MR Perfusion Imaging

  • Christine Preibisch
  • Vivien Tóth
  • Claus Zimmer
Part of the Medical Radiology book series (MEDRAD)


Perfusion imaging is a powerful tool in the imaging of brain tumors, improving differential diagnostics, tumor grading, and the planning and monitoring of different therapy modalities. Several technical approaches are available to characterize tumor perfusion; these methods are widely available, easy to apply, and the results provide essential additional information on brain tumor pathophysiology. This chapter provides a review of different perfusion measurement techniques with exogenous or endogenous tracers. The clinical application of perfusion measurements in neuro-oncological imaging is discussed in view of the pathophysiological background. The practical use of perfusion imaging in differential diagnosis and tumor grading is presented with regard to the prognostic value of the method. Applications in biopsy targeting and therapy planning are also discussed. In the last section of this chapter, advantages and limitations of perfusion imaging in the follow-up of brain tumors are summarized.


Cerebral Blood Flow Perfusion Imaging Cerebral Blood Volume Arterial Spin Label Perfusion Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Dynamic susceptibility contrast


Dynamic contrast enhanced


Cerebral blood flow [mL/100 mL/min]


Cerebral blood volume [mL/100 mL]


Mean transit time


Time to peak


Arterial input function


Transfer coefficient


  1. Alsop DC, Detre JA (1996) Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab 16:1236–1249PubMedCrossRefGoogle Scholar
  2. Armitage PA, Schwindack C, Bastin ME et al (2007) Quantitative assessment of intracranial tumor response to dexamethasone using diffusion, perfusion and permeability magnetic resonance imaging. Magn Reson Imaging 25:303–310PubMedCrossRefGoogle Scholar
  3. Aronen HJ, Gazit IE, Louis DN et al (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191:41–51PubMedCrossRefGoogle Scholar
  4. Barajas RF, Phillips JJ, Parvataneni R et al (2012) Regional variation in histopathologic features of tumor specimens from treatment-naive glioblastoma correlates with anatomic and physiologic MR Imaging. Neuro Oncol 14:942–954PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bassingthwaighte JB, Malone MA, Moffett TC et al (1990) Molecular and particulate depositions for regional myocardial flows in sheep. Circ Res 66:1328–1344PubMedPubMedCentralCrossRefGoogle Scholar
  6. Belhawi SM, Hoefnagels FW, Baaijen JC et al (2011) Early postoperative MRI overestimates residual tumour after resection of gliomas with no or minimal enhancement. Eur Radiol 21:1526–1534PubMedPubMedCentralCrossRefGoogle Scholar
  7. Belliveau JW, Kennedy DN Jr, McKinstry RC et al (1991) Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254:716–719PubMedCrossRefGoogle Scholar
  8. Bisdas S, Kirkpatrick M, Giglio P et al (2009) Cerebral blood volume measurements by perfusion-weighted MR imaging in gliomas: ready for prime time in predicting short-term outcome and recurrent disease? Am J Neuroradiol 30:681–688PubMedCrossRefGoogle Scholar
  9. Bjornerud A, Sorensen AG, Mouridsen K et al (2011) T1- and T2*-dominant extravasation correction in DSC-MRI: part I—theoretical considerations and implications for assessment of tumor hemodynamic properties. J Cereb Blood Flow Metab 31:2041–2053PubMedPubMedCentralCrossRefGoogle Scholar
  10. Blasel S, Franz K, Mittelbronn M et al (2010) The striate sign: peritumoural perfusion pattern of infiltrative primary and recurrent gliomas. Neurosurg Rev 33:193–203 (discussion 194–203)Google Scholar
  11. Blasel S, Jurcoane A, Bähr O et al (2013) MR perfusion in and around the contrast-enhancement of primary CNS lymphomas. J Neurooncol 114:127–134PubMedCrossRefGoogle Scholar
  12. Blockley NP, Jiang L, Gardener AG et al (2008) Field strength dependence of R1 and R2* relaxivities of human whole blood to ProHance, Vasovist, and deoxyhemoglobin. Magn Reson Med 60:1313–1320PubMedCrossRefGoogle Scholar
  13. Boxerman JL, Hamberg LM, Rosen BR et al (1995) MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 34:555–566PubMedCrossRefGoogle Scholar
  14. Boxerman JL, Rosen BR, Weisskoff RM (1997) Signal-to-noise analysis of cerebral blood volume maps from dynamic NMR imaging studies. J Magn Reson Imaging 7:528–537PubMedCrossRefGoogle Scholar
  15. Boxerman JL, Schmainda KM, Weisskoff RM (2006) Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. Am J Neuroradiol 27:859–867PubMedGoogle Scholar
  16. Boxerman JL, Prah DE, Paulson ES et al (2012) The Role of preload and leakage correction in gadolinium-based cerebral blood volume estimation determined by comparison with MION as a criterion standard. Am J Neuroradiol 33:1081–1087PubMedPubMedCentralCrossRefGoogle Scholar
  17. Brem S (1976) The role of vascular proliferation in the growth of brain tumors. Clin Neurosurg 23:440–453PubMedGoogle Scholar
  18. Brix G, Semmler W, Port R et al (1991) Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 15:621–628PubMedCrossRefGoogle Scholar
  19. Brix G, Kiessling F, Lucht R et al (2004) Microcirculation and microvasculature in breast tumors: pharmacokinetic analysis of dynamic MR image series. Magn Reson Med 52:420–429PubMedCrossRefGoogle Scholar
  20. Buxton RB (2009a) Contrast agent techniques. Introduction to functional magnetic resonance imaging, 2nd edn. Cambridge University press, CambridgeCrossRefGoogle Scholar
  21. Buxton RB (2009b) Arterial spin labeling techniques. Introduction to functional magnetic resonance imaging, 2nd edn. Cambridge University press, CambridgeCrossRefGoogle Scholar
  22. Buxton RB, Frank LR, Wong EC et al (1998) A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 40:383–396PubMedCrossRefGoogle Scholar
  23. Calamante F (2005) Bolus dispersion issues related to the quantification of perfusion MRI data. J Magn Reson Imaging 22:718–722PubMedCrossRefGoogle Scholar
  24. Calamante F, Gadian DG, Connelly A (2000) Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med 44:466–473PubMedCrossRefGoogle Scholar
  25. Calamante F, Gadian DG, Connelly A (2002) Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke: assumptions, limitations, and potential implications for clinical use. Stroke 33:1146–1151PubMedCrossRefGoogle Scholar
  26. Calamante F, Morup M, Hansen LK (2004) Defining a local arterial input function for perfusion MRI using independent component analysis. Magn Reson Med 52:789–797PubMedCrossRefGoogle Scholar
  27. Caravan P, Ellison JJ, McMurry TJ et al (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99:2293–2352PubMedCrossRefGoogle Scholar
  28. Caseiras GB, Chheang S, Babb J et al (2010) Relative cerebral blood volume measurements of low-grade gliomas predict patient outcome in a multi-institution setting. Eur J Radiol 73:215–220PubMedCrossRefGoogle Scholar
  29. Cha S (2004) Perfusion MR imaging of brain tumors. Top Magn Reson Imaging 15:279–289PubMedCrossRefGoogle Scholar
  30. Cha S, Johnson G, Wadghiri YZ et al (2003) Dynamic, contrast-enhanced perfusion MRI in mouse gliomas: correlation with histopathology. Magn Reson Med 49:848–855PubMedCrossRefGoogle Scholar
  31. Cha S, Tihan T, Crawford F et al (2005) Differentiation of low-grade oligodendrogliomas from low-grade astrocytomas by using quantitative blood-volume measurements derived from dynamic susceptibility contrast-enhanced MR imaging. Am J Neuroradiol 26:266–273PubMedGoogle Scholar
  32. Chalela JA, Alsop DC, Gonzalez-Atavales JB et al (2000) Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke 31:680–687PubMedCrossRefGoogle Scholar
  33. Choi YJ, Kim HS, Jahng GH et al (2013) Pseudoprogression in patients with glioblastoma: added value of arterial spin labeling to dynamic susceptibility contrast perfusion MR imaging. Acta Radiol 55(3):361–369Google Scholar
  34. Darpolor MM, Molthen RC, Schmainda KM (2011) Multimodality imaging of abnormal vascular perfusion and morphology in preclinical 9L gliosarcoma model. PLoS One 6:e16621PubMedPubMedCentralCrossRefGoogle Scholar
  35. Deibler AR, Pollock JM, Kraft RA et al (2008) Arterial spin-labeling in routine clinical practice, part 1: technique and artifacts. Am J Neuroradiol 29:1228–1234PubMedCrossRefPubMedCentralGoogle Scholar
  36. Deichmann R (2005) Fast high-resolution T1 mapping of the human brain. Magn Reson Med 54:20–27PubMedCrossRefGoogle Scholar
  37. Deshmane A, Gulani V, Griswold MA et al (2012) Parallel MR imaging. J Magn Reson Imaging 36:55–72PubMedPubMedCentralCrossRefGoogle Scholar
  38. Detre JA, Leigh JS, Williams DS et al (1992) Perfusion imaging. Magn Reson Med 23:37–45PubMedCrossRefGoogle Scholar
  39. Donahue KM, Weisskoff RM, Chesler DA et al (1996) Improving MR quantification of regional blood volume with intravascular T1 contrast agents: accuracy, precision, and water exchange. Magn Reson Med 36:858–867PubMedCrossRefGoogle Scholar
  40. Donahue KM, Krouwer HG, Rand SD et al (2000) Utility of simultaneously acquired gradient-echo and spin-echo cerebral blood volume and morphology maps in brain tumor patients. Magn Reson Med 43:845–853PubMedCrossRefGoogle Scholar
  41. Duhamel G, Schlaug G, Alsop DC (2006) Measurement of arterial input functions for dynamic susceptibility contrast magnetic resonance imaging using echoplanar images: comparison of physical simulations with in vivo results. Magn Reson Med 55:514–523PubMedCrossRefGoogle Scholar
  42. Edelman RR, Siewert B, Adamis M et al (1994) Signal targeting with alternating radiofrequency (STAR) sequences: application to MR angiography. Magn Reson Med 31:233–238PubMedCrossRefGoogle Scholar
  43. Essig M, Wenz F, Scholdei R et al (2002) Dynamic susceptibility contrast-enhanced echo-planar imaging of cerebral gliomas. Effect of contrast medium extravasation. Acta Radiol 43:354–359PubMedCrossRefGoogle Scholar
  44. Faehndrich J, Weidauer S, Pilatus U et al (2011) Neuroradiological viewpoint on the diagnostics of space-occupying brain lesions. Clin Neuroradiol 21:123–139PubMedCrossRefGoogle Scholar
  45. Fatterpekar GM, Galheigo D, Narayana A et al (2012) Treatment-related change versus tumor recurrence in high-grade gliomas: a diagnostic conundrum–use of dynamic susceptibility contrast-enhanced (DSC) perfusion MRI. Am J Roentgenol 198:19–26CrossRefGoogle Scholar
  46. Folkerth RD (2004) Histologic measures of angiogenesis in human primary brain tumors. Cancer Treat Res 117:79–95PubMedCrossRefGoogle Scholar
  47. Frackowiak RS, Lenzi GL, Jones T et al (1980) Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr 4:727–736PubMedCrossRefGoogle Scholar
  48. Fuss M, Wenz F, Scholdei R et al (2000) Radiation-induced regional cerebral blood volume (rCBV) changes in normal brain and low-grade astrocytomas: quantification and time and dose-dependent occurrence. Int J Radiat Oncol Biol Phys 48:53–58PubMedCrossRefGoogle Scholar
  49. Garcia DM, Duhamel G, Alsop DC (2005) Efficiency of inversion pulses for background suppressed arterial spin labeling. Magn Reson Med 54:366–372PubMedCrossRefGoogle Scholar
  50. Gempt J, Förschler A, Buchmann N et al (2013a) Postoperative ischemic changes following resection of newly diagnosed and recurrent gliomas and their clinical relevance. J Neurosurg 118:801–808PubMedCrossRefGoogle Scholar
  51. Gempt J, Gerhardt J, Toth V et al (2013b) Postoperative ischemic changes following brain metastasis resection as measured by diffusion-weighted magnetic resonance imaging. J Neurosurg 3(5):437–445Google Scholar
  52. Golay X, Petersen ET (2006) Arterial spin labeling: benefits and pitfalls of high magnetic field. Neuroimaging Clin N Am 16:259–268, xGoogle Scholar
  53. Golay X, Hendrikse J, Lim TC (2004) Perfusion imaging using arterial spin labeling. Top Magn Reson Imaging 15:10–27PubMedCrossRefGoogle Scholar
  54. Golay X, Petersen ET, Hui F (2005) Pulsed star labeling of arterial regions (PULSAR): a robust regional perfusion technique for high field imaging. Magn Reson Med 53:15–21PubMedCrossRefGoogle Scholar
  55. Grosu AL, Souvatzoglou M, Röper B et al (2007) Hypoxia imaging with FAZA-PET and theoretical considerations with regard to dose painting for individualization of radiotherapy in patients with head and neck cancer. Int J Radiat Oncol Biol Phys 69:541–551PubMedCrossRefGoogle Scholar
  56. Gunther M, Bock M, Schad LR (2001) Arterial spin labeling in combination with a look-locker sampling strategy: inflow turbo-sampling EPI-FAIR (ITS-FAIR). Magn Reson Med 46:974–984PubMedCrossRefGoogle Scholar
  57. Hakyemez B, Erdogan C, Ercan I et al (2005) High-grade and low-grade gliomas: differentiation by using perfusion MR imaging. Clin Radiol 60:493–502PubMedCrossRefGoogle Scholar
  58. Hardee ME, Zagzag D (2012) Mechanisms of glioma-associated neovascularization. Am J Pathol 181:1126–1141PubMedPubMedCentralCrossRefGoogle Scholar
  59. Harrer JU, Parker GJ, Haroon HA et al (2004) Comparative study of methods for determining vascular permeability and blood volume in human gliomas. J Magn Reson Imaging 20:748–757PubMedCrossRefGoogle Scholar
  60. Hattingen E, Blasel S, Dettmann E et al (2008) Perfusion-weighted MRI to evaluate cerebral autoregulation in aneurysmal subarach-noid haemorrhage. Neuroradiology 50:929–938PubMedCrossRefGoogle Scholar
  61. Heiland S, Benner T, Debus J et al (1999) Simultaneous assessment of cerebral hemodynamics and contrast agent uptake in lesions with disrupted blood–brain-barrier. Magn Reson Imaging 17:21–27PubMedCrossRefGoogle Scholar
  62. Heiland S, Wick W, Bendszus M (2010) Perfusion magnetic resonance imaging for parametric response maps in tumors: is it really that easy? J Clin Oncol 28:e591 (author reply e592)Google Scholar
  63. Helle M, Rufer S, van Osch MJ et al (2012) Selective multivessel labeling approach for perfusion territory imaging in pseudo-continuous arterial spin labeling. Magn Reson Med 68:214–219PubMedCrossRefGoogle Scholar
  64. Henderson E, McKinnon G, Lee TY et al (1999) A fast 3D look-locker method for volumetric T1 mapping. Magn Reson Imaging 17:1163–1171PubMedCrossRefGoogle Scholar
  65. Henderson E, Sykes J, Drost D et al (2000) Simultaneous MRI measurement of blood flow, blood volume, and capillary permeability in mammary tumors using two different contrast agents. J Magn Reson Imaging 12:991–1003PubMedCrossRefGoogle Scholar
  66. Hendrick RE, Haacke EM (1993) Basic physics of MR contrast agents and maximization of image contrast. J Magn Reson Imaging 3:137–148PubMedCrossRefGoogle Scholar
  67. Heymann MA, Payne BD, Hoffman JI et al (1977) Blood flow measurements with radionuclide-labeled particles. Prog Cardiovasc Dis 20:55–79PubMedCrossRefGoogle Scholar
  68. Hu LS, Baxter LC, Smith KA et al (2009) Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. Am J Neuroradiol 30:552–558PubMedCrossRefGoogle Scholar
  69. Jarnum H, Steffensen EG, Knutsson L et al (2010) Perfusion MRI of brain tumours: a comparative study of pseudo-continuous arterial spin labelling and dynamic susceptibility contrast imaging. Neuroradiology 52:307–317PubMedPubMedCentralCrossRefGoogle Scholar
  70. Johnson KM, Tao JZ, Kennan RP et al (2000) Intravascular susceptibility agent effects on tissue transverse relaxation rates in vivo. Magn Reson Med 44:909–914PubMedCrossRefGoogle Scholar
  71. Johnson G, Wetzel SG, Cha S et al (2004) Measuring blood volume and vascular transfer constant from dynamic, T(2)*-weighted contrast-enhanced MRI. Magn Reson Med 51:961–968PubMedCrossRefGoogle Scholar
  72. Ken S, Vieillevigne L, Franceries X et al (2013) Integration method of 3D MR spectroscopy into treatment planning system for glioblastoma IMRT dose painting with integrated simultaneous boost. Radiat Oncol 8:1PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kety SS (1951) The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol Rev 3:1–41PubMedGoogle Scholar
  74. Kim SG (1995) Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 34:293–301PubMedCrossRefGoogle Scholar
  75. Kiselev VG (2001) On the theoretical basis of perfusion measurements by dynamic susceptibility contrast MRI. Magn Reson Med 46:1113–1122PubMedCrossRefGoogle Scholar
  76. Kiselev VG (2005) Transverse relaxation effect of MRI contrast agents: a crucial issue for quantitative measurements of cerebral perfusion. J Magn Reson Imaging 22:693–696PubMedCrossRefGoogle Scholar
  77. Kiselev VG, Strecker R, Ziyeh S et al (2005) Vessel size imaging in humans. Magn Reson Med 53:553–563PubMedCrossRefGoogle Scholar
  78. Kjolby BF, Ostergaard L, Kiselev VG (2006) Theoretical model of intravascular paramagnetic tracers effect on tissue relaxation. Magn Reson Med 56:187–197PubMedCrossRefGoogle Scholar
  79. Knopp EA, Cha S, Johnson G et al (1999) Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 211:791–798PubMedCrossRefGoogle Scholar
  80. Ko L, Salluzzi M, Frayne R et al (2007) Reexamining the quantification of perfusion MRI data in the presence of bolus dispersion. J Magn Reson Imaging 25:639–643PubMedCrossRefGoogle Scholar
  81. Kwong KK, Belliveau JW, Chesler DA et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 89:5675–5679PubMedPubMedCentralCrossRefGoogle Scholar
  82. Kwong KK, Chesler DA, Weisskoff RM et al (1995) MR perfusion studies with T1-weighted echo planar imaging. Magn Reson Med 34:878–887PubMedCrossRefGoogle Scholar
  83. Landis CS, Li X, Telang FW et al (2000) Determination of the MRI contrast agent concentration time course in vivo following bolus injection: effect of equilibrium transcytolemmal water exchange. Magn Reson Med 44:563–574PubMedCrossRefGoogle Scholar
  84. Larsen VA, Simonsen HJ, Law I et al (2013) Evaluation of dynamic contrast-enhanced T1-weighted perfusion MRI in the differentiation of tumor recurrence from radiation necrosis. Neuroradiology (Epub ahead of print) 55(3):361–369Google Scholar
  85. Larsson HB, Stubgaard M, Frederiksen JL et al (1990) Quantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors. Magn Reson Med 16:117–131PubMedCrossRefGoogle Scholar
  86. Larsson HB, Hansen AE, Berg HK et al (2008) Dynamic contrastenhanced quantitative perfusion measurement of the brain using T1-weighted MRI at 3 T. J Magn Reson Imaging 27:754–762PubMedCrossRefGoogle Scholar
  87. Larsson HB, Courivaud F, Rostrup E et al (2009) Measurement of brain perfusion, blood volume, and blood-brain barrier permeability, using dynamic contrast-enhanced T(1)-weighted MRI at 3 tesla. Magn Reson Med 62:1270–1281PubMedCrossRefGoogle Scholar
  88. Law M, Cha S, Knopp EA et al (2002) High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology 222:715–721PubMedCrossRefGoogle Scholar
  89. Law M, Yang S, Babb JS et al (2004) Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. Am J Neuroradiol 25:746–755PubMedGoogle Scholar
  90. Law M, Young R, Babb J et al (2006) Comparing perfusion metrics obtained from a single compartment versus pharmacokinetic modeling methods using dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. Am J Neuroradiol 27:1975–1982PubMedGoogle Scholar
  91. Law M, Young R, Babb J et al (2007) Histogram analysis versus region of interest analysis of dynamic susceptibility contrast perfusion MR imaging data in the grading of cerebral gliomas. Am J Neuroradiol 28:761–766PubMedGoogle Scholar
  92. Law M, Young RJ, Babb JS et al (2008) Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 247:490–498PubMedPubMedCentralCrossRefGoogle Scholar
  93. Le Bihan D (1992) Theoretical principles of perfusion imaging. Application to magnetic resonance imaging. Invest Radiol 27(Suppl 2):S6–11PubMedCrossRefGoogle Scholar
  94. Lee MC, Cha S, Chang SM et al (2005) Dynamic susceptibility contrast perfusion imaging of radiation effects in normal-appearing MR Perfusion Imaging brain tissue: changes in the first-pass and recirculation phases. J Magn Reson Imaging 21:683–693PubMedCrossRefGoogle Scholar
  95. Lemasson B, Valable S, Farion R et al (2013) In vivo imaging of vessel diameter, size, and density: a comparative study between MRI and histology. Magn Reson Med 69:18–26PubMedCrossRefGoogle Scholar
  96. Leon SP, Folkerth RD, Black PM (1996) Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer 77:362–372PubMedCrossRefGoogle Scholar
  97. Lev MH, Ozsunar Y, Henson JW et al (2004) Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas (corrected). Am J Neuroradiol 25:214–221PubMedGoogle Scholar
  98. Levy LM (2005) What is right about MRI permeability studies. Am J Neuroradiol 26:3–4PubMedGoogle Scholar
  99. Li X, Rooney WD, Varallyay CG et al (2010) Dynamic-contrast-enhanced-MRI with extravasating contrast reagent: rat cerebral glioma blood volume determination. J Magn Reson 206:190–199PubMedPubMedCentralCrossRefGoogle Scholar
  100. Li KL, Buonaccorsi G, Thompson G et al (2012) An improved coverage and spatial resolution—using dual injection dynamic contrast-enhanced (ICE-DICE) MRI: a novel dynamic contrast-enhanced technique for cerebral tumors. Magn Reson Med 68:452–462PubMedCrossRefGoogle Scholar
  101. Liao W, Liu Y, Wang X et al (2009) Differentiation of primary central nervous system lymphoma and high-grade glioma with dynamic susceptibility contrast—enhanced perfusion magnetic resonance imaging. Acta Radiol 50:217–225PubMedCrossRefGoogle Scholar
  102. Lu H, Law M, Johnson G et al (2005) Novel approach to the measurement of absolute cerebral blood volume using vascularspace-occupancy magnetic resonance imaging. Magn Reson Med 54:1403–1411PubMedCrossRefGoogle Scholar
  103. Luh WM, Wong EC, Bandettini PA et al (1999) QUIPSS II with thinslice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling. Magn Reson Med 41:1246–1254PubMedCrossRefGoogle Scholar
  104. Lupo JM, Cha S, Chang SM et al (2005) Dynamic susceptibility-weighted perfusion imaging of high-grade gliomas: characterization of spatial heterogeneity. Am J Neuroradiol 26:1446–1454PubMedGoogle Scholar
  105. Majchrzak K, Kaspera W, Bobek-Billewicz B et al (2012) The assessment of prognostic factors in surgical treatment of low-grade gliomas: a prospective study. Clin Neurol Neurosurg 114:1135–1144PubMedCrossRefGoogle Scholar
  106. Mani S, Pauly J, Conolly S et al (1997) Background suppression with multiple inversion recovery nulling: applications to projective angiography. Magn Reson Med 37:898–905PubMedCrossRefGoogle Scholar
  107. McGehee BE, Pollock JM, Maldjian JA (2012) Brain perfusion imaging: how does it work and what should I use? J Magn Reson Imaging 36:1257PubMedCrossRefGoogle Scholar
  108. McLaughlin AC, Ye FQ, Pekar JJ et al (1997) Effect of magnetization transfer on the measurement of cerebral blood flow using steady-state arterial spin tagging approaches: a theoretical investigation. Magn Reson Med 37:501–510PubMedCrossRefGoogle Scholar
  109. Meier P, Zierler KL (1954) On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 6:731–744PubMedGoogle Scholar
  110. Mills SJ, Thompson G, Jackson A (2012) Advanced magnetic resonance imaging biomarkers of cerebral metastases. Cancer Imaging 12:245–252PubMedPubMedCentralCrossRefGoogle Scholar
  111. Miyati T, Banno T, Mase M et al (1997) Dual dynamic contrast-enhanced MR imaging. J Magn Reson Imaging 7:230–235PubMedCrossRefGoogle Scholar
  112. O’Connor JP, Jackson A, Parker GJ et al (2007) DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br J Cancer 96:189–195PubMedPubMedCentralCrossRefGoogle Scholar
  113. Ostergaard L (2004) Cerebral perfusion imaging by bolus tracking. Top Magn Reson Imaging 15:3–9PubMedCrossRefGoogle Scholar
  114. Ostergaard L (2005) Principles of cerebral perfusion imaging by bolus tracking. J Magn Reson Imaging 22:710–717PubMedCrossRefGoogle Scholar
  115. Ostergaard L, Sorensen AG, Kwong KK et al (1996a) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: experimental comparison and preliminary results. Magn Reson Med 36:726–736PubMedCrossRefGoogle Scholar
  116. Ostergaard L, Weisskoff RM, Chesler DA et al (1996b) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med 36:715–725PubMedCrossRefGoogle Scholar
  117. Ostergaard L, Hochberg FH, Rabinov JD et al (1999) Early changes measured by magnetic resonance imaging in cerebral blood flow, blood volume, and blood-brain barrier permeability following dexamethasone treatment in patients with brain tumors. J Neurosurg 90:300–305PubMedCrossRefGoogle Scholar
  118. Paiva FF, Tannus A, Silva AC (2007) Measurement of cerebral perfusion territories using arterial spin labelling. NMR Biomed 20:633–642PubMedCrossRefGoogle Scholar
  119. Paiva FF, Tannus A, Talagala SL et al (2008) Arterial spin labeling of cerebral perfusion territories using a separate labeling coil. J Magn Reson Imaging 27:970–977PubMedCrossRefGoogle Scholar
  120. Parkes LM (2005) Quantification of cerebral perfusion using arterial spin labeling: two-compartment models. J Magn Reson Imaging 22:732–736PubMedCrossRefGoogle Scholar
  121. Parkes LM, Tofts PS (2002) Improved accuracy of human cerebral blood perfusion measurements using arterial spin labeling: accounting for capillary water permeability. Magn Reson Med 48:27–41PubMedCrossRefGoogle Scholar
  122. Paulson ES, Schmainda KM (2008) Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors. Radiology 249:601–613PubMedPubMedCentralCrossRefGoogle Scholar
  123. Pekar J, Jezzard P, Roberts DA et al (1996) Perfusion imaging with compensation for asymmetric magnetization transfer effects. Magn Reson Med 35:70–79PubMedCrossRefGoogle Scholar
  124. Perfusion Study Group ISMRM (2013)
  125. Petersen ET, Zimine I, Ho YC et al (2006a) Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniques. Br J Radiol 79:688–701PubMedCrossRefGoogle Scholar
  126. Petersen ET, Lim T, Golay X (2006b) Model-free arterial spin labeling quantification approach for perfusion MRI. Magn Reson Med 55:219–232PubMedCrossRefGoogle Scholar
  127. Petersen ET, Mouridsen K, Golay X (2010) The QUASAR reproducibility study, Part II: results from a multi-center arterial spin labeling test-retest study. Neuroimage 49:104–113PubMedPubMedCentralCrossRefGoogle Scholar
  128. Pradel C, Siauve N, Bruneteau G et al (2003) Reduced capillary perfusion and permeability in human tumour xenografts treated with the VEGF signalling inhibitor ZD4190: an in vivo assessment using dynamic MR imaging and macromolecular contrast media. Magn Reson Imaging 21:845–851PubMedCrossRefGoogle Scholar
  129. Preibisch C, Deichmann R (2009) Influence of RF spoiling on the stability and accuracy of T1 mapping based on spoiled FLASH with varying flip angles. Magn Reson Med 61:125–135PubMedCrossRefGoogle Scholar
  130. Quarles CC, Ward BD, Schmainda KM (2005) Improving the reliability of obtaining tumor hemodynamic parameters in the presence of contrast agent extravasation. Magn Reson Med 53:1307–1316PubMedCrossRefGoogle Scholar
  131. Quarles CC, Gochberg DF, Gore JC et al (2009) A theoretical framework to model DSC-MRI data acquired in the presence of contrast agent extravasation. Phys Med Biol 54:5749–5766PubMedPubMedCentralCrossRefGoogle Scholar
  132. Raichle ME, Martin WR, Herscovitch P et al (1983) Brain blood flow measured with intravenous H2(15)O. II. Implementation and validation. J Nucl Med 24:790–798PubMedGoogle Scholar
  133. Roberts C, Issa B, Stone A et al (2006) Comparative study into the robustness of compartmental modeling and model-free analysis in DCE-MRI studies. J Magn Reson Imaging 23:554–563PubMedCrossRefGoogle Scholar
  134. Rosen BR, Belliveau JW, Vevea JM et al (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14:249–265PubMedCrossRefGoogle Scholar
  135. Roy B, Gupta RK, Maudsley AA et al (2013) Utility of multiparametric 3-T MRI for glioma characterization. Neuroradiology 55:603–613PubMedPubMedCentralCrossRefGoogle Scholar
  136. Sanz-Requena R, Revert-Ventura A, Martí-Bonmatí L et al (2013) Quantitative MR perfusion parameters related to survival time in high-grade gliomas. Eur Radiol 23(12):3456–3465PubMedCrossRefGoogle Scholar
  137. Schmainda KM, Rand SD, Joseph AM et al (2004) Characterization of a first-pass gradient-echo spin-echo method to predict brain tumor grade and angiogenesis. Am J Neuroradiol 25:1524–1532PubMedGoogle Scholar
  138. Schwarzbauer C, Morrissey SP, Deichmann R et al (1997) Quantitative magnetic resonance imaging of capillary water permeability and regional blood volume with an intravascular MR contrast agent. Magn Reson Med 37:769–777PubMedCrossRefGoogle Scholar
  139. Shen Q, Duong TQ (2011) Background suppression in arterial spin labeling MRI with a separate neck labeling coil. NMR Biomed 24:1111–1118PubMedPubMedCentralCrossRefGoogle Scholar
  140. Shin JH, Lee HK, Kwun BD et al (2002) Using relative cerebral blood flow and volume to evaluate the histopathologic grade of cerebral gliomas: preliminary results. Am J Roentgenol 179:783–789CrossRefGoogle Scholar
  141. Silva AC, Kim SG (1999) Pseudo-continuous arterial spin labeling technique for measuring CBF dynamics with high temporal resolution. Magn Reson Med 42:425–429PubMedCrossRefGoogle Scholar
  142. Smith JS, Cha S, Mayo MC et al (2005) Serial diffusion-weighted magnetic resonance imaging in cases of glioma: distinguishing tumor recurrence from postresection injury. J Neurosurg 103:428–438PubMedCrossRefGoogle Scholar
  143. Soda Y, Myskiw C, Rommel A et al (2013) Mechanisms of neovascularization and resistance to anti-angiogenic therapies in glioblastoma multiforme. J Mol Med (Berl) 91:439–448CrossRefGoogle Scholar
  144. Sourbron S (2010) Technical aspects of MR perfusion. Eur J Radiol 76:304–313PubMedCrossRefGoogle Scholar
  145. Sourbron SP, Buckley DL (2011) On the scope and interpretation of the Tofts models for DCE-MRI. Magn Reson Med 66:735–745PubMedCrossRefGoogle Scholar
  146. Sourbron SP, Buckley DL (2012) Tracer kinetic modelling in MRI: estimating perfusion and capillary permeability. Phys Med Biol 57:R1–R33PubMedCrossRefGoogle Scholar
  147. Sourbron SP, Buckley DL (2013) Classic models for dynamic contrast-enhanced MRI. NMR Biomed 26:1004–1027PubMedCrossRefGoogle Scholar
  148. Sourbron S, Ingrisch M, Siefert A et al (2009) Quantification of cerebral blood flow, cerebral blood volume, and blood–brain-barrier leakage with DCE-MRI. Magn Reson Med 62:205–217PubMedCrossRefGoogle Scholar
  149. Speck O, Chang L, DeSilva NM et al (2000) Perfusion MRI of the human brain with dynamic susceptibility contrast: gradient-echo versus spin-echo techniques. J Magn Reson Imaging 12:381–387PubMedCrossRefGoogle Scholar
  150. St Lawrence KS, Wang J (2005) Effects of the apparent transverse relaxation time on cerebral blood flow measurements obtained by arterial spin labeling. Magn Reson Med 53:425–433PubMedCrossRefGoogle Scholar
  151. Stewart GN (1894) Researches on the circulation time in organs and on the influences which affect it. Parts I–III. J Physiol 15:1–89CrossRefGoogle Scholar
  152. Sugahara T, Korogi Y, Tomiguchi S et al (2000) Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. Am J Neuroradiol 21:901–909PubMedGoogle Scholar
  153. Sundgren PC, Cao Y (2009) Brain irradiation: effects on normal brain parenchyma and radiation injury. Neuroimaging Clin N Am 19:657–668PubMedCrossRefGoogle Scholar
  154. Talagala SL, Ye FQ, Ledden PJ et al (2004) Whole-brain 3D perfusion MRI at 3.0 T using CASL with a separate labeling coil. Magn Reson Med 52:131–140PubMedCrossRefGoogle Scholar
  155. Ter-Pogossian MM, Herscovitch P (1985) Radioactive oxygen-15 in the study of cerebral blood flow, blood volume, and oxygen metabolism. Semin Nucl Med 15:377–394PubMedCrossRefGoogle Scholar
  156. Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 7:91–101PubMedCrossRefGoogle Scholar
  157. Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17:357–367PubMedCrossRefGoogle Scholar
  158. Tofts PS, Brix G, Buckley DL et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232PubMedCrossRefGoogle Scholar
  159. Turner R, Le Bihan D, Chesnick AS (1991) Echo-planar imaging of diffusion and perfusion. Magn Reson Med 19:247–253PubMedCrossRefGoogle Scholar
  160. Uematsu H, Maeda M (2006) Double-echo perfusion-weighted MR imaging: basic concepts and application in brain tumors for the assessment of tumor blood volume and vascular permeability. Eur Radiol 16:180–186PubMedCrossRefGoogle Scholar
  161. Uematsu H, Maeda M, Sadato N et al (2000) Vascular permeability: quantitative measurement with double-echo dynamic MR imagingtheory and clinical application. Radiology 214:912–917PubMedCrossRefGoogle Scholar
  162. van Laar PJ, van der Grond J, Hendrikse J (2008) Brain perfusion territory imaging: methods and clinical applications of selective arterial spin-labeling MR imaging. Radiology 246:354–364PubMedCrossRefGoogle Scholar
  163. Varallyay CG, Nesbit E, Fu R et al (2013) High-resolution steady-state cerebral blood volume maps in patients with central nervous system neoplasms using ferumoxytol, a superparamagnetic iron oxide nanoparticle. J Cereb Blood Flow Metab 33:780–786PubMedPubMedCentralCrossRefGoogle Scholar
  164. Vidiri A, Pace A, Fabi A et al (2012) Early perfusion changes in patients with recurrent high-grade brain tumor treated with Bevacizumab: preliminary results by a quantitative evaluation. J Exp Clin Cancer Res 31:33PubMedPubMedCentralCrossRefGoogle Scholar
  165. Villringer A, Rosen BR, Belliveau JW et al (1988) Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med 6:164–174PubMedCrossRefGoogle Scholar
  166. Vonken EP, van Osch MJ, Bakker CJ et al (2000) Simultaneous quantitative cerebral perfusion and Gd-DTPA extravasation measurement with dual-echo dynamic susceptibility contrast MRI. Magn Reson Med 43:820–827PubMedCrossRefGoogle Scholar
  167. Wagner M, Nafe R, Jurcoane A et al (2011) Heterogeneity in malignant gliomas: a magnetic resonance analysis of spatial distribution of metabolite changes and regional blood volume. J Neurooncol 103:663–672PubMedCrossRefGoogle Scholar
  168. Wang J, Qiu M, Constable RT (2005) In vivo method for correcting transmit/receive nonuniformities with phased array coils. Magn Reson Med 53:666–674PubMedCrossRefGoogle Scholar
  169. Warmuth C, Gunther M, Zimmer C (2003) Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology 228:523–532PubMedCrossRefGoogle Scholar
  170. Wen PY, Macdonald DR, Reardon DA et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972PubMedCrossRefGoogle Scholar
  171. Williams DS (2006) Quantitative perfusion imaging using arterial spin labeling. Methods Mol Med 124:151–173PubMedGoogle Scholar
  172. Wirestam R, Knutsson L, Risberg J et al (2007) Attempts to improve absolute quantification of cerebral blood flow in dynamic susceptibility contrast magnetic resonance imaging: a simplified T1-weighted steady-state cerebral blood volume approach. Acta Radiol 48:550–556PubMedCrossRefGoogle Scholar
  173. Wong EC, Buxton RB, Frank LR (1997) Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 10:237–249PubMedCrossRefGoogle Scholar
  174. Wong EC, Buxton RB, Frank LR (1998) Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med 39:702–708PubMedCrossRefGoogle Scholar
  175. Wu WC, Fernandez-Seara M, Detre JA et al (2007) A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling. Magn Reson Med 58:1020–1027PubMedCrossRefGoogle Scholar
  176. Wu WC, St Lawrence KS, Licht DJ et al (2010) Quantification issues in arterial spin labeling perfusion magnetic resonance imaging. Top Magn Reson Imaging 21:65–73PubMedCrossRefGoogle Scholar
  177. Yankeelov TE, Gore JC (2009) Dynamic contrast enhanced magnetic resonance imaging in oncology: theory, data acquisition, analysis, and examples. Curr Med Imaging Rev 3:91–107PubMedPubMedCentralCrossRefGoogle Scholar
  178. Yankeelov TE, Rooney WD, Li X et al (2003) Variation of the relaxographic “shutter-speed” for transcytolemmal water exchange affects the CR bolus-tracking curve shape. Magn Reson Med 50:1151–1169PubMedCrossRefGoogle Scholar
  179. Ye FQ, Frank JA, Weinberger DR et al (2000) Noise reduction in 3D perfusion imaging by attenuating the static signal in arterial spin tagging (ASSIST). Magn Reson Med 44:92–100PubMedCrossRefGoogle Scholar
  180. Zacharaki EI, Wang S, Chawla S et al (2009) Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn Reson Med 62:1609–1618PubMedPubMedCentralCrossRefGoogle Scholar
  181. Zhang W, Williams DS, Detre JA et al (1992) Measurement of brain perfusion by volume-localized NMR spectroscopy using inversion of arterial water spins: accounting for transit time and cross-relaxation. Magn Reson Med 25:362–371PubMedCrossRefGoogle Scholar
  182. Zhang W, Williams DS, Koretsky AP (1993) Measurement of rat brain perfusion by NMR using spin labeling of arterial water: in vivo determination of the degree of spin labeling. Magn Reson Med 29:416–421PubMedCrossRefGoogle Scholar
  183. Zhang N, Zhang L, Qiu B et al (2012) Correlation of volume transfer coefficient K trans with histopathologic grades of gliomas. J Magn Reson Imaging 36:355–363PubMedPubMedCentralCrossRefGoogle Scholar
  184. Zhu DC, Penn RD (2005) Full-brain T1 mapping through inversion recovery fast spin echo imaging with time-efficient slice ordering. Magn Reson Med 54:725–731PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christine Preibisch
    • 1
  • Vivien Tóth
    • 1
  • Claus Zimmer
    • 1
  1. 1.Department of Neuroradiology, Klinikum Rechts der IsarTU MunichMunichGermany

Personalised recommendations