Advertisement

There is Evidence for the Superiority of Protons or Heavy Ions, Contra

  • Daniel Robert Henderson
  • Nicholas van As
Chapter
Part of the Medical Radiology book series (MEDRAD)

Abstract

Photon therapy is a safe and effective treatment for localised prostate cancer. It is used widely and has a strong evidence base. For three decades, proponents of proton and heavy ion therapy have claimed that these modalities have theoretical advantages which will translate into clinical benefit. However, there is no current evidence to support this. In this chapter we will assess the theoretical and clinical evidence for proton and heavy ion therapy and compare this with that for photon therapy. The health economic perspective will also be examined. We will show that there is no evidence for the superiority of protons or heavy ions over photon therapy.

Keywords

Planning Target Volume Localise Prostate Cancer Stereotactic Body Radiotherapy Late Toxicity Relative Biological Effectiveness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alicikus ZA, Yamada Y et al (2011) Ten-year outcomes of high-dose, intensity-modulated radiotherapy for localized prostate cancer. Cancer 117(7):1429–1437PubMedCrossRefGoogle Scholar
  2. Allen AM, Pawlicki T et al (2012) An evidence based review of proton beam therapy: the report of ASTRO’s emerging technology committee. Radiother Oncol 103(1):8–11PubMedCrossRefGoogle Scholar
  3. Brada M, Pijls-Johannesma M et al (2007) Proton therapy in clinical practice: current clinical evidence. J Clin Oncol 25(8):965–970PubMedCrossRefGoogle Scholar
  4. Brada M, Pijls-Johannesma M et al (2009) Current clinical evidence for proton therapy. Cancer J 15(4):319–324PubMedCrossRefGoogle Scholar
  5. Cahlon O, Hunt M et al (2008) Intensity-modulated radiation therapy: supportive data for prostate cancer. Semin Radiat Oncol 18(1):48–57PubMedCrossRefGoogle Scholar
  6. Cella L, Lomax A et al (2001) Potential role of intensity modulated proton beams in prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 49(1):217–223PubMedCrossRefGoogle Scholar
  7. Coen JJ, Bae K et al (2011) Acute and late toxicity after dose escalation to 82 GyE using conformal proton radiation for localized prostate cancer: initial report of American College of Radiology Phase II study 03–12. Int J Radiat Oncol Biol Phys 81(4):1005–1009PubMedCrossRefGoogle Scholar
  8. De Ruysscher D, Mark Lodge M et al (2012) Charged particles in radiotherapy: a five-year update of a systematic review. Radiother Oncol 103(1):5–7PubMedCrossRefGoogle Scholar
  9. Dearnaley D, Syndikus I et al (2012) Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: preliminary safety results from the CHHiP randomised controlled trial. Lancet Oncol 13(1):43–54PubMedCrossRefGoogle Scholar
  10. Dearnaley DP, Khoo VS et al (1999) Comparison of radiation side-effects of conformal and conventional radiotherapy in prostate cancer: a randomised trial. Lancet 353(9149):267–272PubMedCrossRefGoogle Scholar
  11. Dearnaley DP, Sydes MR et al (2007) Escalated-dose versus standard-dose conformal radiotherapy in prostate cancer: first results from the MRC RT01 randomised controlled trial. Lancet Oncol 8(6):475–487PubMedCrossRefGoogle Scholar
  12. Eade TN, Horwitz EM et al (2008) A comparison of acute and chronic toxicity for men with low-risk prostate cancer treated with intensity-modulated radiation therapy or (125)I permanent implant. Int J Radiat Oncol Biol Phys 71(2):338–345PubMedCentralPubMedCrossRefGoogle Scholar
  13. Fontenot JD, Bloch C et al (2010) Estimate of the uncertainties in the relative risk of secondary malignant neoplasms following proton therapy and intensity-modulated photon therapy. Phys Med Biol 55(23):6987–6998PubMedCentralPubMedCrossRefGoogle Scholar
  14. Freeman DE, King CR (2011) Stereotactic body radiotherapy for low-risk prostate cancer: five-year outcomes. Radiat Oncol 6:3PubMedCentralPubMedCrossRefGoogle Scholar
  15. Glatstein E, Glick J et al (2008) Should randomized clinical trials be required for proton radiotherapy? An alternative view. J Clin Oncol 26(15):2438–2439PubMedCrossRefGoogle Scholar
  16. Goitein M, Cox JD (2008) Should randomized clinical trials be required for proton radiotherapy? J Clin Oncol 26(2):175–176PubMedCrossRefGoogle Scholar
  17. Hodges JC, Lotan Y et al (2012) Cost-effectiveness analysis of stereotactic body radiation therapy versus intensity-modulated radiation therapy: an emerging initial radiation treatment option for organ-confined prostate cancer. J Oncol Pract 8(3 Suppl):e31s–e37sPubMedCentralPubMedGoogle Scholar
  18. Jensen A.D, Munter, MW et al (2011). Review of clinical experience with ion beam radiotherapy. Br J Radiol 84 Spec No 1: S35–47Google Scholar
  19. Joiner M, Kogel Avd (2009). Basic clinical radiobiology. London, Hodder ArnoldGoogle Scholar
  20. Katz A (2012). Five-year biochemical control rates for stereotactic body radiotherapy for organ confined prostate cancer: a multi-institutional pooled analysis.Oral presentation at ASTRO annual meeting 2012Google Scholar
  21. Kim S, Shen S et al (2011) Late gastrointestinal toxicities following radiation therapy for prostate cancer. Eur Urol 60(5):908–916PubMedCentralPubMedCrossRefGoogle Scholar
  22. King CR, Brooks JD et al (2012) Long-term outcomes from a prospective trial of stereotactic body radiotherapy for low-risk prostate cancer. Int J Radiat Oncol Biol Phys 82(2):877–882PubMedCrossRefGoogle Scholar
  23. Konski A, Speier W et al (2007) Is proton beam therapy cost effective in the treatment of adenocarcinoma of the prostate? J Clin Oncol 25(24):3603–3608PubMedCrossRefGoogle Scholar
  24. Kramer M, Weyrather WK et al (2003) The increased biological effectiveness of heavy charged particles: from radiobiology to treatment planning. Technol Cancer Res Treat 2(5):427–436PubMedCrossRefGoogle Scholar
  25. Lodge M, Pijls-Johannesma M et al (2007) A systematic literature review of the clinical and cost-effectiveness of hadron therapy in cancer. Radiother Oncol 83(2):110–122PubMedCrossRefGoogle Scholar
  26. Madsen BL, Hsi RA et al (2007) Stereotactic hypofractionated accurate radiotherapy of the prostate (SHARP), 33.5 Gy in five fractions for localized disease: first clinical trial results. Int J Radiat Oncol Biol Phys 67(4):1099–1105PubMedCrossRefGoogle Scholar
  27. Mendenhall NP, Li Z et al (2012) Early outcomes from three prospective trials of image-guided proton therapy for prostate cancer. Int J Radiat Oncol Biol Phys 82(1):213–221PubMedCrossRefGoogle Scholar
  28. Michalski J, Winter K et al (2012) Clinical outcome of patients treated with 3D conformal radiation therapy (3D-CRT) for prostate cancer on RTOG 9406. Int J Radiat Oncol Biol Phys 83(3):e363–e370PubMedCentralPubMedCrossRefGoogle Scholar
  29. Miralbell R, Lomax A et al (2002) Potential reduction of the incidence of radiation-induced second cancers by using proton beams in the treatment of pediatric tumors. Int J Radiat Oncol Biol Phys 54(3):824–829PubMedCrossRefGoogle Scholar
  30. Nikoghosyan AV, Schulz-Ertner D et al (2011) Acute toxicity of combined photon IMRT and carbon ion boost for intermediate-risk prostate cancer—acute toxicity of 12C for PC. Acta Oncol 50(6):784–790PubMedCrossRefGoogle Scholar
  31. Okada T, Tsuji H et al (2012) Carbon ion radiotherapy in advanced hypofractionated regimens for prostate cancer: from 20 to 16 fractions. Int J Radiat Oncol Biol Phys 84(4):968–972PubMedCrossRefGoogle Scholar
  32. Olsen DR, Bruland OS et al (2007) Proton therapy—a systematic review of clinical effectiveness. Radiother Oncol 83(2):123–132PubMedCrossRefGoogle Scholar
  33. Paganetti H, Niemierko A et al (2002) Relative biological effectiveness (RBE) values for proton beam therapy. Int J Radiat Oncol Biol Phys 53(2):407–421PubMedCrossRefGoogle Scholar
  34. Peeters A, Grutters JP et al (2010) How costly is particle therapy? Cost analysis of external beam radiotherapy with carbon-ions, protons and photons. Radiother Oncol 95(1):45–53PubMedCrossRefGoogle Scholar
  35. Peeters ST, Heemsbergen WD et al (2006) Dose-response in radiotherapy for localized prostate cancer: results of the Dutch multicenter randomized phase III trial comparing 68 Gy of radiotherapy with 78 Gy. J Clin Oncol 24(13):1990–1996PubMedCrossRefGoogle Scholar
  36. Pollack A, Zagars GK et al (2002) Prostate cancer radiation dose response: results of the M. D. Anderson phase III randomized trial. Int J Radiat Oncol Biol Phys 53(5):1097–1105PubMedCrossRefGoogle Scholar
  37. Sheets NC, Goldin GH et al (2012) Intensity-modulated radiation therapy, proton therapy, or conformal radiation therapy and morbidity and disease control in localized prostate cancer. JAMA 307(15):1611–1620PubMedCentralPubMedCrossRefGoogle Scholar
  38. Spratt DE, Pei X et al (2012). Long-term survival and toxicity in patients treated with high-dose intensity modulated radiation therapy for localized prostate cancer. Int J Radiat Oncol Biol PhysGoogle Scholar
  39. Takeda K, Takai Y et al (2012) Treatment outcome of high-dose image-guided intensity-modulated radiotherapy using intra-prostate fiducial markers for localized prostate cancer at a single institute in Japan. Radiat Oncol 7:105PubMedCentralPubMedCrossRefGoogle Scholar
  40. Tepper JE (2008) Protons and parachutes. J Clin Oncol 26(15):2436–2437PubMedCrossRefGoogle Scholar
  41. Trofimov A, Nguyen PL et al (2007) Radiotherapy treatment of early-stage prostate cancer with IMRT and protons: a treatment planning comparison. Int J Radiat Oncol Biol Phys 69(2):444–453PubMedCentralPubMedCrossRefGoogle Scholar
  42. Viani GA, Stefano EJ et al (2009) Higher-than-conventional radiation doses in localized prostate cancer treatment: a meta-analysis of randomized, controlled trials. Int J Radiat Oncol Biol Phys 74(5):1405–1418PubMedCrossRefGoogle Scholar
  43. Wang Y, Efstathiou JA et al (2011) Evaluation of the dosimetric impact of interfractional anatomical variations on prostate proton therapy using daily in-room CT images. Med Phys 38(8):4623–4633PubMedCentralPubMedCrossRefGoogle Scholar
  44. Wu J, Haycocks T et al (2001) Positioning errors and prostate motion during conformal prostate radiotherapy using on-line isocentre set-up verification and implanted prostate markers. Radiother Oncol 61(2):127–133PubMedCrossRefGoogle Scholar
  45. Zelefsky MJ, Cowen D et al (1999) Long term tolerance of high dose three-dimensional conformal radiotherapy in patients with localized prostate carcinoma. Cancer 85(11):2460–2468PubMedCrossRefGoogle Scholar
  46. Zelefsky MJ, Housman DM et al (2012a) Incidence of secondary cancer development after high-dose intensity-modulated radiotherapy and image-guided brachytherapy for the treatment of localized prostate cancer. Int J Radiat Oncol Biol Phys 83(3):953–959PubMedCrossRefGoogle Scholar
  47. Zelefsky MJ, Kollmeier M et al (2012b) Improved clinical outcomes with high-dose image guided radiotherapy compared with non-IGRT for the treatment of clinically localized prostate cancer. Int J Radiat Oncol Biol Phys 84(1):125–129PubMedCrossRefGoogle Scholar
  48. Zietman AL, Bae K et al (2010) Randomized trial comparing conventional-dose with high-dose conformal radiation therapy in early-stage adenocarcinoma of the prostate: long-term results from proton radiation oncology group/american college of radiology 95–09. J Clin Oncol 28(7):1106–1111PubMedCentralPubMedCrossRefGoogle Scholar
  49. Zietman AL, DeSilvio ML et al (2005) Comparison of conventional-dose vs high-dose conformal radiation therapy in clinically localized adenocarcinoma of the prostate: a randomized controlled trial. JAMA 294(10):1233–1239PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Clinical Oncology Royal Marsden Hospital LondonLondonUK
  2. 2.The Royal Marsden HospitalLondonUK

Personalised recommendations