A Historical Perspective on the Use of Radionuclides for Therapy

  • Volkan Beylergil
  • Jorge A. Carrasquillo
  • Wolfgang A. Weber
  • Steven M. Larson
Part of the Medical Radiology book series (MEDRAD)


At present, standard of care for targeted therapy with radionuclides include; 131I for therapy of well-differentiated thyroid cancer; 89Sr chloride, and 153Sm-EDTMP for bone pain; radionuclide microembolization with either resin or glass microspheres; radiolabeled antibodies in lymphoma; metaiodobenzylguanidine for pheochromocytoma; radio peptide therapy for carcinoid, and other endocrine tumors. Growth in this sector of nuclear medicine has been modest. Recent advances in targeted radiotherapy are predicted to set the stage for a phase of rapid growth of the therapeutic aspects of nuclear medicine, as the most unique and potentially most distinctive utilitarian feature of our specialty. A plethora of targeting agents, ranging from small molecules to large nanoparticles offers many alternatives for pharmaceutical carrier of the radioactivity. In particular, major improvement in efficient production of a range of biologicals such as peptides, nanobodies, affibodies, and antibodies has occurred in the recent past and this has led to serious consideration of these agents as carriers of radioactivity after parenteral injection. In this brief overview, we highlight selected advances that have occurred in quantitative imaging, cancer biology, and radiobiology/radiochemistry which are likely to have significant short-term impact on radionuclide therapy. In regard to imaging improvements, there is now widespread availability of the potential for truly quantitative images, especially fusion images based on PET-CT, PET MRI, and SPECT-CT that have the ability to permit internal dosimetry as a guide to optimize therapeutic radionuclide dosing for better management of individual patients. Such imaging improvements, are leading to opportunities for use of theranostic radiotracers, whereby the same drug with minor changes is used for both diagnosis at tracer levels and therapy at tumoricidal levels. From a cancer biology point of view, targeted therapy of specific oncoproteins can restore some cancer cells to a more, nearly normal or differentiated state and this may have special relevance to thyroid cancers and other cancers (Pacak et al. 2012). Thus, non-iodine avid thyroid cancers can be differentiated to concentrate therapeutic levels of radioactive iodine or MIBG, by treatment with a short course of drugs that overcome the effects of specific oncogenic proteins. In regard to radiobiology/radiochemistry improvements, practical methods for accessing alpha emitters as therapeutic radionuclides have been developed.


Thyroid Cancer Peptide Radionuclide Receptor Therapy Radionuclide Therapy Alpha Emitter Sodium Iodide Symporter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





Samarium 153 ethylenediamine tetramethylene phosphonic acid


Positron emission tomography-computerized tomography


Positron emission tomography and magnetic resonance Imaging


Single photon emission computed tomography-computerized tomography












National clinical trial number






International Atomic Energy Commission


European Association of Nuclear Medicine


Society of Nuclear Medicine




Sodium iodide symporter protein


Response evaluation criteria in solid tumors


Tetraazacyclododecanetetraacetic acid Tyr3-octreotide (TOC)


DOTA octreotate


Human epidermal growth factor receptor 2


Epidermal growth factor receptor


Fluorine-18 fluoroiodobenzylguanidine


Alpharadin in the treatment of patients with symptomatic hormone refractory prostate cancer with skeletal metastases









225 Ac



Immunoglobulin G


Cluster of differentiation




  1. Abbatt JD (1953) Experiences of management and treatment of polycythemia vera using p32 as a therapeutic weapon. J Fac Radiol 5(2):141–147PubMedCrossRefGoogle Scholar
  2. Barone R, Borson-Chazot FO, Valkerna R, Walrand S, Chauvin F, Gogou L, Kvols LK, Krenning EP, Jamar F, Pauwels S (2005) Patient-specific dosimetry in predicting renal toxicity with Y-90-DOTATOC: relevance of kidney volume and dose rate in finding a dose-effect relationship. J Nucl Med 46:99S–106SPubMedGoogle Scholar
  3. Bombardieri E, Aktolun C, Baum RP, Bishof-Delaloye A, Buscombe J, Chatal JF, Maffioli L, Moncayo R, Mortelmans L, Reske SN (2003) I-131/I-123-metaiodobenzylguanidine (MIBG) scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging 30(12):BP132–BP139Google Scholar
  4. Carrasquillo JA, Pandit-Taskar N, Chen CC (2012) Radionuclide therapy of adrenal tumors. J Surg Oncol 106(5):632–642PubMedCrossRefGoogle Scholar
  5. Ezziddin S, Lohmar J, Yong-Hing CJ, Sabet A, Ahmadzadehfar H, Kukuk G, Biersack HJ, Guhlke S, Reichmann K (2012) Does the pretherapeutic tumor SUV in Ga-68 DOTATOC PET predict the absorbed dose of Lu-177 octreotate? Clin Nucl Med 37(6):E141–E147PubMedCrossRefGoogle Scholar
  6. Giammarile F, Chiti A, Lassmann M, Brans B, Flux G (2008) EANM procedure guidelines for I-131-meta-iodobenzylguanidine (I-131-mIBG) therapy. Eur J Nucl Med Mol Imaging 35(5):1039–1047PubMedCrossRefGoogle Scholar
  7. Grunwald F, Ezziddin S (2010) I-131-Metaiodobenzylguanidine therapy of neuroblastoma and other neuroendocrine tumors. Semin Nucl Med 40(2):153–163PubMedCrossRefGoogle Scholar
  8. Ho AL, Grewal RK, Leboeuf R, Sherman EJ, Pfister DG, Deandreis D, Pentlow KS, Zanzonico PB, Haque S, Gavane S, Ghossein RA, Ricarte-Filho JC, Dominguez JM, Shen R, Tuttle RM, Larson SM, Fagin JA (2013) Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med 368(7):623–632PubMedCentralPubMedCrossRefGoogle Scholar
  9. Jurcic JG, Larson SM, Sgouros G, McDevitt MR, Finn RD, Divgi CR, Ballangrud AM, Hamacher KA, Ma D, Humm JL, Brechbiel MW, Molinet R, Scheinberg DA (2002) Targeted alpha particle immunotherapy for myeloid leukemia. Blood 100(4):1233–1239PubMedGoogle Scholar
  10. Jurcic JG, Rosenblat TL, McDevitt MR, Pandit-Taskar N, Carrasquillo JA, Chanel SM, Zikaras K, Frattini MG, Maslak PG, Cicic D, Larson SM, Scheinberg DA (2011) Phase I trial of the targeted alpha-particle nano-generator Actinium-225 (Ac-225)-Lintuzumab (Anti-CD33; HuM195) in acute myeloid leukemia (AML). Blood 118(21):348–349Google Scholar
  11. Larson SM, Pentlow KS, Volkow ND, Wolf AP, Finn RD, Lambrecht RM, Graham MC, Di Resta G, Bendriem B, Daghighian F et al (1992) PET scanning of iodine-124-3F9 as an approach to tumor dosimetry during treatment planning for radioimmunotherapy in a child with neuroblastoma. J Nucl Med 33(11):2020–2023PubMedGoogle Scholar
  12. Maxon HR, Thomas SR, Hertzberg VS, Kereiakes JG, Chen IW, Sperling MI, Saenger EL (1983) Relation between effective radiation-dose and outcome of radioiodine therapy for thyroid-cancer. N Engl J Med 309(16):937–941PubMedCrossRefGoogle Scholar
  13. Mazzaferri EL, Young RL, Oertel JE, Kemmerer WT, Page CP (1977) Papillary thyroid carcinoma: the impact of therapy in 576 patients. Medicine (Baltimore) 56(3):171–196CrossRefGoogle Scholar
  14. Pacak K, Sirova M, Giubellino A, Lencesova L, Csaderova L, Laukova M, Hudecova S, Krizanova O (2012) NF-kappa B inhibition significantly upregulates the norepinephrine transporter system, causes apoptosis in pheochromocytoma cell lines and prevents metastasis in an animal model. Int J Cancer 131(10):2445–2455PubMedCentralPubMedCrossRefGoogle Scholar
  15. Seo Y, Gustafson WC, Dannoon SF, Nekritz EA, Lee CL, Murphy ST, VanBrocklin HF, Hernandez-Pampaloni M, Haas-Kogan DA, Weiss WA, Matthay KK (2012) Tumor dosimetry using [124I]m-iodobenzylguanidine microPET/CT for [131I]m-iodobenzylguanidine treatment of neuroblastoma in a murine xenograft model. Mol Imaging Biol 14(6):735–742PubMedCentralPubMedCrossRefGoogle Scholar
  16. Shusterman S, Grant FD, Lorenzen W, Davis RT, Laffin S, Drubach LA, Fahey FH, Treves ST (2011) Iodine-131-labeled Meta-Iodobenzylguanidine therapy of children with neuroblastoma: program planning and initial experience. Semin Nucl Med 41(5):354–363PubMedCrossRefGoogle Scholar
  17. Taieb D, Timmers HJ, Hindie E, Guillet BA, Neumann HP, Walz MK, Opocher G, de Herder WW, Boedeker CC, de Krijger RR, Chiti A, Al-Nahhas A, Pacak K, Rubello D (2012) EANM 2012 guidelines for radionuclide imaging of phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging 39(12):1977–1995PubMedCrossRefGoogle Scholar
  18. Tennvall J, Brans B (2007) EANM procedure guideline for 32P phosphate treatment of myeloproliferative diseases. Eur J Nucl Med Mol Imaging 34(8):1324–1327PubMedCrossRefGoogle Scholar
  19. Vaidyanathan G, Affleck DJ, Zalutsky MR (1995) Validation of 4-fluorine-18 fluoro-3-iodobenzylguanidine as a positron-emitting analog of MibG. J Nucl Med 36(4):644–650PubMedGoogle Scholar
  20. Wieland DM, Swanson DP, Brown LE, Beierwaltes WH (1979) Imaging the adrenal-medulla with an 1-131-labeled antiadrenergic agent. J Nucl Med 20(2):155–158PubMedGoogle Scholar
  21. Zaknun JJ, Bodei L, Mueller-Brand J, Pavel ME, Baum RP, Horsch D, O’Dorisio MS, O’Dorisiol TM, Howe JR, Cremonesi M, Kwekkeboom DJ (2013) The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging 40(5):800–816PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Volkan Beylergil
    • 1
  • Jorge A. Carrasquillo
    • 1
  • Wolfgang A. Weber
    • 1
  • Steven M. Larson
    • 1
  1. 1.Department of Radiology, Molecular Imaging and Therapy ServiceMemorial Sloan Kettering Cancer CenterNew YorkUSA

Personalised recommendations