Generator-Based Radiopharmaceuticals for PET Dosimetry Before, During, and After Endoradiotherapy

Part of the Medical Radiology book series (MEDRAD)


Generator-derived radionuclides for PET/CT imaging are promising for optimizing targeted radiotherapy by an individual patient-based approach, applying pre-therapeutic evaluation, dosimetric calculations, and for measuring treatment response after radionuclide therapy. To realize this vision, sophisticated nuclear chemistry and radiopharmaceutical chemistry should coincide with quantitative molecular imaging and dosimetric calculations.


44Sc Generator Daughter Nuclide Daughter Radionuclide Radionuclide Generator Parent Nuclide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



F. Roesch would like to thank the European Commission by supporting COST actions D18, D38, and BM0607 and the many colleagues involved in these networks for collaborating on the various 68 Ga projects.


  1. Asti M, De Pietri G, Fraternali A, Grassi E, Sghedoni R, Fioroni F, Roesch F, Versari A, Salvo D (2008) Validation of 68Ge/68Ga generator processing by chemical purification for routine clinical application of 68Ga-DOTATOC. Nucl Med Biol 35:721Google Scholar
  2. Baum RP, Kulkarni HR, Carreras C (2012) Peptides and receptors in image-guided therapy: theranostics for neuroendocrine neoplasms. Semin Nucl Med 42:190Google Scholar
  3. Baum RP, Kulkarni HR (2012) Theranostics: from molecular imaging using Ga-68 labeled tracers and PET/CT to personalized radionuclide therapy: the Bad Berka experience. Theranostics 2(5):437Google Scholar
  4. Baum RP, Rösch F (2013) Theranostics, Gallium-68, and other radionuclides: a pathway to personalized diagnosis and treatment. Springer (ISBN 978-3-642-27993-5). Cancer Res 194 Google Scholar
  5. Bormans G, Janssen A, Adriaens P, Crombez D, Witsenboer A, Degoeij J, Mortelmans L, Verbruggen A (1992) A Zn-62/Zu-62 generator for the routine production of Cu-62-ptsm. Applied radiation and isotopes 43(12):1437–1441Google Scholar
  6. Breeman WAP, de Jong M, de Blois E, Bernard BF, Konijnenberg M, Krenning EP (2005) Radiolabelling DOTA-peptides with 68Ga. Eur J Nucl Med 32:478Google Scholar
  7. Breeman WAP, Verbruggen AM (2007) The 68Ge/68Ga generator has high potential, but when can we use 68Ga-labelled tracer in clinical routine? Eur J Nucl Med 34:978–982Google Scholar
  8. Braun G, Shulgin AT, Sargent T III (1977) Synthesis of 123I-Labelled 4-Iodo-2,5-Dimethoxyphenylisopropylamine (DOI). J Lab Comp Radiopharm 14(5):767–773Google Scholar
  9. Decristoforo C, von Guggenberg E, Haubner R, Rupprich M, Scharz S, Virgolini I (2005) Radiolabelling of DOTA-derivatised peptides with 68Ga via a direct approach – optimization and routine clinical application [abstract]. 27th International Symposium, Radioactive Isotopes in Clinical Medicine and Research, Bad Gastein, Austria, Jan 11-14, 2006. Nuklearmedizin, 6:A191Google Scholar
  10. Diksic M, Yaffe L (1977) A study of 127I(p, xn) and 127I(p, pxn) reactions with special emphasis on production of 123Xe. In: Journal of Inorganic and Nuclear Chemistry, Elsevier, Amsterdam. ISSN 0022-1902, ZDB-ID 2144356-7 39(8):1299–1302Google Scholar
  11. Fani M, André JP, Maecke H (2008) 68Ga-PET: A powerful generator-based alternative to cyclotron-based PET radiopharmaceuticals. Contr Media Molec Imag 3:67–81Google Scholar
  12. Fellner M, Baum RP, Peters JA, Lukeš I, Hermann P, Prasad V, Rösch F (2010) PET/CT imaging of osteoblastic bone metastases with 68Ga-bisphosponates - first in human study. Eur J Mol Imag Biol 37:874 Google Scholar
  13. Filosofov DV, Loktionova NS, Rösch F (2010) A 44Ti/44Sc radionuclide generator for potential application of 44Sc-based PET-radiopharmaceuticals. Radiochim Acta 98:149Google Scholar
  14. Flower MA, Zweit J, Hall AD, et al (2001) 62Cu-PTSM and PET used for the assessment of angiotensin II–induced blood flow changes in patients with colorectal liver metastases. Eur J Nucl Med 28:99–103Google Scholar
  15. Fujibayashi Y, Matsumoto K, Yonekura Y, Konishi J, Yokoyama A (1989) A new zinc-62/copper-62 generator as a copper-62 source for PET radiopharmaceuticals. J Nucl Med 30:1838Google Scholar
  16. Fujibayashi Y, Matsumoto K, Arano Y, Yonekura Y, Konishi J, Yokoyama A (1990) 62Cu-labeling of human serum albumin-dithiosemicarbazone (HSA-DTS) conjugate for regional plasma volume measurement: application of new 62Zn/62Cu generator system. Chem Pharm Bull (Tokyo) 38:1946–1948Google Scholar
  17. Fujibayashi Y, Taniuchi H, Yonekura Y, Ohtani H, Konishi J, Yokoyama A (1997) Copper-62-ATSM: A New Hypoxia Imaging Agent with High Membrane Permeability and Low Redox Potential J Nucl Med 38:1155–1160Google Scholar
  18. Fukumura T, Okada K, Suzuki H, Nakao R, Mukai K, Szelecsényi F, Kovács Z, Suzuki K (2006) An improved 62Zn/62Cu generator based on a cation exchanger and its fully remote-controlled preparation for clinical use. Nucl Med Biol 33:821–827Google Scholar
  19. Green MA, Mathias CJ, Welch MJ, McGuire AH, Perry D, Fernandez-Rubio F, Perlmutter JS, Raichle ME, and Bergmann SR (1990) Copper-62-Labeled Pyruvaldehyde Bis(N4-methylthiosemicarbazonato)copper(II): Synthesis and Evaluation as a Positron Emission Tomography Tracer for Cerebral and Myocardial Perfusion. J Nucl Med 31:1989–1996Google Scholar
  20. Greene MW, Hillman M (1967) A scandium generator. Int J Appl Radiat Isot 18: 540–541Google Scholar
  21. Haynes NG, Lacy JL, Nayak N, Martin CS, Dai D, Mathias CJ, Green MA (2000) Performance of a 62Zn/62Cu Generator in Clinical Trials of PET Perfusion Agent 62Cu-PTSM. J Nucl Med 41:309–314Google Scholar
  22. Henze M, Schuhmacher J, Dimitrakopoulou-Strauss A, et al (2004) Exceptional increase in somatostatin receptor expression in pancreatic neuroendocrine tumour, visualised with 68Ga-DOTATOC PET [image of the month]. Eur J Nucl Med Mol Imaging 31:466Google Scholar
  23. Henze M, Dimitrakopoulou-Strauss A, Milker-Zabel S, Schuhmacher J, Strauss LG, Doll J, Mäcke HR, Eisenhut M, Debus J, Haberkorn U (2005) Characterization of 68Ga-DOTA-D-Phe1-Tyr3-octreotide kinetics in patients with meningiomas. J Nucl Med 46:763Google Scholar
  24. Herrero P, Hartman JJ, Green MA, Anderson CJ, Welch MJ, Markham J, Bergmann SR (1996) Regional Myocardial Perfusion Assessed with Generator-Produced Copper-62-PTSM and PET. J Nucl Med 37:1294–1300Google Scholar
  25. Hofmann M, Maecke H, Börner AR, Weckesser E, Schöffski P, Oei ML, Schumacher J, Henze M, Heppeler A, Meyer GJ, Knapp WH (2001) Biokinetics and imaging with the somatostatin receptor PET radioligand 68Ga-DOTATOC: preliminary data. Eur J Nucl Med 28:1751–1757Google Scholar
  26. Horiguchi H, Kumahora H, Inoue H, Yoshizawa Y (1982) Excitation function of Ge(p,xnyp) reactions and production of 68Ge. Int J Appl Radiat Isot 34:1531–1535.Google Scholar
  27. IAEA (2001) Charged particle cross section database for medical radioisotope production: diagnostic radioisotopes and monitor reactions. IAEA-TECDOC-1211, International Atomic Energy Agency, Vienna.
  28. Lagunas-Solar MC, Carvacho OF, Liu B-L, Jin Y, Sun ZX (1986) Cyclotron production of high-purity 123I. 1. A revision of excitation functions, thin target and cumulative yields for 127I(p,xn) reactions. Int J Appl Radiat Isot 37:823Google Scholar
  29. Lambrecht RM, Lynn KG (1976) In: Proceedings of the 4th international. 1. Conference. Positron Annihilation. Helsinger, Denmark, August 23–26, H17Google Scholar
  30. Lubberink M, Lundqvist H, Tolmachev V (2002a) Production, PET performance and dosimetric considerations of 134 Ce/134 La, an Auger electron and positron-emitting generator for radionuclide therapy. Phys Med Biol 47:615–629Google Scholar
  31. Lubberink M, Tolmachev V, Widstrom C, Bruskin A, Lundqvist H, Westlin JE (2002b) 110-In-DTPA-D-Phe-Ocreotide for imaging of neuroendocrine tumors with PET. J NuclMed 43:1391–1397Google Scholar
  32. Ma D, Jurisson SS, Erhardt GJ, Yelon WB, Ketring AR (1993) Development of the Dy-166/Ho-166 in vivo generator for radionuclide radiotherapy. J Nucl Med 34:231Google Scholar
  33. Mathias CJ, Welch MJ, Raichle ME, Mintun MA, Lich LL, McGuire AH, Zinn KR, John EK, Green MA (1990) Evaluation of a Potential Generator-Produced PET Tracer for Cerebral Perfusion Imaging: Single-Pass Cerebral Extraction Measurements and Imaging with Radiolabeled Cu-PTSM. J Nucl Med 31:351–359Google Scholar
  34. Mathias CJ, Welch MJ, Green MA et al (1991) In vivo comparison of copper blood-pool agents: potential radiopharmaceuticals for use with copper-62. J Nucl Med 32:475–480Google Scholar
  35. Mathis CA, Sargent T III, Shulgin AT (1985) Iodine-122-Labeled Amphetamine Derivative with Potential for PET Brain Blood-Flow Studies. J Nucl Med 26:1295–1301 Google Scholar
  36. Mathis CA, Lagunas Solar MC, Sargent III T, Yano Y, Vuletich A, Harris LJ (1986) A 122Xe -> 122I generator for remote radio-iodinations. Appl Radiat Isot 37:258–260Google Scholar
  37. Mausner LF, Straub RF, Srivastava SC (1989) The in vivo Generator for radioimmunotherapy. J Lab Compds Radiopharm 26:177–178Google Scholar
  38. Meyer G-J, Mäcke HR, Schuhmacher J, Knapp WH, Hofmann M (2004) 68Ga-labelled DOTA-derivatised peptide ligands. Eur J Nucl Med 31:1097–1104Google Scholar
  39. Meyer G-J, Gielow P, Börner AR, Hofmann M, Knapp WH (2005) Ga-67 and Ga-68 labelled DOTA-derivatised peptide-ligands [abstract]. 27th International Symposium, Radioactive Isotopes in Clinical Medicine and Research, Bad Gastein, Austria, Jan 11–14, 2006. Nuklearmedizin 6:A192Google Scholar
  40. Mirza MY, Aziz A (1969) A scandium generator. Radiochim Acta 11:43–44Google Scholar
  41. Mirzadeh S, Dibartolo N, Smith SV, Lambrecht RM (1994) In: 10th international symposium radiopharmaceutical chemistry, Kyoto, 25–28 October 1994. J Lab Compds Radiopharm 276Google Scholar
  42. Mirzadeh S, Lambrecht RM (1996) Radiochemistry of germanium. J Radioanal Nucl Chem 202:7–102Google Scholar
  43. Moerlein SM, Mathis CA, Brennan KM, Budinger TF (1987) Synthesis and in vivo evaluation of 122I and 131I labelled iodoperidol, a potential agent for the tomographic assessment of cerebral perfusion. Nucl Med Biol 14:91–98Google Scholar
  44. Neirinckx RD (1977) Excitation function for the 60Ni(α,2n)62Zn reaction and production of ‘2Zn bleomycin. International Journal of Applied Radiation and Isotopes 28:808–809Google Scholar
  45. Okazawa H, Yonekura Y, Fujibayashi Y, Nishizawa S, Magata Y, Ishizu K, Tanaka F, Tsuchida T, Tamaki N, Konishi J (1994) Clinical Application and Quantitative Evaluation of Generator-Produced Copper-62-PTSM as a Brain Perfusion Tracer for PET. J Nucl Med 35:1910–1915Google Scholar
  46. Pruszyński M, Loktionova NS, Filosofov DV, Rösch F (2010) Post-elution processing of 44Ti/44Sc generator-derived 44Sc for medical application. Appl Radiat Isot 68:1636Google Scholar
  47. Pruszyński M, Majakowska A, Loktionova NS, Rösch F (2012) Radiolabeling of DOTATOC with the new generator-derived positron emitter 44Sc. Nucl Med Biol 39:993Google Scholar
  48. Rhamamoorthy N, Mani RS (1981) Preparation of a 62Zn-62Cu generator and of 61Cu following alpha particle irradiation of a nickel target. Radiochem Radioanal Lett 27:175Google Scholar
  49. Razbash AA, Sevastianov YuG, Krasnov NN, Leonov AI, Pavlekin VE (2005) Germanium-68 row of products. Proceedings of the 5th International Conference on Isotopes, 5ICI, Brussels, Belgium, April 25–29. Medimond, Bologna, 147–151Google Scholar
  50. Richards P, Ku TH (1979) The 122Xe, 122I system: A generator for the 3.62-min positron emitter, 122I. Int J Appl Radiat Isot 28:808Google Scholar
  51. Robinson GD Jr, Zielinski FW, Lee AW (1980) The Zinc-62/copper-62 generator: A convenient source of copper-62 for radiopharmaceuticals. J Appl Radiat Isot 31:111Google Scholar
  52. Rösch F, Knapp FF(Russ) (2003) Radionuclide generators. In: Vértes A, Nagy S, Klencsár Z (eds) Radiochemistry and radiopharmaceutical chemistry in life sciences. Handbook of nuclear chemistry, vol 4. Kluwer Academic Publishers, The NetherlandsGoogle Scholar
  53. Rösch F, Brockmann J, Lebedev NA, Qaim SM (2000) Production and radiochemical separation of the Auger electron emitter 140Nd. Acta Oncol 39:727Google Scholar
  54. Rösch F, Baum RP (2011) Generator-based PET radiopharmaceuticals for molecular imaging of tumours: on the way to THERANOSTICS. Dalton Trans 40(23):6104Google Scholar
  55. Rösch F, Filosofov DV (2010) Radionuclide generators using long parent radionuclides for medical applications. In: IAEA-TEC-DOC “Production, radiochemical processing and quality evaluation of Ge-68 suitable for production of a 68Ge/68Ga generator”. International Atomic Energy Agency, Vienna, ISBN 978-92-0-101110-7Google Scholar
  56. Rösch F, Riss P (2010) The renaissance of 68Ge/68Ga radionuclide generators initiates new developments in 68Ga radiopharmaceutical chemistry. Cur Top Med Chem 10:1633Google Scholar
  57. Sajjad M, Richard M (1986) Lambrecht Separation of Tracer Titanium-44 from Vanadium. Anal Chem 58:667–668Google Scholar
  58. Schuhmacher J, Maier-Borst W (1981) A new 68Ge/68Ga radioisotope generator system for production of 68Ga in dilute HCl. Int J Appl Radiat Isot 32:31Google Scholar
  59. Seidl VE, Lieser KH (1973) Die Radionuklidgeneratoren 113Sn/113mIn, 68Ge/68Ga und 44Ti/44Sc. Radiochim Acta 19:196Google Scholar
  60. Shelton ME, Green MA, Mathias CJ et al (1989) Kinetics of copper-PTSM in isolated hearts: a novel tracer for measuring blood flow with positron emission tomography. J Nucl Med 30:1843–1847Google Scholar
  61. Shelton ME, Green MA, Mathias CJ et al (1990) Assessment of regional myocardial and renal blood flow using copper-PTSM and positron emission tomography. Circulation 82:990–997Google Scholar
  62. Smith SV, Dibartolo N, Mirzadeh S, Lambrecht RM, Knapp FF Jr (1995) Hetherington [DY-166]Dysprosium/[HO-166]Holmium in-vivo Generator. Appl Radiat Isot 46:759Google Scholar
  63. Syed IB, Hosain F (1975) Appl Radiol/NM 82Google Scholar
  64. Taniuchi H, Fujibayashi Y, Yonekura Y, Konishi J, Yokoyama A (1997) Hyperfixation of Copper-62-PTSM in Rat Brain After Transient Global Ischemia. J Nucl Med 38:1130–1134Google Scholar
  65. Tarkanyi F, Qaim SM, Stocklin G, Sajjad M, RM (1991) Lambrecht Nuclear Reaction Cross Sections Relevant to the Production of the 122Xe→122I Generator System using Highly Enriched 124Xe and a Medium-Sized Cyclotron. Appl Radiat Isot 42:229Google Scholar
  66. Velikyan I, Beyer GJ, Langstrom B (2004) Microwave-supported preparation of 68Ga-bioconjugates with high¬specific radioactivity. Bioconjugate Chem 15:554–560Google Scholar
  67. Wallhaus TR, Lacy J, Whang J, Green MA, Nickles RJ, Stone CK (1998) Human biodistribution and dosimetry of the PET perfusion agent copper-62-PTSM. J Nucl Med 39:1958–1964Google Scholar
  68. Wallhaus TR, Lacy J, Stweart R, Bianco J, Green MA, Nayak N, Stone CK (2001) Copper-62 pyruvaldehyde bis(Nmethyl-thiosemicarbazone) PET imaging in the detection of coronary artery disease in humans. J Nucl Card 8:67Google Scholar
  69. Weinreich R, Schult O, Stöcklin G (1974) Production of I-123 via I-127(d,6n) X-123e(b+,ec)I-123 Process. Int J appl Radiat Isotopes 25:535Google Scholar
  70. Yagi M, Kondo K (1979) A 62Cu generator. Int J Appl Radiat Isot 30:569Google Scholar
  71. Ying-Ming Tsai, Rösch F, Novgorodov AF, Qaim SM (1997) Production of the positron-emitting indium isotope 110gIn via the 110Cd(3He,3n)110Sn → 110gIn-process. J Appl Radiat Isot 48:19Google Scholar
  72. Zaitseva NG, Rurarz E, Tchikalov MB, Vobecky M, Khalkin VA, Popinenkova LM (1994) Production Cross Sections and Yields of Long Lived 44Ti from 100 MeV Proton Bombardment of Vanadium. Radiochim Acta 65:157Google Scholar
  73. Zeisler SK, Becker DW (1999) A new method for PET imaging of tumors. Human Serum Albumin labeled with the long-lived Nd-140/Pr-140 in vivo radionuclide generator. Clin Positron Imaging 2:324Google Scholar
  74. Zhernosekov KP, Filosofov DV, Baum RP, Aschoff P, Bihl H, Razbash AA, Jahn M, Jennewein M, Rösch F (2007a) Processing of Generator-Produced 68Ga for Medical Application. J Nucl Med October 48:1741–1748Google Scholar
  75. Zhernosekov KP, Filosofov DV, Qaim SM, Rösch F (2007b) A 140Nd/140Pr radionuclide generator based on physico-chemical transitions in 140Pr complexes after electron capture decay of 140Nd-DOTA. Radiochim Acta 95:319Google Scholar
  76. Zweit J, Goodall R, Cox M, Babich JW, Potter GA, Sharma HL et al (1992) Development of a high performance zinc-62/ copper-62 radionuclide generator for positron emission tomography. Eur J Nucl Med 19:418–425Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of Nuclear ChemistryJohannes Gutenberg-University MainzMainzGermany
  2. 2.Center for Molecular Radiotherapy and Molecular ImagingENETS Center of ExcellenceZentralklinik Bad BerkaGermany

Personalised recommendations