Diffusion-Weighted and Diffusion Tensor Imaging: Applications in Skeletal Muscles

Part of the Medical Radiology book series (MEDRAD)


Diffusion tensor magnetic resonance imaging (MRI) has been applied until fairly recently to the study of the brain microarchitecture. Muscle diffusion tensor imaging is still in its infancy but opens a whole new area of research in mapping microstructural organization. Diffusion arises from random motions from thermal energy; these random motions are referred to as "Brownian motion." MRI is the only modality that allows the noninvasive determination of diffusion (which is on the order of microns) and provides an excellent probe into tissue microarchitecture. Diffusion in biological tissue can be both hindered and have a preferential direction. In the latter case, diffusion is said to be anisotropic. In this chapter, we start with a brief discussion of the technical details of diffusion tensor image acquisition and the post-processing methods. The challenges of this complex modality can be appreciated from these technical details. Diffusion is measured at the macroscopic level but reflects micro-level structural organization. Diffusion models enable one to link the microarchitecture to the observed diffusion tensor; a brief discussion of the diffusion models is presented here. The potential to infer physiological status at a microscopic level from macroscopic measurements offers exciting possibilities for understanding muscle physiology and changes with disease. In order to apply this technique to detecting changes with normal progression or disease, it is important to establish normative values as well as the reproducibility of the technique. The summary of normal ranges and reproducibility of the diffusion indices is presented and confirms that the technique can monitor changes of the order of ~8 %. Several studies using DTI in disease condition are also presented to provide the range of application of diffusion tensor imaging. In addition to scalar indices of diffusion, DTI also enables muscle fiber tracking. Fiber tracking is the most challenging aspect of DTI and results from several groups are presented to demonstrate the feasibility and utility of this method in extracting fiber architectural parameters in a way that was not possible till now.


Fractional Anisotropy Diffusion Tensor Image Fiber Length Fiber Orientation Diffusion Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Agur AM, Ng-Thow-Hing V, Ball KA, Fiume E, McKee NH (2003) Documentation and three-dimensional modeling of human soleus muscle architecture. Clin Anat 16:285–293. doi: 10.1002/ca.10112 PubMedCrossRefGoogle Scholar
  2. Aja-Fernandez S, Niethammer M, Kubicki M, Shenton ME, Westin CF (2008) Restoration of DWI data using a Rician LMMSE estimator. IEEE Trans Med Imaging 27:1389–1403. doi: 10.1109/TMI.2008.920609 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Alexander AL, Lee JE, Lazar M, Field AS (2007) Diffusion tensor imaging of the brain. Neurotherapeutics 4:316–329. doi: 10.1016/j.nurt.2007.05.011 PubMedCentralPubMedCrossRefGoogle Scholar
  4. Arsigny V, Fillard P, Pennec X, Ayache N (2006) Log-euclidean metrics for fast and simple calculus on diffusion tensors. Magn Reson Med 56:411–421. doi: 10.1002/mrm.20965 PubMedCrossRefGoogle Scholar
  5. Assaf Y, Pasternak O (2008) Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci 34:51–61. doi: 10.1007/s12031-007-0029-0 PubMedCrossRefGoogle Scholar
  6. Azizi E, Brainerd EL, Roberts TJ (2008) Variable gearing in pennate muscles. Proc Natl Acad Sci U S A 105:1745–1750. doi: 10.1073/pnas.0709212105 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Basser PJ, Jones DK (2002) Diffusion-tensor MRI: theory, experimental design and data analysis—a technical review. NMR Biomed 15:456–467PubMedCrossRefGoogle Scholar
  8. Basser PJ, Pajevicz S (2000) Statistical artifacts in diffusion tensor MRI (DT-MRI) caused by background noise. Magn Reson Med 44:41–50. doi: 10.1002/1522-2594(200007)44:1<41::AID-MRM8>3.0.CO;2-O Google Scholar
  9. Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44:625–632PubMedCrossRefGoogle Scholar
  10. Behrens TEJ, Woolrich MW, Jenkinson M et al (2003) Characterization and propagation of uncertainty in diffusion weighted MR imaging. Magn Reson Med 50:1077–1088. doi: 10.1002/mrm.10609 Google Scholar
  11. Bennett IJ, Rypma B (2013) Advances in functional neuroanatomy: a review of combined DTI and FMRI studies in healthy younger and older adults. Neurosci Biobehav Rev 37:1201–1210. doi: 10.1016/j.neubiorev.2013.04.008 PubMedCrossRefGoogle Scholar
  12. Bley TA, Wieben O, Uhl M (2009) Diffusion-weighted MR imaging in musculoskeletal radiology: applications in trauma, tumors, and inflammation. Magn Reson Imaging Clin N Am 17:263–275. doi: 10.1016/j.mric.2009.01.005 PubMedCrossRefGoogle Scholar
  13. Budzik JF, Le Thuc V, Demondion X, Morel M, Chechin D, Cotten A (2007) In vivo MR tractography of thigh muscles using diffusion imaging: initial results. Eur Radiol 17:3079–3085. doi: 10.1007/s00330-007-0713-z PubMedCrossRefGoogle Scholar
  14. Cermak NM, Noseworthy MD, Bourgeois JM, Tarnopolsky MA, Gibala MJ (2012) Diffusion tensor MRI to assess skeletal muscle disruption following eccentric exercise. Muscle Nerve 46:42–50. doi: 10.1002/mus.23276 PubMedCrossRefGoogle Scholar
  15. Chi SW, Hodgson J, Chen JS, Reggie Edgerton V, Shin DD, Roiz RA, Sinha S (2010) Finite element modeling reveals complex strain mechanics in the aponeuroses of contracting skeletal muscle. J Biomech 43:1243–1250. doi: 10.1016/j.jbiomech.2010.01.005 Google Scholar
  16. Damon BM (2008) Effects of image noise in muscle diffusion tensor (DT)-MRI assessed using numerical simulations. Magn Reson Med 60:934–944. doi: 10.1002/mrm.21707 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Damon BM, Ding Z, Anderson AW, Freyer AS, Gore JC (2002) Validation of diffusion tensor MRI-based muscle fiber tracking. Magn Reson Med 48:97–104. doi: 10.1002/mrm.10198 PubMedCrossRefGoogle Scholar
  18. Deux JF, Malzy P, Paragios N et al (2008) Assessment of calf muscle contraction by diffusion tensor imaging. Eur Radiol 18:2303–2310. doi: 10.1007/s00330-008-1012-z PubMedCrossRefGoogle Scholar
  19. Drace JE, Pelc NJ (1994) Tracking the motion of skeletal muscle with velocity encoded MR imaging. J Magn Reson Imaging 4:773–778 PMID: 7865936PubMedCrossRefGoogle Scholar
  20. Einstein A (1956) Investigations on the theory of the Brownian movement. Dover, New YorkGoogle Scholar
  21. Englund EK, Elder CP, Xu Q, Ding Z, Damon BM (2011) Combined diffusion and strain tensor MRI reveals a heterogeneous, planar pattern of strain development during isometric muscle contraction. Am J Physiol Regul Integr Comp Physiol 300:R1079–R1090. doi: 10.1152/ajpregu.00474.2010 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Esposito A, Campana L, Palmisano A, De Cobelli F, Canu T, Santarella F, Colantoni C, Monno A, Vezzoli M, Pezzetti G, Manfredi AA, Rovere-Querini P, Maschio AD (2013) Magnetic resonance imaging at 7 T reveals common events in age-related sarcopenia and in the homeostatic response to muscle sterile injury. PLoS ONE 8:e59308. doi: 10.1371/journal.pone.0059308 PubMedCentralPubMedCrossRefGoogle Scholar
  23. Finni T, Hodgson JA, Lai AM, Edgerton VR, Sinha S (2003) Nonuniform strain of human soleus aponeurosis-tendon complex during submaximal voluntary contractions in vivo. J Appl Physiol 95:829–837. PMID: 12716873Google Scholar
  24. Froeling M (2012) DTI of human skeletal muscle: from simulation to clinical implementation. PhD thesis, Department of Biomedical Engineering, Technische Universiteit EindhovenGoogle Scholar
  25. Froeling M, Nederveen AJ, Heijtel DF, Lataster A, Bos C, Nicolay K, Maas M, Drost MR, Strijkers GJ (2012) Diffusion-tensor MRI reveals the complex muscle architecture of the human forearm. J Magn Reson Imaging 36:237–248. doi: 10.1002/jmri.23608 PubMedCrossRefGoogle Scholar
  26. Galbán CJ, Maderwald S, Uffmann K, de Greiff A, Ladd ME (2004) Diffusion sensitivity to muscle architecture: a magnetic resonance diffusion tensor imaging study of the human calf. Eur J Appl Physiol 93:253–262. doi: 10.1007/s00421-004-1186-2 PubMedCrossRefGoogle Scholar
  27. Galbán CJ, Maderwald S, Uffmann K, Ladd ME (2005) A diffusion tensor imaging analysis of gender differences in water diffusivity within human skeletal muscle. NMR Biomed 18:489–498. doi: 10.1002/nbm.975 PubMedCrossRefGoogle Scholar
  28. Gharibans AA, Johnson CL, Chen DD, Georgiadis JG (2011) Reconstruction of 3D fabric structure and fiber nets in skeletal muscle via in vivo DTI. International society for magnetic resonance in medicine, Montreal, May 2011, p 1154Google Scholar
  29. Gilbert RJ, Napadow VJ (2005) Three-dimensional muscular architecture of the human tongue determined in vivo with diffusion tensor magnetic resonance imaging. Dysphagia 20:1–7. doi: 10.1007/s00455-003-0505-9 PubMedCrossRefGoogle Scholar
  30. Hagmann P, Jonasson L, Maeder P, Thiran JP, Wedeen VJ, Meuli R (2006) Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics 26(Suppl 1):S205–S223. doi: 10.1148/rg.26si065510 PubMedCrossRefGoogle Scholar
  31. Hatakenaka M, Yabuuchi H, Matsuo Y et al (2008) Effect of passive muscle length change on apparent diffusion coefficient: detection with clinical MR imaging. Magn Reson Med Sci 7:59–63. pii:JST.JSTAGE/mrms/7.59Google Scholar
  32. Heemskerk A, Drost M, van Bochove G et al (2006) DTI-based assessment of ischemia-reperfusion in mouse skeletal muscle. Magn Reson Med 56:272–281. doi: 10.1002/mrm.20953 PubMedCrossRefGoogle Scholar
  33. Heemskerk A, Strijkers G, Drost M, van Bochove G, van Nicolay K (2007) Skeletal muscle degeneration and regeneration after femoral artery ligation in mice: monitoring with diffusion MR imaging. Radiology 243:413–421. doi: 10.1148/radiol.2432060491 PubMedCrossRefGoogle Scholar
  34. Heemskerk AM, Sinha TK, Wilson KJ, Ding Z, Damon BM (2009) Quantitative assessment of DTI-based muscle fiber tracking and optimal tracking parameters. Magn Reson Med 61:467–472. doi: 10.1002/mrm.21819 PubMedCentralPubMedCrossRefGoogle Scholar
  35. Heemskerk AM, Sinha TK, Wilson KJ, Ding Z, Damon BM (2010) Repeatability of DTI-based skeletal muscle fiber tracking. NMR Biomed 23:294–303. doi: 10.1002/nbm.1463 PubMedGoogle Scholar
  36. Hodgson JA, Finni T, Lai AM, Edgerton VR, Sinha S (2006) Influence of structure on the tissue dynamics of the human soleus muscle observed in MRI studies during isometric contractions. J Morphol 267:584–601. doi: 10.1002/jmor.10421 PubMedCrossRefGoogle Scholar
  37. Karampinos DC, King KF, Sutton BP, Georgiadis JG (2007) In vivo study of cross-sectional skeletal muscle fiber asymmetry with diffusion-weighted MRI. Conf Proc IEEE Eng Med Biol Soc 2007:327–330. doi: 10.1109/IEMBS.2007.4352290 PubMedGoogle Scholar
  38. Karampinos DC, King KF, Sutton BP, Georgiadis JG (2009) Myofiber ellipticity as an explanation for transverse asymmetry of skeletal muscle diffusion MRI in vivo signal. Ann Biomed Eng 37:2532–2546. doi: 10.1007/s10439-009-9783-1 PubMedCrossRefGoogle Scholar
  39. Karampinos DC, Banerjee S, King KF, Link TM, Majumdar S (2012) Considerations in high-resolution skeletal muscle diffusion tensor imaging using single-shot echo planar imaging with stimulated-echo preparation and sensitivity encoding. NMR Biomed 25:766–778. doi: 10.1002/nbm.1791 PubMedCentralPubMedCrossRefGoogle Scholar
  40. Lansdown DA, Ding Z, Wadington M, Hornberger JL, Damon BM (2007) Quantitative diffusion tensor MRI-based fiber tracking of human skeletal muscle. J Appl Physiol 103:673–681. doi: 10.1152/japplphysiol.00290.2007 PubMedCrossRefGoogle Scholar
  41. Lazar M (2010) Mapping brain anatomical connectivity using white matter tractography. NMR Biomed 23:821–835. doi: 10.1002/nbm.1579 PubMedCrossRefGoogle Scholar
  42. Leemans A, Jones DK (2009) The B-matrix must be rotated when correcting for subject motion in DTI data. Magn Reson Med 61:1336–1349. doi: 10.1002/mrm.21890 PubMedCrossRefGoogle Scholar
  43. Levin DI, Gilles B, Mädler B, Pai DK (2011) Extracting skeletal muscle fiber fields from noisy diffusion tensor data. Med Image Anal 15:340–353. doi: 10.1016/j.media.2011.01.005 PubMedCrossRefGoogle Scholar
  44. Maganaris CN, Baltzopoulos V, Sargeant AJ (1998) In vivo measurements of the triceps surae complex architecture in man: implications for muscle function. J Physiol 512:603–614. PMID: 9763648Google Scholar
  45. Malcolm JG, Shenton ME, Rathi Y (2010) Filtered multi-tensor tractography. IEEE Trans Med Imaging 29:1664–1675. doi: 10.1109/TMI.2010.2048121 PubMedCentralPubMedCrossRefGoogle Scholar
  46. Martin DC, Medri MK, Chow RS, Oxorn V, Leekam RN, Agur AM, McKee NH (2001) Comparing human skeletal muscle architectural parameters of cadavers with in vivo ultrasonographic measurements. J Anat 199:429–434. PMID: 11693303Google Scholar
  47. McMillan AB, Shi D, Pratt SJ, Lovering RM (2011) Diffusion tensor MRI to assess damage in healthy and dystrophic skeletal muscle after lengthening contractions. J Biomed Biotechnol 2011:970726. doi: 10.1155/2011/970726 PubMedCentralPubMedGoogle Scholar
  48. Mori S, Barker PB (1999) Diffusion magnetic resonance imaging: its principle and applications. Anat Rec 257:102–109. doi: 10.1002/(SICI)1097-0185(19990615)257:3<102::AID-AR7>3.0.CO;2-6
  49. Mori S, van Zijl PC (2002) Fiber tracking: principles and strategies—a technical review. NMR Biomed 15:468–480. doi: 10.1002/nbm.781 PubMedCrossRefGoogle Scholar
  50. Mori S, Crain BJ, Chacko VP et al (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269 PMID: 9989633PubMedCrossRefGoogle Scholar
  51. Mukherjee P, McKinstry RC (2006) Diffusion tensor imaging and tractography of human brain development. Neuroimaging Clin N Am 16:19–43. doi: 10.1016/j.nic.2005.11.004 PubMedCrossRefGoogle Scholar
  52. Muramatsu T, Muraoka T, Kawakami Y, Shibayama A, Fukunaga T (2002) In vivo determination of fascicle curvature in contracting human skeletal muscles. J Appl Physiol 92:129–134. PMID: 11744651Google Scholar
  53. Nakai R, Azuma T, Sudo M, Urayama S, Takizawa O, Tsutsumi S (2008) MRI analysis of structural changes in skeletal muscles and surrounding tissues following long-term walking exercise with training equipment. J Appl Physiol 105:958–963. doi: 10.1152/japplphysiol.01204.2007 PubMedCrossRefGoogle Scholar
  54. Napadow VJ, Chen Q, Mai V, So PT, Gilbert RJ (2001) Quantitative analysis of three-dimensional resolved fiber architecture in heterogeneous skeletal muscle tissue using NMR and optical imaging methods. Biophys J 80:2968–2975. doi: 10.1016/S0006-3495(01)76262-5 PubMedCentralPubMedCrossRefGoogle Scholar
  55. O’Donnell LJ, Westin CF (2011) An introduction to diffusion tensor image analysis. Neurosurg Clin N Am 22:185–196. doi: 10.1016/j.nec.2010.12.004 PubMedCentralPubMedCrossRefGoogle Scholar
  56. Okamoto Y, Kunimatsu A, Kono T, Nasu K, Sonobe J, Minami M (2010) Changes in MR diffusion properties during active muscle contraction in the calf. Magn Reson Med Sci 9:1–8. pii:JST.JSTAGE/mrms/9.1Google Scholar
  57. Qi J, Olsen NJ, Price RR, Winston JA, Park JH (2008) Diffusion weighted imaging of the inflammatory myopathies: polymyositis and dermatomyositis. J Magn Reson Imaging 27:212–217. doi: 10.1002/jmri.21209 PubMedCrossRefGoogle Scholar
  58. Pappas GP, Asakawa DS, Delp SL, Zajac FE, Drace JE (2002) Nonuniform shortening in the biceps brachii during elbow flexion. J Appl Physiol 92:238123–238129. doi:  10.1152/japplphysiol.00843.2001 Google Scholar
  59. Saupe N, White LM, Stainsby J, Tomlinson G, Sussman MS (2009) Diffusion tensor imaging and fiber tractography of skeletal muscle: optimization of B value for imaging at 1.5 T. Am J Roentgenol 192:W282–W290. doi: 10.2214/AJR.08.1340 CrossRefGoogle Scholar
  60. Schwenzer NF, Steidle G, Martirosian P, Schraml C, Springer F, Claussen CD, Schick F (2009) Diffusion tensor imaging of the human calf muscle: distinct changes in fractional anisotropy and mean diffusion due to passive muscle shortening and stretching. NMR Biomed 22:1047–1053. doi: 10.1002/nbm.1409 PubMedGoogle Scholar
  61. Scollan DF, Holmes A, Winslow R, Forder J (1998) Histological validation of myocardial microstructure obtained from diffusion tensor imaging. Am J Physiol 275:H2308–H2318 PMID: 9843833PubMedGoogle Scholar
  62. Shenton ME, Hamoda HM, Schneiderman JS, Bouix S, Pasternak O, Rathi Y, Vu MA, Purohit MP, Helmer K, Koerte I, Lin AP, Westin CF, Kikinis R, Kubicki M, Stern RA, Zafonte R (2012) A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging Behav 6:137–192. doi: 10.1007/s11682-012-9156-5 PubMedCentralPubMedCrossRefGoogle Scholar
  63. Shin D, Finni T, Ahn S, Hodgson JA, Lee HD, Edgerton VR, Sinha S (2008) Effect of chronic unloading and rehabilitation on human achilles tendon properties: a velocity-encoded phase-contrast MRI study. J Appl Physiol 105:1179–1186. doi: 10.1152/japplphysiol.90699.2008 PubMedCentralPubMedCrossRefGoogle Scholar
  64. Sigmund EE, Sui D, Ukpebor O, Baete S, Fieremans E, Babb JS, Mechlin M, Liu K, Kwon J, McGorty K, Hodnett PA, Bencardino J (2013) Stimulated echo diffusion tensor imaging and SPAIR T(2)-weighted imaging in chronic exertional compartment syndrome of the lower leg muscles. J Magn Reson Imaging. doi: 10.1002/jmri.24060 PubMedGoogle Scholar
  65. Sinha S, Sinha U (2011) Reproducibility analysis of diffusion tensor indices and fiber architecture of human calf muscles in vivo at 1.5 tesla in neutral and plantarflexed ankle positions at rest. J Magn Reson Imaging 34:107–119. doi: 10.1002/jmri.22596 PubMedCentralPubMedCrossRefGoogle Scholar
  66. Sinha S, Sinha U, Edgerton VR (2006) In vivo diffusion tensor imaging of the human calf muscle. J Magn Reson Imaging 24:182–190. doi: 10.1002/jmri.20593 PubMedCrossRefGoogle Scholar
  67. Sinha U, Sinha S, Hodgson JA, Edgerton RV (2011) Human soleus muscle architecture at different ankle joint angles from magnetic resonance diffusion tensor imaging. J Appl Physiol 110:807–819. doi: 10.1152/japplphysiol.00923.2010 PubMedCentralPubMedCrossRefGoogle Scholar
  68. Sinha U, Moghadassi A, Sinha S (2012) Strain rate mapping of the lower leg muscles during plantarflexion excursion using MR velocity mapping. Int Soc Magn Res Med, Melbourne, Australia. May 2012Google Scholar
  69. Tseng WY, Wedeen VJ, Reese TG, Smith RN, Halpern EF (2003) Diffusion tensor MRI of myocardial fibers and sheets: correspondence with visible cut-face texture. J Magn Reson Imaging 17:31–42. doi: 10.1002/jmri.10223 PubMedCrossRefGoogle Scholar
  70. van Aart E, Sepasian N, Jalba A, Vilanova A (2011) CUDA-accelerated geodesic ray-tracing for fiber tracking. Int J Biomed Imaging 2011:698908. doi: 10.1155/2011/698908 PubMedCentralPubMedGoogle Scholar
  71. Williams SE, Heemskerk AM, Welch EB, Li K, Damon BM, Park JH (2013) Quantitative effects of inclusion of fat on muscle diffusion tensor MRI measurements. J Magn Reson Imaging. doi: 10.1002/jmri.24045
  72. Yamabe E, Nakamura T, Oshio K, Kikuchi Y, Toyama Y, Ikegami H (2007) Line scan diffusion spectrum of the denervated rat skeletal muscle. J Magn Reson Imaging 26:1585–1589. doi: 10.1002/jmri.21184 PubMedCrossRefGoogle Scholar
  73. Zaraiskaya T, Kumbhare D, Noseworthy MD (2006) Diffusion tensor imaging in evaluation of human skeletal muscle injury. J Magn Reson Imaging 24:402–408. doi: 10.1002/jmri.20651 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of PhysicsSan Diego State UniversitySan DiegoUSA
  2. 2.Muscle Imaging and Modeling Laboratory, Department of RadiologyUniversity of CaliforniaSan DiegoUSA

Personalised recommendations