Evaluation of the Response by Multimodality Imaging

Part of the Medical Radiology book series (MEDRAD)


Radioembolization of primary and secondary liver tumors has emerged as valuable treatment option. CT and especially MRI are very helpful in delineating the tumors and estimating the liver involvement and are still considered as standard in oncologic imaging. Diffusion-weighted MRI has shown promising results in very early treatment assessment in a recent study. However, traditional therapy monitoring using RECIST or WHO criteria may be hampered by the specific changes of tumors treated with radioembolization. Multi-modal imaging, especially in the case of whole-body imaging, may overcome these drawbacks and provide more precise prognostic stratification due to the additional metabolic information. Recent studies indicate an advantage of FDG PET/CT in therapy montoring of radioembolization, in particular in cholangiocellular charcinoma, breast cancer and colorectal cancer. Further on, whole-body MRI has shown to be useful in pre-therapeutic triage of patients and the diagnosis of extra-hepatic metastases.


Positron Emission Tomography Focal Liver Lesion Soft Tissue Contrast Parallel Acquisition Technique Tissue Harmonic Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albrecht T, Hoffmann CW, Schmitz SA et al (2001) Phase-inversion sonography during the liver-specific late phase of contrast enhancement: improved detection of liver metastases. AJR Am J Roentgenol 176:1191–1198PubMedCrossRefGoogle Scholar
  2. Antoch G, Vogt FM, Freudenberg LS et al (2003) Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. JAMA 290:3199–3206PubMedCrossRefGoogle Scholar
  3. Atassi B, Bangash AK, Bahrani A et al (2008) Multimodality imaging following 90Y radioembolization: a comprehensive review and pictorial essay. Radiographics 28:81–99PubMedCrossRefGoogle Scholar
  4. Barkhausen J, Quick HH, Lauenstein T et al (2001) Whole-body MR imaging in 30 seconds with real-time true FISP and a continuously rolling table platform: feasibility study. Radiology 220:252–256PubMedCrossRefGoogle Scholar
  5. Bartolozzi C, Lencioni R, Caramella D et al (1996) Small hepatocellular carcinoma. Detection with US, CT, MR imaging, DSA, and Lipiodol-CT. Acta Radiol 37:69–74PubMedGoogle Scholar
  6. Bartolozzi C, Donati F, Cioni D et al (2004) Detection of colorectal liver metastases: a prospective multicenter trial comparing unenhanced MRI, MnDPDP-enhanced MRI, and spiral CT. Eur Radiol 14:14–20PubMedCrossRefGoogle Scholar
  7. Belton AL, Saini S, Liebermann K et al (2003) Tumour size measurement in an oncology clinical trial: comparison between off-site and on-site measurements. Clin Radiol 58:311–314PubMedCrossRefGoogle Scholar
  8. Beziat C, Pilleul F, Yzebe D et al (2004) Detection of liver metastases in colorectal cancer on chemotherapy. Comparative study between MRI with teslascan and computed tomography with intravenous contrast media. J Radiol 85:307–311PubMedCrossRefGoogle Scholar
  9. Bluemke DA, Sahani D, Amendola M et al (2005) Efficacy and safety of MR imaging with liver-specific contrast agent: U.S. multicenter phase III study. Radiology 237:89–98PubMedCrossRefGoogle Scholar
  10. Burns PN, Wilson SR (2007) Focal liver masses: enhancement patterns on contrast-enhanced images–concordance of US scans with CT scans and MR images. Radiology 242:162–174PubMedCrossRefGoogle Scholar
  11. Busse RF (2004) Reduced RF power without blurring: correcting for modulation of refocusing flip angle in FSE sequences. Magn Reson Med 51:1031–1037PubMedCrossRefGoogle Scholar
  12. Clark HP, Carson WF, Kavanagh PV et al (2005) Staging and current treatment of hepatocellular carcinoma. Radiographics 25(Suppl 1):S3–S23PubMedCrossRefGoogle Scholar
  13. Cohade C, Osman M, Leal J et al (2003) Direct comparison of 18F-FDG PET and PET/CT in patients with colorectal carcinoma. J Nucl Med 44:1797–1803PubMedGoogle Scholar
  14. Coldwell DM, Kennedy AS, Nutting CW (2007) Use of yttrium-90 microspheres in the treatment of unresectable hepatic metastases from breast cancer. Int J Radiat Oncol Biol Phys 69:800–804PubMedCrossRefGoogle Scholar
  15. del Frate C, Bazzocchi M, Mortele KJ et al (2002) Detection of liver metastases: comparison of gadobenate dimeglumine-enhanced and ferumoxides-enhanced MR imaging examinations. Radiology 225:766–772PubMedCrossRefGoogle Scholar
  16. Deng J, Miller FH, Rhee TK et al (2006) Diffusion-weighted MR imaging for determination of hepatocellular carcinoma response to yttrium-90 radioembolization. J Vasc Interv Radiol 17:1195–1200PubMedCrossRefGoogle Scholar
  17. Dudeck O, Zeile M, Wybranski C et al (2010) Early prediction of anticancer effects with diffusion-weighted MR imaging in patients with colorectal liver metastases following selective internal radiotherapy. Eur Radiol 20:2699–2706PubMedCrossRefGoogle Scholar
  18. Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247PubMedCrossRefGoogle Scholar
  19. Erasmus JJ, Gladish GW, Broemeling L et al (2003) Interobserver and intraobserver variability in measurement of non-small-cell carcinoma lung lesions: implications for assessment of tumor response. J Clin Oncol 21:2574–2582PubMedCrossRefGoogle Scholar
  20. Frericks BB, Meyer BC, Martus P et al (2008) MRI of the thorax during whole-body MRI: evaluation of different MR sequences and comparison to thoracic multidetector computed tomography (MDCT). J Magn Reson Imaging 27:538–545PubMedCrossRefGoogle Scholar
  21. Griswold MA, Jakob PM, Heidemann RM et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210PubMedCrossRefGoogle Scholar
  22. Gulec SA, Pennington K, Wheeler J, et al (2012) Yttrium-90 microsphere-selective internal radiation therapy with chemotherapy (Chemo-SIRT) for colorectal cancer liver metastases: an in vivo double-arm-controlled phase II trial. Am J Clin OncolGoogle Scholar
  23. Harvey CJ, Albrecht T (2001) Ultrasound of focal liver lesions. Eur Radiol 11:1578–1593PubMedCrossRefGoogle Scholar
  24. Haug AR, Heinemann V, Bruns CJ, et al (2011) 18F-FDG PET independently predicts survival in patients with cholangiocellular carcinoma treated with 90Y microspheres. Eur J Nucl Med Mol Imaging 38:1037–1045Google Scholar
  25. Ibrahim SM, Nikolaidis P, Miller FH et al (2009) Radiologic findings following Y90 radioembolization for primary liver malignancies. Abdom Imaging 34:566–581PubMedCrossRefGoogle Scholar
  26. Jakobs TF, Hoffmann RT, Poepperl G et al (2007) Mid-term results in otherwise treatment refractory primary or secondary liver confined tumours treated with selective internal radiation therapy (SIRT) using (90)Yttrium resin-microspheres. Eur Radiol 17:1320–1330PubMedCrossRefGoogle Scholar
  27. Jakobs TF, Hoffmann RT, Fischer T et al (2008a) Radioembolization in patients with hepatic metastases from breast cancer. J Vasc Interv Radiol 19:683–690PubMedCrossRefGoogle Scholar
  28. Jakobs TF, Hoffmann RT, Dehm K et al (2008b) Hepatic yttrium-90 radioembolization of chemotherapy-refractory colorectal cancer liver metastases. J Vasc Interv Radiol 19:1187–1195PubMedCrossRefGoogle Scholar
  29. Kalva SP, Thabet A, Wicky S (2008) Recent advances in transarterial therapy of primary and secondary liver malignancies. Radiographics 28:101–117PubMedCrossRefGoogle Scholar
  30. Kennedy AS, Coldwell D, Nutting C et al (2006) Resin 90Y-microsphere brachytherapy for unresectable colorectal liver metastases: modern USA experience. Int J Radiat Oncol Biol Phys 65:412–425PubMedCrossRefGoogle Scholar
  31. Kettritz U, Schlund JF, Wilbur K et al (1996) Comparison of gadolinium chelates with manganese-DPDP for liver lesion detection and characterization: preliminary results. Magn Reson Imaging 14:1185–1190PubMedCrossRefGoogle Scholar
  32. Khodjibekova M, Szyszko T, Khan S et al (2007) Selective internal radiation therapy with Yttrium-90 for unresectable liver tumours. Rev Recent Clin Trials 2:212–216PubMedCrossRefGoogle Scholar
  33. Kruger DG, Riederer SJ, Grimm RC et al (2002) Continuously moving table data acquisition method for long FOV contrast-enhanced MRA and whole-body MRI. Magn Reson Med 47:224–231PubMedCrossRefGoogle Scholar
  34. Lardinois D, Weder W, Hany TF et al (2003) Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography. N Engl J Med 348:2500–2507PubMedCrossRefGoogle Scholar
  35. Lauenstein TC, Goehde SC, Herborn CU et al (2002) Three-dimensional volumetric interpolated breath-hold MR imaging for whole-body tumor staging in less than 15 minutes: a feasibility study. AJR Am J Roentgenol 179:445–449PubMedCrossRefGoogle Scholar
  36. Lencioni R, Donati F, Cioni D et al (1998) Detection of colorectal liver metastases: prospective comparison of unenhanced and ferumoxides-enhanced magnetic resonance imaging at 1.5 T, dual-phase spiral CT, and spiral CT during arterial portography. MAGMA 7:76–87PubMedCrossRefGoogle Scholar
  37. Matsuo M, Kanematsu M, Itoh K et al (2001) Detection of malignant hepatic tumors: comparison of gadolinium-and ferumoxide-enhanced MR imaging. AJR Am J Roentgenol 177:637–643PubMedCrossRefGoogle Scholar
  38. Miller AB, Hoogstraten B, Staquet M et al (1981) Reporting results of cancer treatment. Cancer 47:207–214PubMedCrossRefGoogle Scholar
  39. Miller FH, Keppke AL, Reddy D et al (2007) Response of liver metastases after treatment with yttrium-90 microspheres: role of size, necrosis, and PET. AJR Am J Roentgenol 188:776–783PubMedCrossRefGoogle Scholar
  40. Namkung S, Zech CJ, Helmberger T et al (2007) Superparamagnetic iron oxide (SPIO)-enhanced liver MRI with ferucarbotran: efficacy for characterization of focal liver lesions. J Magn Reson Imaging 25:755–765PubMedCrossRefGoogle Scholar
  41. Park JO, Lee SI, Song SY et al (2003) Measuring response in solid tumors: comparison of RECIST and WHO response criteria. Jpn J Clin Oncol 33:533–537PubMedCrossRefGoogle Scholar
  42. Pelosi E, Messa C, Sironi S et al (2004) Value of integrated PET/CT for lesion localisation in cancer patients: a comparative study. Eur J Nucl Med Mol Imaging 31:932–939PubMedCrossRefGoogle Scholar
  43. Pfannenberg C, Aschoff P, Schanz S et al (2007) Prospective comparison of 18F-fluorodeoxyglucose positron emission tomography/computed tomography and whole-body magnetic resonance imaging in staging of advanced malignant melanoma. Eur J Cancer 43:557–564PubMedCrossRefGoogle Scholar
  44. Quaia E (2007) Microbubble ultrasound contrast agents: an update. Eur Radiol 17:1995–2008PubMedCrossRefGoogle Scholar
  45. Reimer P, Jahnke N, Fiebich M et al (2000) Hepatic lesion detection and characterization: value of nonenhanced MR imaging, superparamagnetic iron oxide-enhanced MR imaging, and spiral CT-ROC analysis. Radiology 217:152–158PubMedCrossRefGoogle Scholar
  46. Reinhold C, Hammers L, Taylor CR et al (1995) Characterization of focal hepatic lesions with duplex sonography: findings in 198 patients. AJR Am J Roentgenol 164:1131–1135PubMedCrossRefGoogle Scholar
  47. Rettenbacher THA, Hoflehner A, zur Nedden D (2005) Very small focal liver lesions appearing uncharacteristic at conventional US: does it make sense to investigate with contrast-enhanced US in attempt to further characterize the lesions? Eur Radiol 15:159–160Google Scholar
  48. Saxena A, Chua TC, Bester L, et al (2010) Factors predicting response and survival after yttrium-90 radioembolization of unresectable neuroendocrine tumor liver metastases: a critical appraisal of 48 cases. Ann Surg 251:910-916Google Scholar
  49. Schlemmer HP, Schafer J, Pfannenberg C et al (2005) Fast whole-body assessment of metastatic disease using a novel magnetic resonance imaging system: initial experiences. Invest Radiol 40:64–71PubMedCrossRefGoogle Scholar
  50. Schlitt HJ, Arnold D, Knoefel WT et al (2008) Surgical and perioperative therapy of liver metastases. Onkologie 31(Suppl 5):9–13PubMedCrossRefGoogle Scholar
  51. Schmidt GP, Baur-Melnyk A, Herzog P et al (2005) High-resolution whole-body magnetic resonance image tumor staging with the use of parallel imaging versus dual-modality positron emission tomography-computed tomography: experience on a 32-channel system. Invest Radiol 40:743–753PubMedCrossRefGoogle Scholar
  52. Schmidt GP, Wintersperger B, Graser A et al (2007) High-resolution whole-body magnetic resonance imaging applications at 1.5 and 3 Tesla: a comparative study. Invest Radiol 42:449–459PubMedCrossRefGoogle Scholar
  53. Schmidt GP, Baur-Melnyk A, Haug A et al (2008) Comprehensive imaging of tumor recurrence in breast cancer patients using whole-body MRI at 1.5 and 3 T compared to FDG-PET-CT. Eur J Radiol 65:47–58PubMedCrossRefGoogle Scholar
  54. Schmidt GP, Baur-Melnyk A, Haug A et al (2009) Whole-Body MRI at 1.5 and 3 T compared with FDG-PET-CT for the detection of tumour recurrence in patients with colorectal cancer. Eur Radiol 19:1366–1378PubMedCrossRefGoogle Scholar
  55. Schmidt GP, Paprottka P, Jakobs TF et al (2012) FDG-PET-CT and whole-body MRI for triage in patients planned for radioembolisation therapy. Eur J Radiol 81:e269–e276PubMedCrossRefGoogle Scholar
  56. Semelka RC, Martin DR, Balci C et al (2001) Focal liver lesions: comparison of dual-phase CT and multisequence multiplanar MR imaging including dynamic gadolinium enhancement. J Magn Reson Imaging 13:397–401PubMedCrossRefGoogle Scholar
  57. Shim JH, Lee HC, Kim SO, et al (2012) Which response criteria best help predict survival of patients with hepatocellular carcinoma following chemoembolization? A validation study of old and new models. Radiology 262:708–718Google Scholar
  58. Squillaci E, Manenti G, Mancino S et al (2008) Staging of colon cancer: whole-body MRI vs. whole-body PET-CT–initial clinical experience. Abdom Imaging 33:676–688PubMedCrossRefGoogle Scholar
  59. Tanaka S, Oshikawa O, Sasaki T et al (2000) Evaluation of tissue harmonic imaging for the diagnosis of focal liver lesions. Ultrasound Med Biol 26:183–187PubMedCrossRefGoogle Scholar
  60. Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216PubMedCrossRefGoogle Scholar
  61. Wahl RL, Jacene H, Kasamon Y et al (2009) From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 50(Suppl 1):122S–150SPubMedCentralPubMedCrossRefGoogle Scholar
  62. Weber WA (2009) Assessing tumor response to therapy. J Nucl Med 50(Suppl 1):1S–10SPubMedCrossRefGoogle Scholar
  63. Weckbach S, Michaely HJ, Stemmer A et al (2010) Comparison of a new whole-body continuous-table-movement protocol versus a standard whole-body MR protocol for the assessment of multiple myeloma. Eur Radiol 20:2907–2916PubMedCrossRefGoogle Scholar
  64. Wong CY, Salem R, Raman S et al (2002) Evaluating 90Y-glass microsphere treatment response of unresectable colorectal liver metastases by [18F]FDG PET: a comparison with CT or MRI. Eur J Nucl Med Mol Imaging 29:815–820PubMedCrossRefGoogle Scholar
  65. Haug AR, Tiega Donfack BP, Trumm C, et al. (2012) 18F-FDG PET/CT predicts survival after radioembolization of hepatic metastases from breast cancer. J Nucl Med 53:371–377Google Scholar
  66. Zech CJ, Schoenberg SO, Herrmann KA et al (2004) Modern visualization of the liver with MRT. Current trends and future perspectives. Radiologe 44:1160–1169PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Nuclear MedicineUniversity Hospitals Grosshadern, Ludwig-Maximilians-University of MunichMunichGermany
  2. 2.Radiologie München ZentrumMunichGermany

Personalised recommendations