Skeletal Muscle MR Imaging Beyond Protons: With a Focus on Sodium MRI in Musculoskeletal Applications

  • Armin M. Nagel
  • Marc-André Weber
  • Arijitt Borthakur
  • Ravinder Reddy
Part of the Medical Radiology book series (MEDRAD)


Proton MRI is the mainstay of muscle MR imaging, however with the advent of dedicated coil and sequence technology, also non-proton MRI is now possible using high-field MRI units. This chapter includes a discussion of the principles and challenges of non-proton muscle imaging with focus on the use of sodium MRI. Dedicated sequences and the benefit of higher field strength will be discussed and clinical applications within the musculoskeletal system, such as sodium MRI in muscular diseases and cartilage/joint abnormalities will be reviewed. Moreover, other nuclei that are prone to MR imaging, such as chlorine, potassium, and oxygen will also be addressed.


Oxygen Consumption Rate Chemical Exchange Saturation Transfer Inversion Recovery Imaging Hypokalemic Periodic Paralysis Duchenne Muscle Dystrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Especially the implementation of X-nuclei MR imaging profits much from an interdisciplinary team working on this subject together. Thus we thank several physicists, radiologists, physiologists, orthopedic surgeons and neurologists with whom we worked for several years together on X-nuclei MRI. Explicitly, we would thank the following collaborators: Reiner Umathum, Manuela B. Roesler, Stefan H. Hoffmann, and Wolfhard Semmler, all Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg/Germany; Frank Lehmann-Horn and Karin Jurkat-Rott, Neurophysiology, Ulm University, Ulm/Germany. Work on Sects. 14 and 6 was funded in part by the Helmholtz Alliance ICEMED - Imaging and Curing Environmental Metabolic Diseases, through the Initiative and Networking Fund of the Helmholtz Association. Moreover, we acknowledge that Sect. 5 was performed at a NIH-NIBIB supported Biomedical Technology Research Center (P41 EB015893).


  1. Amarteifio E, Nagel AM, Kauczor HU, Weber MA (2011) Functional imaging in muscular diseases. Insights Imaging 2(5):609–619. doi: 10.1007/s13244-011-0111-6 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Amarteifio E, Nagel AM, Weber MA, Jurkat-Rott K, Lehmann-Horn F (2012) Hyperkalemic periodic paralysis and permanent weakness: 3-T MR imaging depicts intracellular 23Na overload-initial results. Radiology 264(1):154–163. doi: 10.1148/radiol.12110980 PubMedCrossRefGoogle Scholar
  3. Argov Z, Lofberg M, Arnold DL (2000) Insights into muscle diseases gained by phosphorus magnetic resonance spectroscopy. Muscle Nerve 23(9):1316–1334PubMedCrossRefGoogle Scholar
  4. Atkinson IC, Thulborn KR (2010) Feasibility of mapping the tissue mass corrected bioscale of cerebral metabolic rate of oxygen consumption using 17-oxygen and 23-sodium MR imaging in a human brain at 9.4 T. Neuroimage 51(2):723-733. doi: 10.1016/j.neuroimage.2010.02.056
  5. Balschi JA, Bittl JA, Springer CS Jr, Ingwall JS (1990) 31P and 23Na NMR spectroscopy of normal and ischemic rat skeletal muscle. Use of a shift reagent in vivo. NMR Biomed 3(2):47–58PubMedCrossRefGoogle Scholar
  6. Bansal N, Germann MJ, Seshan V, Shires GT 3rd, Malloy CR, Sherry AD (1993) Thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylene phosphonate) as a 23Na shift reagent for the in vivo rat liver. Biochemistry 32(21):5638–5643PubMedCrossRefGoogle Scholar
  7. Baumgardner JE, Mellon EA, Tailor DR, Mallikarjunarao K, Borthakur A, Reddy R (2008) Mechanical ventilator for delivery of (1)(7)O(2) in brief pulses. Open Biomed Eng J 2:57–63. doi: 10.2174/1874120700802010057 PubMedCentralPubMedCrossRefGoogle Scholar
  8. Benkhedah N, Bachert P, Semmler W, Nagel AM (2012) Three-dimensional biexponential weighted (23) Na imaging of the human brain with higher SNR and shorter acquisition time. Magn Reson Med. doi: 10.1002/mrm.24516 PubMedGoogle Scholar
  9. Bergin CJ, Pauly JM, Macovski A (1991) Lung parenchyma: projection reconstruction MR imaging. Radiology 179(3):777–781PubMedGoogle Scholar
  10. Boada FE, Christensen JD, Huang-Hellinger FR, Reese TG, Thulborn KR (1994) Quantitative in vivo tissue sodium concentration maps: the effects of biexponential relaxation. Magn Reson Med 32(2):219–223PubMedCrossRefGoogle Scholar
  11. Boada FE, Gillen JS, Shen GX, Chang SY, Thulborn KR (1997) Fast three dimensional sodium imaging. Magn Reson Med 37(5):706–715PubMedCrossRefGoogle Scholar
  12. Borthakur A, Shapiro E, Beers J, Kudchodkar S, Kneeland J, Reddy R (2000) Sensitivity of MRI to proteoglycan depletion in cartilage: comparison of sodium and proton MRI. Osteoarthr Cartil 8(4):288–293. doi:S1063-4584(99)90303-5 [pii]  10.1053/joca.1999.0303 Google Scholar
  13. Borthakur A, Shapiro E, Akella S, Gougoutas A, Kneeland J, Reddy R (2002) Quantifying sodium in the human wrist in vivo by using MR imaging. Radiology 224(2):598–602PubMedCrossRefGoogle Scholar
  14. Burstein D, Velyvis J, Scott KT, Stock KW, Kim YJ, Jaramillo D, Boutin RD, Gray ML (2001) Protocol issues for delayed Gd(DTPA)2—enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med 45(1):36–41PubMedCrossRefGoogle Scholar
  15. Chang G, Wang L, Schweitzer ME, Regatte RR (2010) 3D 23Na MRI of human skeletal muscle at 7 Tesla: initial experience. Eur Radiol 20(8):2039–2046. doi: 10.1007/s00330-010-1761-3 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Clausen T (2003) Na + -K + pump regulation and skeletal muscle contractility. Physiol Rev 83(4):1269–1324. doi: 10.1152/physrev.00011.2003 PubMedGoogle Scholar
  17. Constantinides CD, Gillen JS, Boada FE, Pomper MG, Bottomley PA (2000) Human skeletal muscle: sodium MR imaging and quantification-potential applications in exercise and disease. Radiology 216(2):559–568PubMedCrossRefGoogle Scholar
  18. Dijkgraaf LC, de Bont LG, Boering G, Liem RS (1995) The structure, biochemistry, and metabolism of osteoarthritic cartilage: a review of the literature. J Oral Maxillofac Surg 53(10):1182–1192. doi: 0278-2391(95)90632-0 [pii]PubMedCrossRefGoogle Scholar
  19. Donahue KM, Weisskoff RM, Parmelee DJ, Callahan RJ, Wilkinson RA, Mandeville JB, Rosen BR (1995) Dynamic Gd-DTPA enhanced MRI measurement of tissue cell volume fraction. Magn Reson Med 34(3):423–432PubMedCrossRefGoogle Scholar
  20. Felson D, Zhang Y, Hannan M, Kannel W, Kiel D (1995a) Alcohol intake and bone mineral density in elderly men and women. The Framingham Study. Am J Epidemiol 142(5):485–492PubMedGoogle Scholar
  21. Felson D, Zhang Y, Hannan M, Naimark A, Weissman B, Aliabadi P, Levy D (1995b) The incidence and natural history of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study. Arthritis Rheum 38(10):1500–1505PubMedCrossRefGoogle Scholar
  22. Granot J (1988) Sodium imaging of human body organs and extremities in vivo. Radiology 167:547–550PubMedGoogle Scholar
  23. Gupta RK, Gupta P, Moore RD (1984) NMR studies of intracellular metal ions in intact cells and tissues. Annu Rev Biophys Bioeng 13:221–246. doi: 10.1146/ PubMedCrossRefGoogle Scholar
  24. Harris RK, Becker ED, Cabral de Menezes SM, Goodfellow R, Granger P (2002) NMR nomenclature: nuclear spin properties and conventions for chemical shifts. IUPAC Recommendations 2001. International Union of Pure and Applied Chemistry. Physical Chemistry Division. Commission on Molecular Structure and Spectroscopy. Magn Reson Chem 40(7):489–505. doi: 10.1002/mrc.1042
  25. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544PubMedCentralPubMedGoogle Scholar
  26. Hoffmann SH (2011) Localized quantification of the cerebral metabolic rate of oxygen consumption (CMRO2) with 17O magnetic resonance tomograghy. Dissertation, Universität Heidelberg, HeidelbergGoogle Scholar
  27. Hoffmann SH, Begovatz P, Nagel AM, Umathum R, Schommer K, Bachert P, Bock M (2011) A measurement setup for direct 17O MRI at 7 T. Magn Reson Med 66(4):1109–1115. doi: 10.1002/mrm.22871 PubMedCrossRefGoogle Scholar
  28. Hoult DI, Lauterbur PC (1979) The sensitivity of the zeugmatographic experiment involving human samples. J Magn Reson 34(2):425–433. doi: 10.1016/0022-2364(79)90019-2 Google Scholar
  29. Insko EK, Reddy R, Leigh JS (1997) High resolution, short echo time sodium imaging of articular cartilage. J Magn Reson Imaging 7(6):1056–1059PubMedCrossRefGoogle Scholar
  30. Insko EK, Kaufman JH, Leigh JS, Reddy R (1999) Sodium NMR evaluation of articular cartilage degradation. Magn Reson Med 41:30–34PubMedCrossRefGoogle Scholar
  31. Jaccard G, Wimperis S, Bodenhausen G (1986) Multiplequantum NMR spectroscopy of S = 3/2 spins in isotropic phase: a new probe for multiexponential relaxation. J Chem Phys 85:6282. doi: 10.1063/1.451458 CrossRefGoogle Scholar
  32. Jurkat-Rott K, Weber MA, Fauler M, Guo XH, Holzherr BD, Paczulla A, Nordsborg N, Joechle W, Lehmann-Horn F (2009) K+-dependent paradoxical membrane depolarization and Na+ overload, major and reversible contributors to weakness by ion channel leaks. Proc Natl Acad Sci U S A 106(10):4036–4041. doi:0811277106 [pii]  10.1073/pnas.0811277106 Google Scholar
  33. Kline RP, Wu EX, Petrylak DP, Szabolcs M, Alderson PO, Weisfeldt ML, Cannon P, Katz J (2000) Rapid in vivo monitoring of chemotherapeutic response using weighted sodium magnetic resonance imaging. Clin Cancer Res 6(6):2146–2156PubMedGoogle Scholar
  34. Konstandin S, Nagel AM (2013) Measurement techniques for magnetic resonance imaging of fast relaxing nuclei. Magn Reson Mater Phy. doi: 10.1007/s10334-013-0394-3
  35. Krusche-Mandl I, Schmitt B, Zak L, Apprich S, Aldrian S, Juras V, Friedrich KM, Marlovits S, Weber M, Trattnig S (2012) Long-term results 8 years after autologous osteochondral transplantation: 7 T gagCEST and sodium magnetic resonance imaging with morphological and clinical correlation. Osteoarthr Cartil/OARS, Osteoarthr Res Soc 20(5):357–363. doi: 10.1016/j.joca.2012.01.020 CrossRefGoogle Scholar
  36. Lauterbur PC (1973) Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242(5394):190–191CrossRefGoogle Scholar
  37. Lehmann-Horn F, Jurkat-Rott K (1999) Voltage-gated ion channels and hereditary disease. Physiol Rev 79(4):1317–1372PubMedGoogle Scholar
  38. Lesperance LM, Gray ML, Burstein D (1992) Determination of fixed charge-density in cartilage using nuclear-magnetic-resonance. J Orthop Res 10(1):1–13PubMedCrossRefGoogle Scholar
  39. Lu A, Atkinson IC, Claiborne TC, Damen FC, Thulborn KR (2010) Quantitative sodium imaging with a flexible twisted projection pulse sequence. Magn Reson Med 63(6):1583–1593. doi: 10.1002/mrm.22381 PubMedCentralPubMedCrossRefGoogle Scholar
  40. Madelin G, Regatte RR (2013) Biomedical applications of sodium MRI in vivo. J Magn Reson Imaging (Epub ahead of print). doi: 10.1002/jmri.24168
  41. Maroudas AI (1976) Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature 260(5554):808–809PubMedCrossRefGoogle Scholar
  42. Maroudas A (1979) Physicochemical properties of articular cartilage. In: Freeman MAR (ed) Adult articular cartilage, 2nd edn. Pitman Medical, Kent, pp 215–290Google Scholar
  43. Maroudas A, Muir H, Wingham J (1969) The correlation of fixed negative charge with glycosaminoglycan content of human articular cartilage. Biochim Biophys Acta 177(3):492–500PubMedCrossRefGoogle Scholar
  44. Miles KA, Williams RE (2008) Warburg revisited: imaging tumour blood flow and metabolism. Cancer Imaging 8:81–86. doi: 10.1102/1470-7330.2008.0011 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Mispelter J, Lupu M, Briguet A (2006) NMR probeheads for biophysical and biomedical experiments: theoretical principles and practical guidelines. Imperial College Press, LondonCrossRefGoogle Scholar
  46. Nagel AM (2009) Sodium magnetic resonance imaging: development of a 3D radial acquisition technique with optimized k-space sampling density and high SNR-efficiency. Dissertation, Universität Heidelberg, HeidelbergGoogle Scholar
  47. Nagel AM, Meise FM, Weber MA, Jurkat-Rott K, Lehmann-Horn F, Bock M, Semmler W, Umathum R (2012) Chlorine (35Cl) Magnetic resonance imaging of the human brain and muscle. In: Proceedings of the The International Society for Magnetic Resonance in Medicine, 2012, p 1699Google Scholar
  48. Nagel AM, Laun FB, Weber MA, Matthies C, Semmler W, Schad LR (2009) Sodium MRI using a density-adapted 3D radial acquisition technique. Magn Reson Med 62(6):1565–1573. doi: 10.1002/mrm.22157 PubMedCrossRefGoogle Scholar
  49. Nagel AM, Bock M, Hartmann C, Gerigk L, Neumann JO, Weber MA, Bendszus M, Radbruch A, Wick W, Schlemmer HP, Semmler W, Biller A (2011a) The potential of relaxation-weighted sodium magnetic resonance imaging as demonstrated on brain tumors. Invest Radiol 46(9):539–547. doi: 10.1097/RLI.0b013e31821ae918 PubMedCrossRefGoogle Scholar
  50. Nagel AM, Amarteifio E, Lehmann-Horn F, Jurkat-Rott K, Semmler W, Schad LR, Weber MA (2011b) 3 Tesla sodium inversion recovery magnetic resonance imaging allows for improved visualization of intracellular sodium content changes in muscular channelopathies. Invest Radiol 46(12):759–766. doi: 10.1097/RLI.0b013e31822836f6 PubMedCrossRefGoogle Scholar
  51. Nagel AM, Weber MA, Wolf MB, Semmler W (2012) 3D density-adapted projection reconstruction 23Na-MRI with anisotropic resolution and field-of-view. In: Proceedings of the International Society for Magnetic Resonance in Medicine, 2012, p 2282Google Scholar
  52. Nagel AM, Weber MA, Lehmann-Horn F, Jurkat-Rott K, Radbruch A, Umathum R, Semmler W (2013) Cl- Alterations do not correspond to disease-related Na+ changes. In: Proceedings of the International Society for Magnetic Resonance in Medicine, 2013, p 116Google Scholar
  53. Naritomi H, Kanashiro M, Sasaki M, Kuribayashi Y, Sawada T (1987) In vivo measurements of intra- and extracellular Na+ and water in the brain and muscle by nuclear magnetic resonance spectroscopy with shift reagent. Biophys J 52(4):611–616. doi: 10.1016/S0006-3495(87)83251-4 PubMedCentralPubMedCrossRefGoogle Scholar
  54. Nielles-Vallespin S, Weber M, Bock M, Bongers A, Speier P, Combs S, Wöhrle J, Lehmann-Horn F, Essig M, Schad L (2007) 3D radial projection technique with ultrashort echo times for sodium MRI: clinical applications in human brain and skeletal muscle. Magn Reson Med 57(1):74–81PubMedCrossRefGoogle Scholar
  55. Nuutila P, Peltoniemi P, Oikonen V, Larmola K, Kemppainen J, Takala T, Sipila H, Oksanen A, Ruotsalainen U, Bolli GB, Yki-Jarvinen H (2000) Enhanced stimulation of glucose uptake by insulin increases exercise-stimulated glucose uptake in skeletal muscle in humans: studies using [15O]O2, [15O]H2O, [18F]fluoro-deoxy-glucose, and positron emission tomography. Diabetes 49(7):1084–1091PubMedCrossRefGoogle Scholar
  56. Pekar J, Renshaw PF (1969) Leigh JS (1987) Selective detection of intracellular sodium by coherence-transfer NMR. J Magn Reson 72(1):159–161Google Scholar
  57. Reddy R, Insko EK, Noyszewski EA, Dandora R, Kneeland JB, Leigh JS (1998) Sodium MRI of human articular cartilage in vivo. Magn Reson Med 39(5):697–701PubMedCrossRefGoogle Scholar
  58. Robinson JD, Flashner MS (1979) The (Na + + K +)-activated ATPase. Enzymatic and transport properties. Biochim Biophys Acta 549(2):145–176PubMedCrossRefGoogle Scholar
  59. Saadat E, Jobke B, Chu B, Lu Y, Cheng J, Li X, Ries MD, Majumdar S, Link TM (2008) Diagnostic performance of in vivo 3-T MRI for articular cartilage abnormalities in human osteoarthritic knees using histology as standard of reference. Eur Radiol 18(10):2292–2302. doi: 10.1007/s00330-008-0989-7 PubMedCentralPubMedCrossRefGoogle Scholar
  60. Schmitt B, Zbýn S, Stelzeneder D, Jellus V, Paul D, Lauer L, Bachert P, Trattnig S (2011) Cartilage quality assessment by using glycosaminoglycan chemical exchange saturation transfer and (23)Na MR imaging at 7 T. Radiology 260 (1):257–264. doi:radiol.11101841 [pii]  10.1148/radiol.11101841
  61. Shapiro E, Borthakur A, Dandora R, Kriss A, Leigh J, Reddy R (2000) Sodium visibility and quantitation in intact bovine articular cartilage using high field (23)Na MRI and MRS. J Magn Reson 142(1):24–31. doi:S1090-7807(99)91932-8 [pii]  10.1006/jmre.1999.1932 Google Scholar
  62. Shapiro E, Borthakur A, Gougoutas A, Reddy R (2002) 23Na MRI accurately measures fixed charge density in articular cartilage. Magn Reson Med 47(2):284–291. doi: 10.1002/mrm.10054 [pii]PubMedCentralPubMedCrossRefGoogle Scholar
  63. Staroswiecki E, Bangerter NK, Gurney PT, Grafendorfer T, Gold GE, Hargreaves BA (2010) In vivo sodium imaging of human patellar cartilage with a 3D cones sequence at 3 T and 7 T. J Magn Reson Imaging 32(2):446–451. doi: 10.1002/jmri.22191 PubMedCentralPubMedCrossRefGoogle Scholar
  64. Stobbe R, Beaulieu C (2005) In vivo sodium magnetic resonance imaging of the human brain using soft inversion recovery fluid attenuation. Magn Reson Med 54(5):1305–1310PubMedCrossRefGoogle Scholar
  65. Sykova E, Nicholson C (2008) Diffusion in brain extracellular space. Physiol Rev 88(4):1277–1340. doi: 10.1152/physrev.00027.2007 PubMedCentralPubMedCrossRefGoogle Scholar
  66. Thulborn KR, Gindin TS, Davis D, Erb P (1999) Comprehensive MR imaging protocol for stroke management: tissue sodium concentration as a measure of tissue viability in nonhuman primate studies and in clinical studies. Radiology 213(1):156–166PubMedCrossRefGoogle Scholar
  67. Umathum R, Roesler MB, Nagel AM (2013) In Vivo Potassium (39 K) magnetic resonance imaging of human muscle and brain. Radiology. doi: 10.1148/radiol.13130757 PubMedGoogle Scholar
  68. van der Maarel JRC (1989) Relaxation of spin 3/2 in a non-zero average electric field gradient. Chem Phys Lett 155:288–296CrossRefGoogle Scholar
  69. Wang L, Wu Y, Chang G, Oesingmann N, Schweitzer ME, Jerschow A, Regatte RR (2009) Rapid isotropic 3D-sodium MRI of the knee joint in vivo at 7T. J Magn Reson Imaging 30(3):606–614. doi: 10.1002/jmri.21881 PubMedCentralPubMedCrossRefGoogle Scholar
  70. Wang C, McArdle E, Fenty M, Witschey W, Elliott M, Sochor M, Reddy R, Borthakur A (2010) Validation of sodium magnetic resonance imaging of intervertebral disc. Spine 35(5):505–510. doi: 10.1097/BRS.0b013e3181b32d3b PubMedCentralPubMedCrossRefGoogle Scholar
  71. Watts A, Stobbe RW, Beaulieu C (2011) Signal-to-noise optimization for sodium MRI of the human knee at 4.7 Tesla using steady state. Magn Reson Med 66(3):697–705. doi: 10.1002/mrm.22838 PubMedCrossRefGoogle Scholar
  72. Weber MA, Nielles-Vallespin S, Essig M, Jurkat-Rott K, Kauczor HU, Lehmann-Horn F (2006a) Muscle Na+ channelopathies: MRI detects intracellular 23Na accumulation during episodic weakness. Neurology 67(7):1151–1158. doi:01.wnl.0000233841.75824.0f [pii]  10.1212/01.wnl.0000233841.75824.0f Google Scholar
  73. Weber MA, Nielles-Vallespin S, Huttner HB, Wohrle JC, Jurkat-Rott K, Lehmann-Horn F, Schad LR, Kauczor HU, Essig M, Meinck HM (2006b) Evaluation of patients with paramyotonia at 23Na MR imaging during cold-induced weakness. Radiology 240(2):489–500PubMedCrossRefGoogle Scholar
  74. Weber MA, Nagel AM, Jurkat-Rott K, Lehmann-Horn F (2011) Sodium (23Na) MRI detects elevated muscular sodium concentration in Duchenne muscular dystrophy. Neurology 77(23):2017–2024. doi: 10.1212/WNL.0b013e31823b9c78 PubMedCrossRefGoogle Scholar
  75. Weber MA, Nagel AM, Wolf MB, Jurkat-Rott K, Kauczor HU, Semmler W, Lehmann-Horn F (2012) Permanent muscular sodium overload and persistent muscle edema in Duchenne muscular dystrophy: a possible contributor of progressive muscle degeneration. J Neurol 259(11):2385–2392. doi: 10.1007/s00415-012-6512-8 PubMedCrossRefGoogle Scholar
  76. Wheaton A, Borthakur A, Shapiro E, Regatte R, Akella S, Kneeland J, Reddy R (2004) Proteoglycan loss in human knee cartilage: quantitation with sodium MR imaging—feasibility study. Radiology 231(3):900–905. doi:231/3/900 [pii]  10.1148/radiol.2313030521 Google Scholar
  77. Wheaton A, Dodge G, Borthakur A, Kneeland J, Schumacher H, Reddy R (2005) Detection of changes in articular cartilage proteoglycan by T(1rho) magnetic resonance imaging. J Orthop Res 23(1):102–108. doi:S0736-0266(04)00155-X [pii]  10.1016/j.orthres.2004.06.015 Google Scholar
  78. Woessner DE, Bansal N (1998) Temporal characteristics of NMR signals from spin 3/2 nuclei of incompletely disordered systems. J Magn Reson 133:21–35PubMedCrossRefGoogle Scholar
  79. Zhang W, Moskowitz RW, Nuki G, Abramson S, Altman RD, Arden N, Bierma-Zeinstra S, Brandt KD, Croft P, Doherty M, Dougados M, Hochberg M, Hunter DJ, Kwoh K, Lohmander LS, Tugwell P (2008) OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines. Osteoarthritis Cartilage 16(2):137–162. doi:S1063-4584(07)00397-4 [pii]  10.1016/j.joca.2007.12.013 Google Scholar
  80. Zhu XH, Zhang N, Zhang Y, Zhang X, Ugurbil K, Chen W (2005) In vivo 17O NMR approaches for brain study at high field. NMR Biomed 18(2):83–103. doi: 10.1002/nbm.930 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Armin M. Nagel
    • 1
  • Marc-André Weber
    • 2
  • Arijitt Borthakur
    • 3
  • Ravinder Reddy
    • 3
  1. 1.Medical Physics in RadiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
  2. 2.Diagnostic and Interventional RadiologyUniversity Hospital HeidelbergHeidelbergGermany
  3. 3.Center for Magnetic Resonance and Optical Imaging, Department of RadiologyUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations