Advertisement

Peptide Receptor Radionuclide Therapy of Neuroendocrine Tumors Expressing Somatostatin Receptors

  • Richard P. Baum
  • Harshad R. Kulkarni
Chapter
Part of the Medical Radiology book series (MEDRAD)

Abstract

Peptide receptor radionuclide therapy (PRRT) refers to the administration of radiolabeled synthetic peptides binding specifically to receptors on tumor cells with high affinity. Therapeutic radionuclides enable irradiation of tumors and their metastases ultimately by way of internalization through the receptor, over-expressed on the tumor cell membrane. Though the primary treatment of neuroendocrine tumors (NETs) is surgery with curative intent or debulking of the tumor mass, treatment with radiolabeled somatostatin (SST) analogs specifically targeting the SST-receptor 2A (SSTR 2A), is effective for the management of patients with inoperable or metastasized NETs. Objective responses are well-documented, which also benefits survival. PRRT of NETs using the agonists like DOTATOC ([DOTA0, Tyr3, Thr8]-octreotide) or DOTATATE ([DOTA0, Tyr3]-octreotate) labeled with beta-emitting radionuclides like 177Lu and 90Y or alpha-emitting radionuclides like 213Bi, has paved the way to molecular radiotherapy. As these peptides are reabsorbed by the kidneys, there is a potential risk of renal toxicity over the long term. Radiation dose to the bone marrow should also be taken into account for conceivable side effects. However, PRRT can be safely administered with renoprotective measures and a personalized approach, including individualized dosimetry to ensure that the dose to normal organs is not exceeded.

Keywords

Renal Toxicity Peptide Receptor Radionuclide Therapy Beta Particle Biologically Equivalent Dose Bone Marrow Dose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Anlauf M, Gerlach P, Raffel A et al (2011) Neuroendocrine neoplasia of the gastroenteropancreatic system. Pathology and classification. Onkologe 17:572–582CrossRefGoogle Scholar
  2. Barone R, Borson-Chazot F, Valkema R, Walrand S, Chauvin F, Gogou L, Kvols LK, Krenning EP, Jamar F, Pauwels S (2005) Patientspecific dosimetry in predicting renal toxicity with (90)Y-DOTATOC: relevance of kidney volume and dose rate in finding a dose-effect relationship. J Nucl Med 46(Suppl 1):99S–106SPubMedGoogle Scholar
  3. Bartolomei M, Bodei L, De Cicco C, Grana CM, Cremonesi M, Botteri E, Baio SM, Aricò D, Sansovini M, Paganelli G (2009) Peptide receptor radionuclide therapy with (90)Y-DOTATOC in recurrent meningioma. Eur J Nucl Med Mol Imaging 36:1407–1416PubMedCrossRefGoogle Scholar
  4. Baum RP, Kulkarni HR (2012) THERANOSTICS: from molecular imaging using Ga-68 labeled tracers and PET/CT to personalized radionuclide therapy—the Bad Berka experience. Theranostics 2:437–447PubMedCentralPubMedCrossRefGoogle Scholar
  5. Baum RP, Kulkarni HR, Carreras C (2012) Peptides and receptors in image-guided therapy: theranostics for neuroendocrine neoplasms. Semin Nucl Med 42:190–207PubMedCrossRefGoogle Scholar
  6. Bernard BF, Krenning EP, Breeman WA, Rolleman EJ, Bakker WH, Visser TJ, Mäcke H, de Jong M (1997) d-lysine reduction of indium-111 octreotide and yttrium-90 octreotide renal uptake. J Nucl Med 38:1929–1933PubMedGoogle Scholar
  7. Bodei L, Cremonesi M, Grana C et al (2004a) Receptor radionuclide therapy with 90Y-[DOTA]0-Tyr3-octreotide (90Y-DOTATOC) in neuroendocrine tumors. Eur J Nucl Med Mol Imaging 31:1038–1046PubMedCrossRefGoogle Scholar
  8. Bodei L, Handkiewicz-Junak D, Grana C, Mazzetta C, Rocca P, Bartolomei M, Lopera Sierra M, Cremonesi M, Chinol M, Mäcke HR, Paganelli G (2004) Receptor radionuclide therapy with 90Y-DOTATOC in patients with medullary thyroid carcinomas. Cancer Biother Radiopharm 19:65–71Google Scholar
  9. Bodei L, Cremonesi M, Ferrari M, Pacifici M, Grana CM, Bartolomei M, Baio SM, Sansovini M, Paganelli G (2008) Long-term evaluation of renal toxicity after peptide receptor radionuclide therapy with 90Y-DOTATOC and 177Lu-DOTATATE: the role of associated risk factors. Eur J Nucl Med Mol Imaging 35:1847–1856PubMedCrossRefGoogle Scholar
  10. Bodei L, Cremonesi M, Grana CM, Fazio N, Iodice S, Baio SM et al (2011) Peptide receptor radionuclide therapy with 177Lu-DOTATATE: the IEO phase I-II study. Eur J Nucl Med Mol Imaging 38:2125–2135PubMedCrossRefGoogle Scholar
  11. Bodei L, Mueller-Brand J, Baum RP, et al (2013) The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging 40:800–816Google Scholar
  12. Bushnell DL Jr, O’Dorisio TM, O’Dorisio MS, Menda Y, Hicks RJ, Van Cutsem E, Baulieu JL, Borson-Chazot F, Anthony L, Benson AB, Oberg K, Grossman AB, Connolly M, Bouterfa H, Li Y, Kacena KA, LaFrance N, Pauwels SA (2010) 90Y-edotreotide for metastatic carcinoid refractory to octreotide. J Clin Oncol 28:1652–1659PubMedCrossRefGoogle Scholar
  13. Campana D, Capurso G, Partelli S, Nori F, Panzuto F, Tamburrino D, Cacciari G, Delle Fave G, Falconi M, Tomassetti P (2013) Radiolabelled somatostatin analogue treatment in gastroenteropancreatic neuroendocrine tumours: factors associated with response and suggestions for therapeutic sequence. Eur J Nucl Med Mol Imaging 40:1197–1205Google Scholar
  14. Cassady JR (1995) Clinical radiation nephropathy. Int J Radiat Oncol Biol Phys 31:1249–1256PubMedCrossRefGoogle Scholar
  15. Claringbold PG, Brayshaw PA, Price RA, Turner JH (2011) Phase II study of radiopeptide 177Lu-octreotate and capecitabine therapy of progressive disseminated neuroendocrine tumours. Eur J Nucl Med Mol Imaging 38:302–311PubMedCrossRefGoogle Scholar
  16. Claringbold PG, Price RA, Turner JH (2012) Phase I-II Study of Radiopeptide 177Lu-Octreotate in Combination with Capecitabine and Temozolomide in Advanced Low Grade Neuroendocrine Tumors. Cancer Biother Radiopharm 27:561–569Google Scholar
  17. Cybulla M, Weiner SM, Otte A (2001) End-stage renal disease after treatment with 90Y-DOTATOC. Eur J Nucl Med 28:1552–1554PubMedCrossRefGoogle Scholar
  18. Dale R (2004) Use of the linear-quadratic radiobiological model for quantifying kidney response in targeted radiotherapy. Cancer Biother Radiopharm 19:363–370PubMedCrossRefGoogle Scholar
  19. Dale R, Carabe-Fernandez A (2005) The radiobiology of conventional radiotherapy and its application to radionuclide therapy. Cancer Biother Radiopharm 20:47–51PubMedCrossRefGoogle Scholar
  20. de Jong M, Bakker WH, Breeman WA et al (1998) Pre-clinical comparison of [DTPA0, Tyr3] octreotide and [DOTA0, D-Phe1, Tyr3] octreotide as carriers for somatostatin receptor-targeted scintigraphy and radionuclide therapy. Int J Cancer 75:406–411PubMedCrossRefGoogle Scholar
  21. de Jong M, Breeman WA, Valkema R, Bernard BF, Krenning EP (2005) Combination radionuclide therapy using 177Lu- and 90Y-labeled somatostatin analogs. J Nucl Med 46(Suppl 1):13S–17SPubMedGoogle Scholar
  22. Delpassand ES, Samarghandi A, Mourtada JS, Zamanian S, Espenan GD, Sharif R, Mackenzie S, Kosari K, Barakat O, Naqvi S, Seng JE, Anthony L (2012) Long-term survival, toxicity profile, and role of F-18 FDG PET/CT scan in patients with progressive neuroendocrine tumors following peptide receptor radionuclide therapy with high activity In-111 pentetreotide. Theranostics 2(5):472–480PubMedCentralPubMedCrossRefGoogle Scholar
  23. Deshpande SV, DeNardo SJ, Kukis DL et al (1990) Yttrium-90-labeled monoclonal antibody for therapy: labeling by a new macrocyclic bifunctional chelating agent. J Nucl Med 31:473–479PubMedGoogle Scholar
  24. Esser JP, Krenning EP, Teunissen JJM (2006) Comparison of [177Lu-DOTA0, Tyr3] octreotate and [177Lu-DOTA0, Tyr3] octreotide: which peptide is preferable for PRRT? Eur J Nucl Med 33:1346–1351CrossRefGoogle Scholar
  25. Ezziddin S, Opitz M, Attassi M, Biermann K, Sabet A, Guhlke S, Brockmann H, Willinek W, Wardelmann E, Biersack HJ, Ahmadzadehfar H (2011a) Impact of the Ki-67 proliferation index on response to peptide receptor radionuclide therapy. Eur J Nucl Med Mol Imaging 38:459–466PubMedCrossRefGoogle Scholar
  26. Ezziddin S, Sabet A, Heinemann F, Yong-Hing CJ, Ahmadzadehfar H, Guhlke S, Höller T, Willinek W, Boy C, Biersack HJ (2011b) Response and long-term control of bone metastases after peptide receptor radionuclide therapy with (177)Lu-octreotate. J Nucl Med 52:1197–1203PubMedCrossRefGoogle Scholar
  27. Ezziddin S, Lohmar J, Yong-Hing CJ, Sabet A, Ahmadzadehfar H, Kukuk G, Biersack HJ, Guhlke S, Reichmann K (2012) Does the pretherapeutic tumor SUV in 68 Ga DOTATOC PET predict the absorbed dose of 177Lu octreotate? Clin Nucl Med 37:e141–e147PubMedCrossRefGoogle Scholar
  28. Forrer F, Uusijärvi H, Waldherr C (2004) A comparison of 111In-DOTATOC and 111In-DOTATATE: biodistribution and dosimetry in the same patients with metastatic neuroendocrine tumours. Eur J Nucl Med 31:1257–1262CrossRefGoogle Scholar
  29. Forrer F, Krenning EP, Kooij PP, Bernard BF, Konijnenberg M, Bakker WH, Teunissen JJ, de Jong M, van Lom K, de Herder WW, Kwekkeboom DJ (2009) Bone marrow dosimetry in peptide receptor radionuclide therapy with [177Lu-DOTA(0), Tyr(3)]octreotate. Eur J Nucl Med Mol Imaging 36:1138–1146PubMedCentralPubMedCrossRefGoogle Scholar
  30. Gains JE, Bomanji JB, Fersht NL, Sullivan T, D’Souza D, Sullivan KP, Aldridge M, Waddington W, Gaze MN (2011) 177Lu-DOTATATE molecular radiotherapy for childhood neuroblastoma. J Nucl Med 52:1041–1047PubMedCrossRefGoogle Scholar
  31. Heppeler A, Froidevaux S, Eberle AN et al (2000) Receptor targeting for tumor localization and therapy with radiopeptides. Curr Med Chem 7:971–994PubMedCrossRefGoogle Scholar
  32. Hörsch D, Grabowski P, Schneider CP et al (2011) Current treatment options for neuroendocrine tumors. Drugs Today 47:773–786PubMedGoogle Scholar
  33. Hörsch D, Bert T, Schrader J, Hommann M et al (2012) Pancreatic neuroendocrine neoplasms. Minerva Gastroenterol Dietol 58:401–426PubMedGoogle Scholar
  34. Imhof A, Brunner P, Marincek N et al (2011) Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue [90Y-DOTA]-TOC in metastasized neuroendocrine cancers. J Clin Oncol 29:2416–2423PubMedCrossRefGoogle Scholar
  35. Iten F, Müller B, Schindler C, Rochlitz C, Oertli D, Mäcke HR, Müller-Brand J, Walter MA (2007) Response to [90Yttrium-DOTA]-TOC treatment is associated with long-term survival benefit in metastasized medullary thyroid cancer: a phase II clinical trial. Clin Cancer Res 13:6696–6702PubMedCrossRefGoogle Scholar
  36. Iten F, Muller B, Schindler C, Rasch H, Rochlitz C, Oertli D, Maecke HR, Muller-Brand J, Walter MA (2009) [(90)Yttrium-DOTA]-TOC response is associated with survival benefit in iodine-refractory thyroid cancer: long-term results of a phase 2 clinical trial. Cancer 115:2052–2062PubMedCrossRefGoogle Scholar
  37. Kaemmerer D, Prasad V, Daffner W et al (2009) Neoadjuvant peptide receptor radionuclide therapy for an inoperable neuroendocrine pancreatic tumor. World J Gastroenterol 15:5867–5870PubMedCentralPubMedCrossRefGoogle Scholar
  38. Kaemmerer D, Peter L, Lupp A, Schulz S, Sänger J, Prasad V, Kulkarni H, Haugvik SP, Hommann M, Baum RP (2011) Molecular imaging with 68Ga-SSTR PET/CT and correlation to immunohistochemistry of somatostatin receptors in neuroendocrine tumours. Eur J Nucl Med Mol Imaging 38:1659–1668PubMedCrossRefGoogle Scholar
  39. Kam BL, van Essen M et al (2008) Hormonal crises following receptor radionuclide therapy with the radiolabeled somatostatin analogue [177Lu-DOTA0,Tyr3]octreotate. Eur J Nucl Med Mol Imaging 35:749–55Google Scholar
  40. Khan S, Krenning EP, van Essen M et al (2011) Quality of life in 265 patients with gastroenteropancreatic or bronchial neuroendocrine tumors treated with [177Lu-DOTA0, Tyr3]octreotate. J Nucl Med 52:1361–1368PubMedCrossRefGoogle Scholar
  41. Kratochwil C, Giesel FL, Lopez-Benitez R, Schimpfky N, Kunze K, Eisenhut M, Kauczor HU, Haberkorn U (2010) Intraindividual comparison of selective arterial versus venous 68 Ga-DOTATOC PET/CT in patients with gastroenteropancreatic neuroendocrine tumors. Clin Cancer Res 16:2899–2905PubMedCrossRefGoogle Scholar
  42. Kreissl MC, Hänscheid H, Löhr M, Verburg FA, Schiller M, Lassmann M, Reiners C, Samnick SS, Buck AK, Flentje M, Sweeney RA (2012) Combination of peptide receptor radionuclide therapy with fractionated external beam radiotherapy for treatment of advanced symptomatic meningioma. Radiat Oncol 7:99PubMedCentralPubMedCrossRefGoogle Scholar
  43. Krenning EP, Kooij PP, Bakker WH et al (1994) Radiotherapy with a radiolabeled somatostatin analogue, [111In-DTPA-D-Phe1]-octreotide. A case history. Ann N Y Acad Sci 733:496–506PubMedCrossRefGoogle Scholar
  44. Kulkarni H, Prasad V, Schuchardt C et al (2011) Peptide receptor radionuclide therapy (PRRNT) of neuroendocrine tumors: relationship between tumor dose and molecular response as measured by somatostatin receptor PET/CT. J Nucl Med 52(Suppl 1):301 (abstract)Google Scholar
  45. Kulkarni HR, Schuchardt C, Baum RP (2013) Peptide receptor radionuclide therapy with (177)Lu Labeled somatostatin analogs DOTATATE and DOTATOC: contrasting renal dosimetry in the same patient. Recent Results Cancer Res 194:551–559PubMedCrossRefGoogle Scholar
  46. Kunikowska J, Królicki L, Hubalewska-Dydejczyk A, Mikołajczak R, Sowa-Staszczak A, Pawlak D (2011) Clinical results of radionuclide therapy of neuroendocrine tumours with 90Y-DOTATATE and tandem 90Y/177Lu-DOTATATE: which is a better therapy option? Eur J Nucl Med Mol Imaging 38:1788–1797Google Scholar
  47. Kwekkeboom DJ, Mueller-Brand J, Paganelli G et al (2005) Overview of results of peptide receptor radionuclide therapy with 3 radiolabeled somatostatin analogs. J Nucl Med 46(Suppl 1):62S–66SPubMedGoogle Scholar
  48. Kwekkeboom DJ, de Herder WW, Kam BL et al (2008) Treatment with the radiolabeled somatostatin analog [177Lu-DOTA 0, Tyr3]octreotate: toxicity, efficacy, and survival. J Clin Oncol 26:2124–2130PubMedCrossRefGoogle Scholar
  49. Limouris GS, Chatziioannou A, Kontogeorgakos D, Mourikis D, Lyra M, Dimitriou P, Stavraka A, Gouliamos A, Vlahos L (2008) Selective hepatic arterial infusion of In-111-DTPA- Phe1-octreotide in neuroendocrine liver metastases. Eur J Nucl Med Mol Imaging 35:1827–1837PubMedCrossRefGoogle Scholar
  50. Maecke HR, Reubi JC (2011) Somatostatin receptors as targets for nuclear medicine imaging and radionuclide treatment. J Nucl Med 52:841–844PubMedCrossRefGoogle Scholar
  51. Melis M, Valkema R, Krenning EP, de Jong M (2012) Reduction of renal uptake of radiolabeled octreotate by amifostine coadministration. J Nucl Med 53:749–753PubMedCrossRefGoogle Scholar
  52. Modlin IM, Oberg K, Chung DC et al (2008) Gastroenteropancreatic neuroendocrine tumors. Lancet Oncol 9:61–72PubMedCrossRefGoogle Scholar
  53. Moi MK, Meares CF (1988) The peptide way to macrocyclic bifunctional chelating agents: syntesis of 2-(p-nitroben-zyl)-1, 4, 7, 10-tetraazacyclododecane-N, N′, N′′, N′′′-tetra-acetic acid and study of its Yttrium(III) complex. J Am Chem Soc 110:6266–6267PubMedCrossRefGoogle Scholar
  54. Morgenstern A, Bruchertseifer F, Apostolidis C et al (2012) Synthesis of 213Bi-DOTATOC for peptide receptor alpha-therapy of GEP-NET patients refractory to beta therapy. J Nucl Med 53(Suppl 1):455 (abstract). http://interactive.snm.org/docs/SNM_2012_Image_of_the_Year.jpg
  55. O’Donoghue JA, Bardies M, Wheldon TE (1995) Relationships between tumor size and curability for uniformly targeted therapy with beta-emitting radionuclides. J Nucl Med 36:1902–1909PubMedGoogle Scholar
  56. Otte A, Jermann E, Behe M et al (1997) DOTATOC: a powerful new tool for receptor-mediated radionuclide therapy. Eur J Nucl Med 24:792–795PubMedGoogle Scholar
  57. Paganelli G, Zoboli S, Cremonesi M et al (1999) Receptor-mediated radionuclide therapy with 90Y-DOTA-D-Phe1-Tyr3-octreotide: preliminary report in cancer patients. Cancer Biother Radiopharm 14:477–483PubMedCrossRefGoogle Scholar
  58. Reubi JC, Horisberger U, Laissue JA (1994) High density of somatostatin receptors in veins surrounding human cancer tissue: role in tumor-host interactions? Int J Cancer 56:681–688PubMedCrossRefGoogle Scholar
  59. Reubi JC, Schaer JC, Laissue JA et al (1996) Somatostatin receptors and their subtypes in human tumors and in peritumoral vessels. Metabolism 45(Suppl 1):39–41PubMedCrossRefGoogle Scholar
  60. Reubi JC, Schar JC, Waser B et al (2000) Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med Mol Imaging 27:273–282CrossRefGoogle Scholar
  61. Rich TA, Shepard RC, Mosley ST (2004) Four decades of continuing innovation with fluorouracil: current and future approaches to fluorouracil chemoradiation therapy. J Clin Oncol 22:2214–2232PubMedCrossRefGoogle Scholar
  62. Rolleman EJ, Valkema R, de Jong M, Kooij PP, Krenning EP (2003) Safe and effective inhibition of renal uptake of radiolabelled octreotide by a combination of lysine and arginine. Eur J Nucl Med Mol Imaging 30:9–15PubMedCrossRefGoogle Scholar
  63. Rolleman EJ, Forrer F, Bernard B, Bijster M, Vermeij M, Valkema R, Krenning EP, de Jong M (2007) Amifostine protects rat kidneys during peptide receptor radionuclide therapy with [177Lu-DOTA0, Tyr3]octreotate. Eur J Nucl Med Mol Imaging 34:763–771PubMedCrossRefGoogle Scholar
  64. Rolleman EJ, Bernard BF, Breeman WA, Forrer F, de Blois E, Hoppin J, Gotthardt M, Boerman OC, Krenning EP, de Jong M (2008) Molecular imaging of reduced renal uptake of radiolabelled [DOTA0, Tyr3]octreotate by the combination of lysine and Gelofusine in rats. Nuklearmedizin 47:110–115PubMedGoogle Scholar
  65. Sansovini M, Severi S, Ambrosetti A, Monti M, Nanni O, Sarnelli A, Bodei L, Garaboldi L, Bartolomei M, Paganelli G (2013) Treatment with the radiolabelled somatostatin analog Lu-DOTATATE for advanced pancreatic neuroendocrine tumors. Neuroendocrinology 97:347–354PubMedCrossRefGoogle Scholar
  66. Sawada N, Ishikawa T, Sekiguchi F, Tanaka Y, Ishitsuka H (1999) X-ray irradiation induces thymidine phosphorylase and enhances the efficacy of capecitabine (Xeloda) in human cancer xenografts. Clin Cancer Res 5:2948–2953PubMedGoogle Scholar
  67. Seregni E, Maccauro M, Coliva A, Castellani MR, Bajetta E, Aliberti G, Vellani C, Chiesa C, Martinetti A, Bogni A et al (2010) Treatment with tandem [(90)Y]DOTA-TATE and [(177)Lu] DOTA-TATE of neuroendocrine tumors refractory to conventional therapy: preliminary results. Q J Nucl Med Mol Imaging 54:84–91PubMedGoogle Scholar
  68. Severi S, Nanni O, Bodei L, Sansovini M, Ianniello A, Nicoletti S, Scarpi E, Matteucci F, Gilardi L, Paganelli G (2013) Role of 18FDG PET/CT in patients treated with 177Lu-DOTATATE for advanced differentiated neuroendocrine tumours. Eur J Nucl Med Mol Imaging 40:881–888PubMedCrossRefGoogle Scholar
  69. Siegel JA, Thomas SR, Stubbs JB, Stabin MG, Hays MT, Koral KF, Robertson JS, Howell RW, Wessels BW, Fisher DR, Weber DA, Brill AB (1999) Techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. MIRD Pamphlet No. 16. J Nucl Med 40:S37–S61Google Scholar
  70. Sowa-Staszczak A, Pach D, Chrzan R et al (2011) Peptide receptor radionuclide therapy as a potential tool for neoadjuvant therapy in patients with inoperable neuroendocrine tumours (NETs). Eur J Nucl Med Mol Imaging 38:1669–1674PubMedCentralPubMedCrossRefGoogle Scholar
  71. Stabin MG, Sparks RB, Crowe E (2005) OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 46:1023–1027PubMedGoogle Scholar
  72. Teunissen JJ, Kwekkeboom DJ, Kooij PP, Bakker WH, Krenning EP (2005) Peptide receptor radionuclide therapy for non-radioiodine-avid differentiated thyroid carcinoma. J Nucl Med 46(Suppl 1):107S–114SPubMedGoogle Scholar
  73. Valkema R, De Jong M, Bakker WH, Breeman WA, Kooij PP, Lugtenburg PJ, De Jong FH, Christiansen A, Kam BL, De Herder WW, Stridsberg M, Lindemans J, Ensing G, Krenning EP (2002) Phase I study of peptide receptor radionuclide therapy with [In-DTPA]-octreotide: the Rotterdam experience. Semin Nucl Med 32:110–122PubMedCrossRefGoogle Scholar
  74. Valkema R, Pauwels SA, Kvols LK et al (2005) Long-term follow-up of renal function after peptide receptor radiation therapy with 90Y-DOTA(0), Tyr(3)-octreotide and 177Lu-DOTA(0), Tyr(3)-octreotate. J Nucl Med 46(Suppl 1):83S–91SPubMedGoogle Scholar
  75. Valkema R, Pauwels S, Kvols LK, Barone R, Jamar F, Bakker WH et al (2006) Survival and response after peptide receptor radionuclide therapy with [90Y-DOTA0, Tyr3]octreotide in patients with advanced gastroenteropancreatic neuroendocrine tumors. Semin Nucl Med 36:147–156PubMedCrossRefGoogle Scholar
  76. van Essen M, Krenning EP, Kam BL, de Herder WW, van Aken MO, Kwekkeboom DJ (2008) Report on short-term side effects of treatments with 177Lu-octreotate in combination with capecitabine in seven patients with gastroenteropancreatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging 35:743–748PubMedCentralPubMedCrossRefGoogle Scholar
  77. Villard L, Romer A, Marincek N, Brunner P, Koller MT, Schindler C, Ng QK, Mäcke HR, Müller-Brand J, Rochlitz C, Briel M, Walter MA (2012) Cohort study of somatostatin-based radiopeptide therapy with [(90)Y-DOTA]-TOC versus [(90)Y-DOTA]-TOC plus [(177)Lu-DOTA]-TOC in neuroendocrine cancers. J Clin Oncol 30:1100–1106PubMedCrossRefGoogle Scholar
  78. Waldherr C, Pless M, Maecke HR, Schumacher T, Crazzolara A, Nitzsche EU et al (2002a) Tumor response and clinical benefit in neuroendocrine tumors after 7.4 GBq (90)Y-DOTATOC. J Nucl Med 43:610–616PubMedGoogle Scholar
  79. Waldherr C, Schumacher T, Maecke HR, Schirp U, Forrer F, Nitzsche EU et al (2002b) Does tumor response depend on the number of treatment sessions at constant injected dose using 90Yttrium- DOTATOC in neuroendocrine tumors? Eur J Nucl Med 29(Suppl 1):S100Google Scholar
  80. Walrand S, Flux GD, Konijnenberg MW, Valkema R, Krenning EP, Lhommel R et al (2011a) Dosimetry of yttrium-labelled radiopharmaceuticals for internal therapy: 86Yor 90Yimaging? Eur J Nucl Med Mol Imaging. 38(Suppl 1):S57–S68PubMedCrossRefGoogle Scholar
  81. Walrand S, Barone R, Pauwels S, Jamar F (2011b) Experimental facts supporting a red marrow uptake due to radiometal transchelation in 90Y-DOTATOC therapy and relationship to the decrease of platelet counts. Eur J Nucl Med Mol Imaging 38:1270–1280PubMedCrossRefGoogle Scholar
  82. Wehrmann C, Senftleben S, Zachert C, Müller D, Baum RP (2007) Results of individual patient dosimetry in peptide receptor radionuclide therapy with 177Lu DOTA-TATE and 177Lu DOTA-NOC. Cancer Biother Radiopharm 22(3):406–416PubMedCrossRefGoogle Scholar
  83. Wild D, Schmitt SJ, Ginj M et al (2003) DOTA-NOC, a high affinity ligand of somatostatin receptor subtypes 2, 3, and 5 for labeling with various radiometals. Eur J Nucl Med Mol Imaging 30:1338PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.THERANOSTICS Center for Molecular Radiotherapy and Molecular ImagingENETS Center of Excellence, Zentralklinik Bad BerkaBad BerkaGermany

Personalised recommendations