Reson Med 35:70–79

    Article  PubMed  CAS  Google Scholar 

  • Perfusion Study Group ISMRM (2013) http://www.ismrm.org/12/SG/Perfusion_Motion.htm

  • Petersen ET, Zimine I, Ho YC et al (2006a) Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniques. Br J Radiol 79:688–701

    Article  PubMed  CAS  Google Scholar 

  • Petersen ET, Lim T, Golay X (2006b) Model-free arterial spin labeling quantification approach for perfusion MRI. Magn Reson Med 55:219–232

    Article  PubMed  Google Scholar 

  • Petersen ET, Mouridsen K, Golay X (2010) The QUASAR reproducibility study, Part II: results from a multi-center arterial spin labeling test-retest study. Neuroimage 49:104–113

    Article  PubMed  PubMed Central  Google Scholar 

  • Pradel C, Siauve N, Bruneteau G et al (2003) Reduced capillary perfusion and permeability in human tumour xenografts treated with the VEGF signalling inhibitor ZD4190: an in vivo assessment using dynamic MR imaging and macromolecular contrast media. Magn Reson Imaging 21:845–851

    Article  PubMed  CAS  Google Scholar 

  • Preibisch C, Deichmann R (2009) Influence of RF spoiling on the stability and accuracy of T1 mapping based on spoiled FLASH with varying flip angles. Magn Reson Med 61:125–135

    Article  PubMed  CAS  Google Scholar 

  • Quarles CC, Ward BD, Schmainda KM (2005) Improving the reliability of obtaining tumor hemodynamic parameters in the presence of contrast agent extravasation. Magn Reson Med 53:1307–1316

    Article  PubMed  CAS  Google Scholar 

  • Quarles CC, Gochberg DF, Gore JC et al (2009) A theoretical framework to model DSC-MRI data acquired in the presence of contrast agent extravasation. Phys Med Biol 54:5749–5766

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Raichle ME, Martin WR, Herscovitch P et al (1983) Brain blood flow measured with intravenous H2(15)O. II. Implementation and validation. J Nucl Med 24:790–798

    PubMed  CAS  Google Scholar 

  • Roberts C, Issa B, Stone A et al (2006) Comparative study into the robustness of compartmental modeling and model-free analysis in DCE-MRI studies. J Magn Reson Imaging 23:554–563

    Article  PubMed  Google Scholar 

  • Rosen BR, Belliveau JW, Vevea JM et al (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14:249–265

    Article  PubMed  CAS  Google Scholar 

  • Roy B, Gupta RK, Maudsley AA et al (2013) Utility of multiparametric 3-T MRI for glioma characterization. Neuroradiology 55:603–613

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanz-Requena R, Revert-Ventura A, Martí-Bonmatí L et al (2013) Quantitative MR perfusion parameters related to survival time in high-grade gliomas. Eur Radiol 23(12):3456–3465

    Article  PubMed  Google Scholar 

  • Schmainda KM, Rand SD, Joseph AM et al (2004) Characterization of a first-pass gradient-echo spin-echo method to predict brain tumor grade and angiogenesis. Am J Neuroradiol 25:1524–1532

    PubMed  Google Scholar 

  • Schwarzbauer C, Morrissey SP, Deichmann R et al (1997) Quantitative magnetic resonance imaging of capillary water permeability and regional blood volume with an intravascular MR contrast agent. Magn Reson Med 37:769–777

    Article  PubMed  CAS  Google Scholar 

  • Shen Q, Duong TQ (2011) Background suppression in arterial spin labeling MRI with a separate neck labeling coil. NMR Biomed 24:1111–1118

    Article  PubMed  PubMed Central  Google Scholar 

  • Shin JH, Lee HK, Kwun BD et al (2002) Using relative cerebral blood flow and volume to evaluate the histopathologic grade of cerebral gliomas: preliminary results. Am J Roentgenol 179:783–789

    Article  Google Scholar 

  • Silva AC, Kim SG (1999) Pseudo-continuous arterial spin labeling technique for measuring CBF dynamics with high temporal resolution. Magn Reson Med 42:425–429

    Article  PubMed  CAS  Google Scholar 

  • Smith JS, Cha S, Mayo MC et al (2005) Serial diffusion-weighted magnetic resonance imaging in cases of glioma: distinguishing tumor recurrence from postresection injury. J Neurosurg 103:428–438

    Article  PubMed  Google Scholar 

  • Soda Y, Myskiw C, Rommel A et al (2013) Mechanisms of neovascularization and resistance to anti-angiogenic therapies in glioblastoma multiforme. J Mol Med (Berl) 91:439–448

    Article  CAS  Google Scholar 

  • Sourbron S (2010) Technical aspects of MR perfusion. Eur J Radiol 76:304–313

    Article  PubMed  Google Scholar 

  • Sourbron SP, Buckley DL (2011) On the scope and interpretation of the Tofts models for DCE-MRI. Magn Reson Med 66:735–745

    Article  PubMed  Google Scholar 

  • Sourbron SP, Buckley DL (2012) Tracer kinetic modelling in MRI: estimating perfusion and capillary permeability. Phys Med Biol 57:R1–R33

    Article  PubMed  CAS  Google Scholar 

  • Sourbron SP, Buckley DL (2013) Classic models for dynamic contrast-enhanced MRI. NMR Biomed 26:1004–1027

    Article  PubMed  Google Scholar 

  • Sourbron S, Ingrisch M, Siefert A et al (2009) Quantification of cerebral blood flow, cerebral blood volume, and blood–brain-barrier leakage with DCE-MRI. Magn Reson Med 62:205–217

    Article  PubMed  Google Scholar 

  • Speck O, Chang L, DeSilva NM et al (2000) Perfusion MRI of the human brain with dynamic susceptibility contrast: gradient-echo versus spin-echo techniques. J Magn Reson Imaging 12:381–387

    Article  PubMed  CAS  Google Scholar 

  • St Lawrence KS, Wang J (2005) Effects of the apparent transverse relaxation time on cerebral blood flow measurements obtained by arterial spin labeling. Magn Reson Med 53:425–433

    Article  PubMed  CAS  Google Scholar 

  • Stewart GN (1894) Researches on the circulation time in organs and on the influences which affect it. Parts I–III. J Physiol 15:1–89

    Article  Google Scholar 

  • Sugahara T, Korogi Y, Tomiguchi S et al (2000) Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. Am J Neuroradiol 21:901–909

    PubMed  CAS  Google Scholar 

  • Sundgren PC, Cao Y (2009) Brain irradiation: effects on normal brain parenchyma and radiation injury. Neuroimaging Clin N Am 19:657–668

    Article  PubMed  Google Scholar 

  • Talagala SL, Ye FQ, Ledden PJ et al (2004) Whole-brain 3D perfusion MRI at 3.0 T using CASL with a separate labeling coil. Magn Reson Med 52:131–140

    Article  PubMed  Google Scholar 

  • Ter-Pogossian MM, Herscovitch P (1985) Radioactive oxygen-15 in the study of cerebral blood flow, blood volume, and oxygen metabolism. Semin Nucl Med 15:377–394

    Article  PubMed  CAS  Google Scholar 

  • Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 7:91–101

    Article  PubMed  CAS  Google Scholar 

  • Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17:357–367

    Article  PubMed  CAS  Google Scholar 

  • Tofts PS, Brix G, Buckley DL et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232

    Article  PubMed  CAS  Google Scholar 

  • Turner R, Le Bihan D, Chesnick AS (1991) Echo-planar imaging of diffusion and perfusion. Magn Reson Med 19:247–253

    Article  PubMed  CAS  Google Scholar 

  • Uematsu H, Maeda M (2006) Double-echo perfusion-weighted MR imaging: basic concepts and application in brain tumors for the assessment of tumor blood volume and vascular permeability. Eur Radiol 16:180–186

    Article  PubMed  Google Scholar 

  • Uematsu H, Maeda M, Sadato N et al (2000) Vascular permeability: quantitative measurement with double-echo dynamic MR imagingtheory and clinical application. Radiology 214:912–917

    Article  PubMed  CAS  Google Scholar 

  • van Laar PJ, van der Grond J, Hendrikse J (2008) Brain perfusion territory imaging: methods and clinical applications of selective arterial spin-labeling MR imaging. Radiology 246:354–364

    Article  PubMed  Google Scholar 

  • Varallyay CG, Nesbit E, Fu R et al (2013) High-resolution steady-state cerebral blood volume maps in patients with central nervous system neoplasms using ferumoxytol, a superparamagnetic iron oxide nanoparticle. J Cereb Blood Flow Metab 33:780–786

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vidiri A, Pace A, Fabi A et al (2012) Early perfusion changes in patients with recurrent high-grade brain tumor treated with Bevacizumab: preliminary results by a quantitative evaluation. J Exp Clin Cancer Res 31:33

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Villringer A, Rosen BR, Belliveau JW et al (1988) Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med 6:164–174

    Article  PubMed  CAS  Google Scholar 

  • Vonken EP, van Osch MJ, Bakker CJ et al (2000) Simultaneous quantitative cerebral perfusion and Gd-DTPA extravasation measurement with dual-echo dynamic susceptibility contrast MRI. Magn Reson Med 43:820–827

    Article  PubMed  CAS  Google Scholar 

  • Wagner M, Nafe R, Jurcoane A et al (2011) Heterogeneity in malignant gliomas: a magnetic resonance analysis of spatial distribution of metabolite changes and regional blood volume. J Neurooncol 103:663–672

    Article  PubMed  Google Scholar 

  • Wang J, Qiu M, Constable RT (2005) In vivo method for correcting transmit/receive nonuniformities with phased array coils. Magn Reson Med 53:666–674

    Article  PubMed  Google Scholar 

  • Warmuth C, Gunther M, Zimmer C (2003) Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology 228:523–532

    Article  PubMed  Google Scholar 

  • Wen PY, Macdonald DR, Reardon DA et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972

    Article  PubMed  Google Scholar 

  • Williams DS (2006) Quantitative perfusion imaging using arterial spin labeling. Methods Mol Med 124:151–173

    PubMed  Google Scholar 

  • Wirestam R, Knutsson L, Risberg J et al (2007) Attempts to improve absolute quantification of cerebral blood flow in dynamic susceptibility contrast magnetic resonance imaging: a simplified T1-weighted steady-state cerebral blood volume approach. Acta Radiol 48:550–556

    Article  PubMed  CAS  Google Scholar 

  • Wong EC, Buxton RB, Frank LR (1997) Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 10:237–249

    Article  PubMed  CAS  Google Scholar 

  • Wong EC, Buxton RB, Frank LR (1998) Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med 39:702–708

    Article  PubMed  CAS  Google Scholar 

  • Wu WC, Fernandez-Seara M, Detre JA et al (2007) A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling. Magn Reson Med 58:1020–1027

    Article  PubMed  Google Scholar 

  • Wu WC, St Lawrence KS, Licht DJ et al (2010) Quantification issues in arterial spin labeling perfusion magnetic resonance imaging. Top Magn Reson Imaging 21:65–73

    Article  PubMed  Google Scholar 

  • Yankeelov TE, Gore JC (2009) Dynamic contrast enhanced magnetic resonance imaging in oncology: theory, data acquisition, analysis, and examples. Curr Med Imaging Rev 3:91–107

    Article  PubMed  PubMed Central  Google Scholar 

  • Yankeelov TE, Rooney WD, Li X et al (2003) Variation of the relaxographic “shutter-speed” for transcytolemmal water exchange affects the CR bolus-tracking curve shape. Magn Reson Med 50:1151–1169

    Article  PubMed  Google Scholar 

  • Ye FQ, Frank JA, Weinberger DR et al (2000) Noise reduction in 3D perfusion imaging by attenuating the static signal in arterial spin tagging (ASSIST). Magn Reson Med 44:92–100

    Article  PubMed  CAS  Google Scholar 

  • Zacharaki EI, Wang S, Chawla S et al (2009) Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn Reson Med 62:1609–1618

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Williams DS, Detre JA et al (1992) Measurement of brain perfusion by volume-localized NMR spectroscopy using inversion of arterial water spins: accounting for transit time and cross-relaxation. Magn Reson Med 25:362–371

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Williams DS, Koretsky AP (1993) Measurement of rat brain perfusion by NMR using spin labeling of arterial water: in vivo determination of the degree of spin labeling. Magn Reson Med 29:416–421

    Article  PubMed  CAS  Google Scholar 

  • Zhang N, Zhang L, Qiu B et al (2012) Correlation of volume transfer coefficient K trans with histopathologic grades of gliomas. J Magn Reson Imaging 36:355–363

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhu DC, Penn RD (2005) Full-brain T1 mapping through inversion recovery fast spin echo imaging with time-efficient slice ordering. Magn Reson Med 54:725–731

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus Zimmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Preibisch, C., Tóth, V., Zimmer, C. (2013). MR Perfusion Imaging. In: Hattingen, E., Pilatus, U. (eds) Brain Tumor Imaging. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2013_954

Download citation

  • DOI: https://doi.org/10.1007/174_2013_954

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45039-6

  • Online ISBN: 978-3-642-45040-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics