Skip to main content

Diffusion-Weighted and Diffusion Tensor Imaging: Applications in Skeletal Muscles

  • Chapter
  • First Online:
Magnetic Resonance Imaging of the Skeletal Musculature

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 2494 Accesses

Abstract

Diffusion tensor magnetic resonance imaging (MRI) has been applied until fairly recently to the study of the brain microarchitecture. Muscle diffusion tensor imaging is still in its infancy but opens a whole new area of research in mapping microstructural organization. Diffusion arises from random motions from thermal energy; these random motions are referred to as "Brownian motion." MRI is the only modality that allows the noninvasive determination of diffusion (which is on the order of microns) and provides an excellent probe into tissue microarchitecture. Diffusion in biological tissue can be both hindered and have a preferential direction. In the latter case, diffusion is said to be anisotropic. In this chapter, we start with a brief discussion of the technical details of diffusion tensor image acquisition and the post-processing methods. The challenges of this complex modality can be appreciated from these technical details. Diffusion is measured at the macroscopic level but reflects micro-level structural organization. Diffusion models enable one to link the microarchitecture to the observed diffusion tensor; a brief discussion of the diffusion models is presented here. The potential to infer physiological status at a microscopic level from macroscopic measurements offers exciting possibilities for understanding muscle physiology and changes with disease. In order to apply this technique to detecting changes with normal progression or disease, it is important to establish normative values as well as the reproducibility of the technique. The summary of normal ranges and reproducibility of the diffusion indices is presented and confirms that the technique can monitor changes of the order of ~8 %. Several studies using DTI in disease condition are also presented to provide the range of application of diffusion tensor imaging. In addition to scalar indices of diffusion, DTI also enables muscle fiber tracking. Fiber tracking is the most challenging aspect of DTI and results from several groups are presented to demonstrate the feasibility and utility of this method in extracting fiber architectural parameters in a way that was not possible till now.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agur AM, Ng-Thow-Hing V, Ball KA, Fiume E, McKee NH (2003) Documentation and three-dimensional modeling of human soleus muscle architecture. Clin Anat 16:285–293. doi:10.1002/ca.10112

    Article  PubMed  Google Scholar 

  • Aja-Fernandez S, Niethammer M, Kubicki M, Shenton ME, Westin CF (2008) Restoration of DWI data using a Rician LMMSE estimator. IEEE Trans Med Imaging 27:1389–1403. doi:10.1109/TMI.2008.920609

    Article  PubMed Central  PubMed  Google Scholar 

  • Alexander AL, Lee JE, Lazar M, Field AS (2007) Diffusion tensor imaging of the brain. Neurotherapeutics 4:316–329. doi:10.1016/j.nurt.2007.05.011

    Article  PubMed Central  PubMed  Google Scholar 

  • Arsigny V, Fillard P, Pennec X, Ayache N (2006) Log-euclidean metrics for fast and simple calculus on diffusion tensors. Magn Reson Med 56:411–421. doi:10.1002/mrm.20965

    Article  PubMed  Google Scholar 

  • Assaf Y, Pasternak O (2008) Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci 34:51–61. doi:10.1007/s12031-007-0029-0

    Article  CAS  PubMed  Google Scholar 

  • Azizi E, Brainerd EL, Roberts TJ (2008) Variable gearing in pennate muscles. Proc Natl Acad Sci U S A 105:1745–1750. doi:10.1073/pnas.0709212105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Basser PJ, Jones DK (2002) Diffusion-tensor MRI: theory, experimental design and data analysis—a technical review. NMR Biomed 15:456–467

    Article  PubMed  Google Scholar 

  • Basser PJ, Pajevicz S (2000) Statistical artifacts in diffusion tensor MRI (DT-MRI) caused by background noise. Magn Reson Med 44:41–50. doi:10.1002/1522-2594(200007)44:1<41::AID-MRM8>3.0.CO;2-O

    Google Scholar 

  • Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44:625–632

    Article  CAS  PubMed  Google Scholar 

  • Behrens TEJ, Woolrich MW, Jenkinson M et al (2003) Characterization and propagation of uncertainty in diffusion weighted MR imaging. Magn Reson Med 50:1077–1088. doi:10.1002/mrm.10609

    Google Scholar 

  • Bennett IJ, Rypma B (2013) Advances in functional neuroanatomy: a review of combined DTI and FMRI studies in healthy younger and older adults. Neurosci Biobehav Rev 37:1201–1210. doi:10.1016/j.neubiorev.2013.04.008

    Article  PubMed  Google Scholar 

  • Bley TA, Wieben O, Uhl M (2009) Diffusion-weighted MR imaging in musculoskeletal radiology: applications in trauma, tumors, and inflammation. Magn Reson Imaging Clin N Am 17:263–275. doi:10.1016/j.mric.2009.01.005

    Article  PubMed  Google Scholar 

  • Budzik JF, Le Thuc V, Demondion X, Morel M, Chechin D, Cotten A (2007) In vivo MR tractography of thigh muscles using diffusion imaging: initial results. Eur Radiol 17:3079–3085. doi:10.1007/s00330-007-0713-z

    Article  CAS  PubMed  Google Scholar 

  • Cermak NM, Noseworthy MD, Bourgeois JM, Tarnopolsky MA, Gibala MJ (2012) Diffusion tensor MRI to assess skeletal muscle disruption following eccentric exercise. Muscle Nerve 46:42–50. doi:10.1002/mus.23276

    Article  PubMed  Google Scholar 

  • Chi SW, Hodgson J, Chen JS, Reggie Edgerton V, Shin DD, Roiz RA, Sinha S (2010) Finite element modeling reveals complex strain mechanics in the aponeuroses of contracting skeletal muscle. J Biomech 43:1243–1250. doi:10.1016/j.jbiomech.2010.01.005

    Google Scholar 

  • Damon BM (2008) Effects of image noise in muscle diffusion tensor (DT)-MRI assessed using numerical simulations. Magn Reson Med 60:934–944. doi:10.1002/mrm.21707

    Article  PubMed Central  PubMed  Google Scholar 

  • Damon BM, Ding Z, Anderson AW, Freyer AS, Gore JC (2002) Validation of diffusion tensor MRI-based muscle fiber tracking. Magn Reson Med 48:97–104. doi:10.1002/mrm.10198

    Article  PubMed  Google Scholar 

  • Deux JF, Malzy P, Paragios N et al (2008) Assessment of calf muscle contraction by diffusion tensor imaging. Eur Radiol 18:2303–2310. doi:10.1007/s00330-008-1012-z

    Article  CAS  PubMed  Google Scholar 

  • Drace JE, Pelc NJ (1994) Tracking the motion of skeletal muscle with velocity encoded MR imaging. J Magn Reson Imaging 4:773–778 PMID: 7865936

    Article  CAS  PubMed  Google Scholar 

  • Einstein A (1956) Investigations on the theory of the Brownian movement. Dover, New York

    Google Scholar 

  • Englund EK, Elder CP, Xu Q, Ding Z, Damon BM (2011) Combined diffusion and strain tensor MRI reveals a heterogeneous, planar pattern of strain development during isometric muscle contraction. Am J Physiol Regul Integr Comp Physiol 300:R1079–R1090. doi:10.1152/ajpregu.00474.2010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Esposito A, Campana L, Palmisano A, De Cobelli F, Canu T, Santarella F, Colantoni C, Monno A, Vezzoli M, Pezzetti G, Manfredi AA, Rovere-Querini P, Maschio AD (2013) Magnetic resonance imaging at 7 T reveals common events in age-related sarcopenia and in the homeostatic response to muscle sterile injury. PLoS ONE 8:e59308. doi:10.1371/journal.pone.0059308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Finni T, Hodgson JA, Lai AM, Edgerton VR, Sinha S (2003) Nonuniform strain of human soleus aponeurosis-tendon complex during submaximal voluntary contractions in vivo. J Appl Physiol 95:829–837. PMID: 12716873

    Google Scholar 

  • Froeling M (2012) DTI of human skeletal muscle: from simulation to clinical implementation. PhD thesis, Department of Biomedical Engineering, Technische Universiteit Eindhoven

    Google Scholar 

  • Froeling M, Nederveen AJ, Heijtel DF, Lataster A, Bos C, Nicolay K, Maas M, Drost MR, Strijkers GJ (2012) Diffusion-tensor MRI reveals the complex muscle architecture of the human forearm. J Magn Reson Imaging 36:237–248. doi:10.1002/jmri.23608

    Article  PubMed  Google Scholar 

  • Galbán CJ, Maderwald S, Uffmann K, de Greiff A, Ladd ME (2004) Diffusion sensitivity to muscle architecture: a magnetic resonance diffusion tensor imaging study of the human calf. Eur J Appl Physiol 93:253–262. doi:10.1007/s00421-004-1186-2

    Article  PubMed  Google Scholar 

  • Galbán CJ, Maderwald S, Uffmann K, Ladd ME (2005) A diffusion tensor imaging analysis of gender differences in water diffusivity within human skeletal muscle. NMR Biomed 18:489–498. doi:10.1002/nbm.975

    Article  PubMed  Google Scholar 

  • Gharibans AA, Johnson CL, Chen DD, Georgiadis JG (2011) Reconstruction of 3D fabric structure and fiber nets in skeletal muscle via in vivo DTI. International society for magnetic resonance in medicine, Montreal, May 2011, p 1154

    Google Scholar 

  • Gilbert RJ, Napadow VJ (2005) Three-dimensional muscular architecture of the human tongue determined in vivo with diffusion tensor magnetic resonance imaging. Dysphagia 20:1–7. doi:10.1007/s00455-003-0505-9

    Article  PubMed  Google Scholar 

  • Hagmann P, Jonasson L, Maeder P, Thiran JP, Wedeen VJ, Meuli R (2006) Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics 26(Suppl 1):S205–S223. doi:10.1148/rg.26si065510

    Article  PubMed  Google Scholar 

  • Hatakenaka M, Yabuuchi H, Matsuo Y et al (2008) Effect of passive muscle length change on apparent diffusion coefficient: detection with clinical MR imaging. Magn Reson Med Sci 7:59–63. pii:JST.JSTAGE/mrms/7.59

    Google Scholar 

  • Heemskerk A, Drost M, van Bochove G et al (2006) DTI-based assessment of ischemia-reperfusion in mouse skeletal muscle. Magn Reson Med 56:272–281. doi:10.1002/mrm.20953

    Article  PubMed  Google Scholar 

  • Heemskerk A, Strijkers G, Drost M, van Bochove G, van Nicolay K (2007) Skeletal muscle degeneration and regeneration after femoral artery ligation in mice: monitoring with diffusion MR imaging. Radiology 243:413–421. doi:10.1148/radiol.2432060491

    Article  PubMed  Google Scholar 

  • Heemskerk AM, Sinha TK, Wilson KJ, Ding Z, Damon BM (2009) Quantitative assessment of DTI-based muscle fiber tracking and optimal tracking parameters. Magn Reson Med 61:467–472. doi:10.1002/mrm.21819

    Article  PubMed Central  PubMed  Google Scholar 

  • Heemskerk AM, Sinha TK, Wilson KJ, Ding Z, Damon BM (2010) Repeatability of DTI-based skeletal muscle fiber tracking. NMR Biomed 23:294–303. doi:10.1002/nbm.1463

    PubMed  Google Scholar 

  • Hodgson JA, Finni T, Lai AM, Edgerton VR, Sinha S (2006) Influence of structure on the tissue dynamics of the human soleus muscle observed in MRI studies during isometric contractions. J Morphol 267:584–601. doi:10.1002/jmor.10421

    Article  PubMed  Google Scholar 

  • Karampinos DC, King KF, Sutton BP, Georgiadis JG (2007) In vivo study of cross-sectional skeletal muscle fiber asymmetry with diffusion-weighted MRI. Conf Proc IEEE Eng Med Biol Soc 2007:327–330. doi:10.1109/IEMBS.2007.4352290

    PubMed  Google Scholar 

  • Karampinos DC, King KF, Sutton BP, Georgiadis JG (2009) Myofiber ellipticity as an explanation for transverse asymmetry of skeletal muscle diffusion MRI in vivo signal. Ann Biomed Eng 37:2532–2546. doi:10.1007/s10439-009-9783-1

    Article  PubMed  Google Scholar 

  • Karampinos DC, Banerjee S, King KF, Link TM, Majumdar S (2012) Considerations in high-resolution skeletal muscle diffusion tensor imaging using single-shot echo planar imaging with stimulated-echo preparation and sensitivity encoding. NMR Biomed 25:766–778. doi:10.1002/nbm.1791

    Article  PubMed Central  PubMed  Google Scholar 

  • Lansdown DA, Ding Z, Wadington M, Hornberger JL, Damon BM (2007) Quantitative diffusion tensor MRI-based fiber tracking of human skeletal muscle. J Appl Physiol 103:673–681. doi:10.1152/japplphysiol.00290.2007

    Article  PubMed  Google Scholar 

  • Lazar M (2010) Mapping brain anatomical connectivity using white matter tractography. NMR Biomed 23:821–835. doi:10.1002/nbm.1579

    Article  PubMed  Google Scholar 

  • Leemans A, Jones DK (2009) The B-matrix must be rotated when correcting for subject motion in DTI data. Magn Reson Med 61:1336–1349. doi:10.1002/mrm.21890

    Article  PubMed  Google Scholar 

  • Levin DI, Gilles B, Mädler B, Pai DK (2011) Extracting skeletal muscle fiber fields from noisy diffusion tensor data. Med Image Anal 15:340–353. doi:10.1016/j.media.2011.01.005

    Article  PubMed  Google Scholar 

  • Maganaris CN, Baltzopoulos V, Sargeant AJ (1998) In vivo measurements of the triceps surae complex architecture in man: implications for muscle function. J Physiol 512:603–614. PMID: 9763648

    Google Scholar 

  • Malcolm JG, Shenton ME, Rathi Y (2010) Filtered multi-tensor tractography. IEEE Trans Med Imaging 29:1664–1675. doi:10.1109/TMI.2010.2048121

    Article  PubMed Central  PubMed  Google Scholar 

  • Martin DC, Medri MK, Chow RS, Oxorn V, Leekam RN, Agur AM, McKee NH (2001) Comparing human skeletal muscle architectural parameters of cadavers with in vivo ultrasonographic measurements. J Anat 199:429–434. PMID: 11693303

    Google Scholar 

  • McMillan AB, Shi D, Pratt SJ, Lovering RM (2011) Diffusion tensor MRI to assess damage in healthy and dystrophic skeletal muscle after lengthening contractions. J Biomed Biotechnol 2011:970726. doi:10.1155/2011/970726

    PubMed Central  PubMed  Google Scholar 

  • Mori S, Barker PB (1999) Diffusion magnetic resonance imaging: its principle and applications. Anat Rec 257:102–109. doi:10.1002/(SICI)1097-0185(19990615)257:3<102::AID-AR7>3.0.CO;2-6

  • Mori S, van Zijl PC (2002) Fiber tracking: principles and strategies—a technical review. NMR Biomed 15:468–480. doi:10.1002/nbm.781

    Article  PubMed  Google Scholar 

  • Mori S, Crain BJ, Chacko VP et al (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269 PMID: 9989633

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee P, McKinstry RC (2006) Diffusion tensor imaging and tractography of human brain development. Neuroimaging Clin N Am 16:19–43. doi:10.1016/j.nic.2005.11.004

    Article  PubMed  Google Scholar 

  • Muramatsu T, Muraoka T, Kawakami Y, Shibayama A, Fukunaga T (2002) In vivo determination of fascicle curvature in contracting human skeletal muscles. J Appl Physiol 92:129–134. PMID: 11744651

    Google Scholar 

  • Nakai R, Azuma T, Sudo M, Urayama S, Takizawa O, Tsutsumi S (2008) MRI analysis of structural changes in skeletal muscles and surrounding tissues following long-term walking exercise with training equipment. J Appl Physiol 105:958–963. doi:10.1152/japplphysiol.01204.2007

    Article  PubMed  Google Scholar 

  • Napadow VJ, Chen Q, Mai V, So PT, Gilbert RJ (2001) Quantitative analysis of three-dimensional resolved fiber architecture in heterogeneous skeletal muscle tissue using NMR and optical imaging methods. Biophys J 80:2968–2975. doi:10.1016/S0006-3495(01)76262-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Donnell LJ, Westin CF (2011) An introduction to diffusion tensor image analysis. Neurosurg Clin N Am 22:185–196. doi:10.1016/j.nec.2010.12.004

    Article  PubMed Central  PubMed  Google Scholar 

  • Okamoto Y, Kunimatsu A, Kono T, Nasu K, Sonobe J, Minami M (2010) Changes in MR diffusion properties during active muscle contraction in the calf. Magn Reson Med Sci 9:1–8. pii:JST.JSTAGE/mrms/9.1

    Google Scholar 

  • Qi J, Olsen NJ, Price RR, Winston JA, Park JH (2008) Diffusion weighted imaging of the inflammatory myopathies: polymyositis and dermatomyositis. J Magn Reson Imaging 27:212–217. doi:10.1002/jmri.21209

    Article  PubMed  Google Scholar 

  • Pappas GP, Asakawa DS, Delp SL, Zajac FE, Drace JE (2002) Nonuniform shortening in the biceps brachii during elbow flexion. J Appl Physiol 92:238123–238129. doi: 10.1152/japplphysiol.00843.2001

    Google Scholar 

  • Saupe N, White LM, Stainsby J, Tomlinson G, Sussman MS (2009) Diffusion tensor imaging and fiber tractography of skeletal muscle: optimization of B value for imaging at 1.5 T. Am J Roentgenol 192:W282–W290. doi:10.2214/AJR.08.1340

    Article  Google Scholar 

  • Schwenzer NF, Steidle G, Martirosian P, Schraml C, Springer F, Claussen CD, Schick F (2009) Diffusion tensor imaging of the human calf muscle: distinct changes in fractional anisotropy and mean diffusion due to passive muscle shortening and stretching. NMR Biomed 22:1047–1053. doi:10.1002/nbm.1409

    PubMed  Google Scholar 

  • Scollan DF, Holmes A, Winslow R, Forder J (1998) Histological validation of myocardial microstructure obtained from diffusion tensor imaging. Am J Physiol 275:H2308–H2318 PMID: 9843833

    CAS  PubMed  Google Scholar 

  • Shenton ME, Hamoda HM, Schneiderman JS, Bouix S, Pasternak O, Rathi Y, Vu MA, Purohit MP, Helmer K, Koerte I, Lin AP, Westin CF, Kikinis R, Kubicki M, Stern RA, Zafonte R (2012) A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging Behav 6:137–192. doi:10.1007/s11682-012-9156-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shin D, Finni T, Ahn S, Hodgson JA, Lee HD, Edgerton VR, Sinha S (2008) Effect of chronic unloading and rehabilitation on human achilles tendon properties: a velocity-encoded phase-contrast MRI study. J Appl Physiol 105:1179–1186. doi:10.1152/japplphysiol.90699.2008

    Article  PubMed Central  PubMed  Google Scholar 

  • Sigmund EE, Sui D, Ukpebor O, Baete S, Fieremans E, Babb JS, Mechlin M, Liu K, Kwon J, McGorty K, Hodnett PA, Bencardino J (2013) Stimulated echo diffusion tensor imaging and SPAIR T(2)-weighted imaging in chronic exertional compartment syndrome of the lower leg muscles. J Magn Reson Imaging. doi:10.1002/jmri.24060

    PubMed  Google Scholar 

  • Sinha S, Sinha U (2011) Reproducibility analysis of diffusion tensor indices and fiber architecture of human calf muscles in vivo at 1.5 tesla in neutral and plantarflexed ankle positions at rest. J Magn Reson Imaging 34:107–119. doi:10.1002/jmri.22596

    Article  PubMed Central  PubMed  Google Scholar 

  • Sinha S, Sinha U, Edgerton VR (2006) In vivo diffusion tensor imaging of the human calf muscle. J Magn Reson Imaging 24:182–190. doi:10.1002/jmri.20593

    Article  PubMed  Google Scholar 

  • Sinha U, Sinha S, Hodgson JA, Edgerton RV (2011) Human soleus muscle architecture at different ankle joint angles from magnetic resonance diffusion tensor imaging. J Appl Physiol 110:807–819. doi:10.1152/japplphysiol.00923.2010

    Article  PubMed Central  PubMed  Google Scholar 

  • Sinha U, Moghadassi A, Sinha S (2012) Strain rate mapping of the lower leg muscles during plantarflexion excursion using MR velocity mapping. Int Soc Magn Res Med, Melbourne, Australia. May 2012

    Google Scholar 

  • Tseng WY, Wedeen VJ, Reese TG, Smith RN, Halpern EF (2003) Diffusion tensor MRI of myocardial fibers and sheets: correspondence with visible cut-face texture. J Magn Reson Imaging 17:31–42. doi:10.1002/jmri.10223

    Article  PubMed  Google Scholar 

  • van Aart E, Sepasian N, Jalba A, Vilanova A (2011) CUDA-accelerated geodesic ray-tracing for fiber tracking. Int J Biomed Imaging 2011:698908. doi:10.1155/2011/698908

    PubMed Central  PubMed  Google Scholar 

  • Williams SE, Heemskerk AM, Welch EB, Li K, Damon BM, Park JH (2013) Quantitative effects of inclusion of fat on muscle diffusion tensor MRI measurements. J Magn Reson Imaging. doi:10.1002/jmri.24045

  • Yamabe E, Nakamura T, Oshio K, Kikuchi Y, Toyama Y, Ikegami H (2007) Line scan diffusion spectrum of the denervated rat skeletal muscle. J Magn Reson Imaging 26:1585–1589. doi:10.1002/jmri.21184

    Article  PubMed  Google Scholar 

  • Zaraiskaya T, Kumbhare D, Noseworthy MD (2006) Diffusion tensor imaging in evaluation of human skeletal muscle injury. J Magn Reson Imaging 24:402–408. doi:10.1002/jmri.20651

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usha Sinha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sinha, U., Sinha, S. (2013). Diffusion-Weighted and Diffusion Tensor Imaging: Applications in Skeletal Muscles. In: Weber, MA. (eds) Magnetic Resonance Imaging of the Skeletal Musculature. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2013_932

Download citation

  • DOI: https://doi.org/10.1007/174_2013_932

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37218-6

  • Online ISBN: 978-3-642-37219-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics