Skip to main content

Skeletal Muscle MR Imaging Beyond Protons: With a Focus on Sodium MRI in Musculoskeletal Applications

  • Chapter
  • First Online:

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

Proton MRI is the mainstay of muscle MR imaging, however with the advent of dedicated coil and sequence technology, also non-proton MRI is now possible using high-field MRI units. This chapter includes a discussion of the principles and challenges of non-proton muscle imaging with focus on the use of sodium MRI. Dedicated sequences and the benefit of higher field strength will be discussed and clinical applications within the musculoskeletal system, such as sodium MRI in muscular diseases and cartilage/joint abnormalities will be reviewed. Moreover, other nuclei that are prone to MR imaging, such as chlorine, potassium, and oxygen will also be addressed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amarteifio E, Nagel AM, Kauczor HU, Weber MA (2011) Functional imaging in muscular diseases. Insights Imaging 2(5):609–619. doi:10.1007/s13244-011-0111-6

    Article  PubMed Central  PubMed  Google Scholar 

  • Amarteifio E, Nagel AM, Weber MA, Jurkat-Rott K, Lehmann-Horn F (2012) Hyperkalemic periodic paralysis and permanent weakness: 3-T MR imaging depicts intracellular 23Na overload-initial results. Radiology 264(1):154–163. doi:10.1148/radiol.12110980

    Article  PubMed  Google Scholar 

  • Argov Z, Lofberg M, Arnold DL (2000) Insights into muscle diseases gained by phosphorus magnetic resonance spectroscopy. Muscle Nerve 23(9):1316–1334

    Article  CAS  PubMed  Google Scholar 

  • Atkinson IC, Thulborn KR (2010) Feasibility of mapping the tissue mass corrected bioscale of cerebral metabolic rate of oxygen consumption using 17-oxygen and 23-sodium MR imaging in a human brain at 9.4 T. Neuroimage 51(2):723-733. doi:10.1016/j.neuroimage.2010.02.056

  • Balschi JA, Bittl JA, Springer CS Jr, Ingwall JS (1990) 31P and 23Na NMR spectroscopy of normal and ischemic rat skeletal muscle. Use of a shift reagent in vivo. NMR Biomed 3(2):47–58

    Article  CAS  PubMed  Google Scholar 

  • Bansal N, Germann MJ, Seshan V, Shires GT 3rd, Malloy CR, Sherry AD (1993) Thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylene phosphonate) as a 23Na shift reagent for the in vivo rat liver. Biochemistry 32(21):5638–5643

    Article  CAS  PubMed  Google Scholar 

  • Baumgardner JE, Mellon EA, Tailor DR, Mallikarjunarao K, Borthakur A, Reddy R (2008) Mechanical ventilator for delivery of (1)(7)O(2) in brief pulses. Open Biomed Eng J 2:57–63. doi:10.2174/1874120700802010057

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benkhedah N, Bachert P, Semmler W, Nagel AM (2012) Three-dimensional biexponential weighted (23) Na imaging of the human brain with higher SNR and shorter acquisition time. Magn Reson Med. doi:10.1002/mrm.24516

    PubMed  Google Scholar 

  • Bergin CJ, Pauly JM, Macovski A (1991) Lung parenchyma: projection reconstruction MR imaging. Radiology 179(3):777–781

    CAS  PubMed  Google Scholar 

  • Boada FE, Christensen JD, Huang-Hellinger FR, Reese TG, Thulborn KR (1994) Quantitative in vivo tissue sodium concentration maps: the effects of biexponential relaxation. Magn Reson Med 32(2):219–223

    Article  CAS  PubMed  Google Scholar 

  • Boada FE, Gillen JS, Shen GX, Chang SY, Thulborn KR (1997) Fast three dimensional sodium imaging. Magn Reson Med 37(5):706–715

    Article  CAS  PubMed  Google Scholar 

  • Borthakur A, Shapiro E, Beers J, Kudchodkar S, Kneeland J, Reddy R (2000) Sensitivity of MRI to proteoglycan depletion in cartilage: comparison of sodium and proton MRI. Osteoarthr Cartil 8(4):288–293. doi:S1063-4584(99)90303-5 [pii] 10.1053/joca.1999.0303

    Google Scholar 

  • Borthakur A, Shapiro E, Akella S, Gougoutas A, Kneeland J, Reddy R (2002) Quantifying sodium in the human wrist in vivo by using MR imaging. Radiology 224(2):598–602

    Article  CAS  PubMed  Google Scholar 

  • Burstein D, Velyvis J, Scott KT, Stock KW, Kim YJ, Jaramillo D, Boutin RD, Gray ML (2001) Protocol issues for delayed Gd(DTPA)2—enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med 45(1):36–41

    Article  CAS  PubMed  Google Scholar 

  • Chang G, Wang L, Schweitzer ME, Regatte RR (2010) 3D 23Na MRI of human skeletal muscle at 7 Tesla: initial experience. Eur Radiol 20(8):2039–2046. doi:10.1007/s00330-010-1761-3

    Article  PubMed Central  PubMed  Google Scholar 

  • Clausen T (2003) Na + -K + pump regulation and skeletal muscle contractility. Physiol Rev 83(4):1269–1324. doi:10.1152/physrev.00011.2003

    CAS  PubMed  Google Scholar 

  • Constantinides CD, Gillen JS, Boada FE, Pomper MG, Bottomley PA (2000) Human skeletal muscle: sodium MR imaging and quantification-potential applications in exercise and disease. Radiology 216(2):559–568

    Article  CAS  PubMed  Google Scholar 

  • Dijkgraaf LC, de Bont LG, Boering G, Liem RS (1995) The structure, biochemistry, and metabolism of osteoarthritic cartilage: a review of the literature. J Oral Maxillofac Surg 53(10):1182–1192. doi:0278-2391(95)90632-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Donahue KM, Weisskoff RM, Parmelee DJ, Callahan RJ, Wilkinson RA, Mandeville JB, Rosen BR (1995) Dynamic Gd-DTPA enhanced MRI measurement of tissue cell volume fraction. Magn Reson Med 34(3):423–432

    Article  CAS  PubMed  Google Scholar 

  • Felson D, Zhang Y, Hannan M, Kannel W, Kiel D (1995a) Alcohol intake and bone mineral density in elderly men and women. The Framingham Study. Am J Epidemiol 142(5):485–492

    CAS  PubMed  Google Scholar 

  • Felson D, Zhang Y, Hannan M, Naimark A, Weissman B, Aliabadi P, Levy D (1995b) The incidence and natural history of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study. Arthritis Rheum 38(10):1500–1505

    Article  CAS  PubMed  Google Scholar 

  • Granot J (1988) Sodium imaging of human body organs and extremities in vivo. Radiology 167:547–550

    CAS  PubMed  Google Scholar 

  • Gupta RK, Gupta P, Moore RD (1984) NMR studies of intracellular metal ions in intact cells and tissues. Annu Rev Biophys Bioeng 13:221–246. doi:10.1146/annurev.bb.13.060184.001253

    Article  CAS  PubMed  Google Scholar 

  • Harris RK, Becker ED, Cabral de Menezes SM, Goodfellow R, Granger P (2002) NMR nomenclature: nuclear spin properties and conventions for chemical shifts. IUPAC Recommendations 2001. International Union of Pure and Applied Chemistry. Physical Chemistry Division. Commission on Molecular Structure and Spectroscopy. Magn Reson Chem 40(7):489–505. doi:10.1002/mrc.1042

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoffmann SH (2011) Localized quantification of the cerebral metabolic rate of oxygen consumption (CMRO2) with 17O magnetic resonance tomograghy. Dissertation, Universität Heidelberg, Heidelberg

    Google Scholar 

  • Hoffmann SH, Begovatz P, Nagel AM, Umathum R, Schommer K, Bachert P, Bock M (2011) A measurement setup for direct 17O MRI at 7 T. Magn Reson Med 66(4):1109–1115. doi:10.1002/mrm.22871

    Article  PubMed  Google Scholar 

  • Hoult DI, Lauterbur PC (1979) The sensitivity of the zeugmatographic experiment involving human samples. J Magn Reson 34(2):425–433. doi:10.1016/0022-2364(79)90019-2

    CAS  Google Scholar 

  • Insko EK, Reddy R, Leigh JS (1997) High resolution, short echo time sodium imaging of articular cartilage. J Magn Reson Imaging 7(6):1056–1059

    Article  CAS  PubMed  Google Scholar 

  • Insko EK, Kaufman JH, Leigh JS, Reddy R (1999) Sodium NMR evaluation of articular cartilage degradation. Magn Reson Med 41:30–34

    Article  CAS  PubMed  Google Scholar 

  • Jaccard G, Wimperis S, Bodenhausen G (1986) Multiplequantum NMR spectroscopy of S = 3/2 spins in isotropic phase: a new probe for multiexponential relaxation. J Chem Phys 85:6282. doi:10.1063/1.451458

    Article  CAS  Google Scholar 

  • Jurkat-Rott K, Weber MA, Fauler M, Guo XH, Holzherr BD, Paczulla A, Nordsborg N, Joechle W, Lehmann-Horn F (2009) K+-dependent paradoxical membrane depolarization and Na+ overload, major and reversible contributors to weakness by ion channel leaks. Proc Natl Acad Sci U S A 106(10):4036–4041. doi:0811277106 [pii] 10.1073/pnas.0811277106

    Google Scholar 

  • Kline RP, Wu EX, Petrylak DP, Szabolcs M, Alderson PO, Weisfeldt ML, Cannon P, Katz J (2000) Rapid in vivo monitoring of chemotherapeutic response using weighted sodium magnetic resonance imaging. Clin Cancer Res 6(6):2146–2156

    CAS  PubMed  Google Scholar 

  • Konstandin S, Nagel AM (2013) Measurement techniques for magnetic resonance imaging of fast relaxing nuclei. Magn Reson Mater Phy. doi:10.1007/s10334-013-0394-3

  • Krusche-Mandl I, Schmitt B, Zak L, Apprich S, Aldrian S, Juras V, Friedrich KM, Marlovits S, Weber M, Trattnig S (2012) Long-term results 8 years after autologous osteochondral transplantation: 7 T gagCEST and sodium magnetic resonance imaging with morphological and clinical correlation. Osteoarthr Cartil/OARS, Osteoarthr Res Soc 20(5):357–363. doi:10.1016/j.joca.2012.01.020

    Article  CAS  Google Scholar 

  • Lauterbur PC (1973) Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242(5394):190–191

    Article  CAS  Google Scholar 

  • Lehmann-Horn F, Jurkat-Rott K (1999) Voltage-gated ion channels and hereditary disease. Physiol Rev 79(4):1317–1372

    CAS  PubMed  Google Scholar 

  • Lesperance LM, Gray ML, Burstein D (1992) Determination of fixed charge-density in cartilage using nuclear-magnetic-resonance. J Orthop Res 10(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Lu A, Atkinson IC, Claiborne TC, Damen FC, Thulborn KR (2010) Quantitative sodium imaging with a flexible twisted projection pulse sequence. Magn Reson Med 63(6):1583–1593. doi:10.1002/mrm.22381

    Article  PubMed Central  PubMed  Google Scholar 

  • Madelin G, Regatte RR (2013) Biomedical applications of sodium MRI in vivo. J Magn Reson Imaging (Epub ahead of print). doi:10.1002/jmri.24168

  • Maroudas AI (1976) Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature 260(5554):808–809

    Article  CAS  PubMed  Google Scholar 

  • Maroudas A (1979) Physicochemical properties of articular cartilage. In: Freeman MAR (ed) Adult articular cartilage, 2nd edn. Pitman Medical, Kent, pp 215–290

    Google Scholar 

  • Maroudas A, Muir H, Wingham J (1969) The correlation of fixed negative charge with glycosaminoglycan content of human articular cartilage. Biochim Biophys Acta 177(3):492–500

    Article  CAS  PubMed  Google Scholar 

  • Miles KA, Williams RE (2008) Warburg revisited: imaging tumour blood flow and metabolism. Cancer Imaging 8:81–86. doi:10.1102/1470-7330.2008.0011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mispelter J, Lupu M, Briguet A (2006) NMR probeheads for biophysical and biomedical experiments: theoretical principles and practical guidelines. Imperial College Press, London

    Book  Google Scholar 

  • Nagel AM (2009) Sodium magnetic resonance imaging: development of a 3D radial acquisition technique with optimized k-space sampling density and high SNR-efficiency. Dissertation, Universität Heidelberg, Heidelberg

    Google Scholar 

  • Nagel AM, Meise FM, Weber MA, Jurkat-Rott K, Lehmann-Horn F, Bock M, Semmler W, Umathum R (2012) Chlorine (35Cl) Magnetic resonance imaging of the human brain and muscle. In: Proceedings of the The International Society for Magnetic Resonance in Medicine, 2012, p 1699

    Google Scholar 

  • Nagel AM, Laun FB, Weber MA, Matthies C, Semmler W, Schad LR (2009) Sodium MRI using a density-adapted 3D radial acquisition technique. Magn Reson Med 62(6):1565–1573. doi:10.1002/mrm.22157

    Article  PubMed  Google Scholar 

  • Nagel AM, Bock M, Hartmann C, Gerigk L, Neumann JO, Weber MA, Bendszus M, Radbruch A, Wick W, Schlemmer HP, Semmler W, Biller A (2011a) The potential of relaxation-weighted sodium magnetic resonance imaging as demonstrated on brain tumors. Invest Radiol 46(9):539–547. doi:10.1097/RLI.0b013e31821ae918

    Article  PubMed  Google Scholar 

  • Nagel AM, Amarteifio E, Lehmann-Horn F, Jurkat-Rott K, Semmler W, Schad LR, Weber MA (2011b) 3 Tesla sodium inversion recovery magnetic resonance imaging allows for improved visualization of intracellular sodium content changes in muscular channelopathies. Invest Radiol 46(12):759–766. doi:10.1097/RLI.0b013e31822836f6

    Article  CAS  PubMed  Google Scholar 

  • Nagel AM, Weber MA, Wolf MB, Semmler W (2012) 3D density-adapted projection reconstruction 23Na-MRI with anisotropic resolution and field-of-view. In: Proceedings of the International Society for Magnetic Resonance in Medicine, 2012, p 2282

    Google Scholar 

  • Nagel AM, Weber MA, Lehmann-Horn F, Jurkat-Rott K, Radbruch A, Umathum R, Semmler W (2013) Cl- Alterations do not correspond to disease-related Na+ changes. In: Proceedings of the International Society for Magnetic Resonance in Medicine, 2013, p 116

    Google Scholar 

  • Naritomi H, Kanashiro M, Sasaki M, Kuribayashi Y, Sawada T (1987) In vivo measurements of intra- and extracellular Na+ and water in the brain and muscle by nuclear magnetic resonance spectroscopy with shift reagent. Biophys J 52(4):611–616. doi:10.1016/S0006-3495(87)83251-4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nielles-Vallespin S, Weber M, Bock M, Bongers A, Speier P, Combs S, Wöhrle J, Lehmann-Horn F, Essig M, Schad L (2007) 3D radial projection technique with ultrashort echo times for sodium MRI: clinical applications in human brain and skeletal muscle. Magn Reson Med 57(1):74–81

    Article  CAS  PubMed  Google Scholar 

  • Nuutila P, Peltoniemi P, Oikonen V, Larmola K, Kemppainen J, Takala T, Sipila H, Oksanen A, Ruotsalainen U, Bolli GB, Yki-Jarvinen H (2000) Enhanced stimulation of glucose uptake by insulin increases exercise-stimulated glucose uptake in skeletal muscle in humans: studies using [15O]O2, [15O]H2O, [18F]fluoro-deoxy-glucose, and positron emission tomography. Diabetes 49(7):1084–1091

    Article  CAS  PubMed  Google Scholar 

  • Pekar J, Renshaw PF (1969) Leigh JS (1987) Selective detection of intracellular sodium by coherence-transfer NMR. J Magn Reson 72(1):159–161

    Google Scholar 

  • Reddy R, Insko EK, Noyszewski EA, Dandora R, Kneeland JB, Leigh JS (1998) Sodium MRI of human articular cartilage in vivo. Magn Reson Med 39(5):697–701

    Article  CAS  PubMed  Google Scholar 

  • Robinson JD, Flashner MS (1979) The (Na + + K +)-activated ATPase. Enzymatic and transport properties. Biochim Biophys Acta 549(2):145–176

    Article  CAS  PubMed  Google Scholar 

  • Saadat E, Jobke B, Chu B, Lu Y, Cheng J, Li X, Ries MD, Majumdar S, Link TM (2008) Diagnostic performance of in vivo 3-T MRI for articular cartilage abnormalities in human osteoarthritic knees using histology as standard of reference. Eur Radiol 18(10):2292–2302. doi:10.1007/s00330-008-0989-7

    Article  PubMed Central  PubMed  Google Scholar 

  • Schmitt B, Zbýn S, Stelzeneder D, Jellus V, Paul D, Lauer L, Bachert P, Trattnig S (2011) Cartilage quality assessment by using glycosaminoglycan chemical exchange saturation transfer and (23)Na MR imaging at 7 T. Radiology 260 (1):257–264. doi:radiol.11101841 [pii] 10.1148/radiol.11101841

  • Shapiro E, Borthakur A, Dandora R, Kriss A, Leigh J, Reddy R (2000) Sodium visibility and quantitation in intact bovine articular cartilage using high field (23)Na MRI and MRS. J Magn Reson 142(1):24–31. doi:S1090-7807(99)91932-8 [pii] 10.1006/jmre.1999.1932

    Google Scholar 

  • Shapiro E, Borthakur A, Gougoutas A, Reddy R (2002) 23Na MRI accurately measures fixed charge density in articular cartilage. Magn Reson Med 47(2):284–291. doi:10.1002/mrm.10054 [pii]

    Article  PubMed Central  PubMed  Google Scholar 

  • Staroswiecki E, Bangerter NK, Gurney PT, Grafendorfer T, Gold GE, Hargreaves BA (2010) In vivo sodium imaging of human patellar cartilage with a 3D cones sequence at 3 T and 7 T. J Magn Reson Imaging 32(2):446–451. doi:10.1002/jmri.22191

    Article  PubMed Central  PubMed  Google Scholar 

  • Stobbe R, Beaulieu C (2005) In vivo sodium magnetic resonance imaging of the human brain using soft inversion recovery fluid attenuation. Magn Reson Med 54(5):1305–1310

    Article  CAS  PubMed  Google Scholar 

  • Sykova E, Nicholson C (2008) Diffusion in brain extracellular space. Physiol Rev 88(4):1277–1340. doi:10.1152/physrev.00027.2007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thulborn KR, Gindin TS, Davis D, Erb P (1999) Comprehensive MR imaging protocol for stroke management: tissue sodium concentration as a measure of tissue viability in nonhuman primate studies and in clinical studies. Radiology 213(1):156–166

    Article  CAS  PubMed  Google Scholar 

  • Umathum R, Roesler MB, Nagel AM (2013) In Vivo Potassium (39 K) magnetic resonance imaging of human muscle and brain. Radiology. doi:10.1148/radiol.13130757

    PubMed  Google Scholar 

  • van der Maarel JRC (1989) Relaxation of spin 3/2 in a non-zero average electric field gradient. Chem Phys Lett 155:288–296

    Article  Google Scholar 

  • Wang L, Wu Y, Chang G, Oesingmann N, Schweitzer ME, Jerschow A, Regatte RR (2009) Rapid isotropic 3D-sodium MRI of the knee joint in vivo at 7T. J Magn Reson Imaging 30(3):606–614. doi:10.1002/jmri.21881

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang C, McArdle E, Fenty M, Witschey W, Elliott M, Sochor M, Reddy R, Borthakur A (2010) Validation of sodium magnetic resonance imaging of intervertebral disc. Spine 35(5):505–510. doi:10.1097/BRS.0b013e3181b32d3b

    Article  PubMed Central  PubMed  Google Scholar 

  • Watts A, Stobbe RW, Beaulieu C (2011) Signal-to-noise optimization for sodium MRI of the human knee at 4.7 Tesla using steady state. Magn Reson Med 66(3):697–705. doi:10.1002/mrm.22838

    Article  PubMed  Google Scholar 

  • Weber MA, Nielles-Vallespin S, Essig M, Jurkat-Rott K, Kauczor HU, Lehmann-Horn F (2006a) Muscle Na+ channelopathies: MRI detects intracellular 23Na accumulation during episodic weakness. Neurology 67(7):1151–1158. doi:01.wnl.0000233841.75824.0f [pii] 10.1212/01.wnl.0000233841.75824.0f

    Google Scholar 

  • Weber MA, Nielles-Vallespin S, Huttner HB, Wohrle JC, Jurkat-Rott K, Lehmann-Horn F, Schad LR, Kauczor HU, Essig M, Meinck HM (2006b) Evaluation of patients with paramyotonia at 23Na MR imaging during cold-induced weakness. Radiology 240(2):489–500

    Article  PubMed  Google Scholar 

  • Weber MA, Nagel AM, Jurkat-Rott K, Lehmann-Horn F (2011) Sodium (23Na) MRI detects elevated muscular sodium concentration in Duchenne muscular dystrophy. Neurology 77(23):2017–2024. doi:10.1212/WNL.0b013e31823b9c78

    Article  CAS  PubMed  Google Scholar 

  • Weber MA, Nagel AM, Wolf MB, Jurkat-Rott K, Kauczor HU, Semmler W, Lehmann-Horn F (2012) Permanent muscular sodium overload and persistent muscle edema in Duchenne muscular dystrophy: a possible contributor of progressive muscle degeneration. J Neurol 259(11):2385–2392. doi:10.1007/s00415-012-6512-8

    Article  PubMed  Google Scholar 

  • Wheaton A, Borthakur A, Shapiro E, Regatte R, Akella S, Kneeland J, Reddy R (2004) Proteoglycan loss in human knee cartilage: quantitation with sodium MR imaging—feasibility study. Radiology 231(3):900–905. doi:231/3/900 [pii] 10.1148/radiol.2313030521

    Google Scholar 

  • Wheaton A, Dodge G, Borthakur A, Kneeland J, Schumacher H, Reddy R (2005) Detection of changes in articular cartilage proteoglycan by T(1rho) magnetic resonance imaging. J Orthop Res 23(1):102–108. doi:S0736-0266(04)00155-X [pii] 10.1016/j.orthres.2004.06.015

    Google Scholar 

  • Woessner DE, Bansal N (1998) Temporal characteristics of NMR signals from spin 3/2 nuclei of incompletely disordered systems. J Magn Reson 133:21–35

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Moskowitz RW, Nuki G, Abramson S, Altman RD, Arden N, Bierma-Zeinstra S, Brandt KD, Croft P, Doherty M, Dougados M, Hochberg M, Hunter DJ, Kwoh K, Lohmander LS, Tugwell P (2008) OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines. Osteoarthritis Cartilage 16(2):137–162. doi:S1063-4584(07)00397-4 [pii] 10.1016/j.joca.2007.12.013

    Google Scholar 

  • Zhu XH, Zhang N, Zhang Y, Zhang X, Ugurbil K, Chen W (2005) In vivo 17O NMR approaches for brain study at high field. NMR Biomed 18(2):83–103. doi:10.1002/nbm.930

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Especially the implementation of X-nuclei MR imaging profits much from an interdisciplinary team working on this subject together. Thus we thank several physicists, radiologists, physiologists, orthopedic surgeons and neurologists with whom we worked for several years together on X-nuclei MRI. Explicitly, we would thank the following collaborators: Reiner Umathum, Manuela B. Roesler, Stefan H. Hoffmann, and Wolfhard Semmler, all Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg/Germany; Frank Lehmann-Horn and Karin Jurkat-Rott, Neurophysiology, Ulm University, Ulm/Germany. Work on Sects. 14 and 6 was funded in part by the Helmholtz Alliance ICEMED - Imaging and Curing Environmental Metabolic Diseases, through the Initiative and Networking Fund of the Helmholtz Association. Moreover, we acknowledge that Sect. 5 was performed at a NIH-NIBIB supported Biomedical Technology Research Center (P41 EB015893).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin M. Nagel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nagel, A.M., Weber, MA., Borthakur, A., Reddy, R. (2013). Skeletal Muscle MR Imaging Beyond Protons: With a Focus on Sodium MRI in Musculoskeletal Applications. In: Weber, MA. (eds) Magnetic Resonance Imaging of the Skeletal Musculature. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2013_923

Download citation

  • DOI: https://doi.org/10.1007/174_2013_923

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37218-6

  • Online ISBN: 978-3-642-37219-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics