Whole-Body MRI for Evaluation of the Entire Muscular System

  • Nicolai Schramm
  • Sabine Weckbach
  • Stephen Eustace
  • Niamh M. Long
Part of the Medical Radiology book series (MEDRAD)


Due to several technological advances, whole-body MRI (WB-MRI) is currently feasible with reasonable examination times and very good image quality. WB MRI protocols must be customized to the clinical questions they should solve. The most important MR sequences when evaluating skeletal muscle disease are as follows: T1-weighted (T1w) sequences are appropriate to depict anatomy, assess muscle atrophy, and detect fatty infiltration of muscles. Short tau inversion recovery (STIR) sequences or T2-weighted fat-saturated sequences can sensitively detect muscle edema. In this chapter, a comprehensive neuromuscular WB MRI protocol consisting of coronal T1w and STIR sequences at five body levels and additional axial T1w sequences is presented, modifications of this protocol are also discussed. In comparison to dedicated muscle MRI, WB MRI might be more useful for determination of the extent of the disease, detection of subclinical involvement, differential diagnosis, muscle biopsy planning, noninvasive follow-up examinations, and therapy monitoring. Currently, the most common application of neuromuscular WB MRI is the evaluation of inflammatory myopathies; muscle edema can be detected very sensitively. Another promising field for neuromuscular WB MRI are degenerative myopathies.


Fatty Infiltration Inclusion Body Myositis Inflammatory Myopathy Chronic Inflammatory Demyelinating Polyneuropathy Muscle Dystrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams EM, Chow CK, Premkumar A, Plotz PH (1995) The idiopathic inflammatory myopathies: spectrum of MR imaging findings. Radiographics 15(3):563–574PubMedCrossRefGoogle Scholar
  2. Askanas V, Engel WK (2007) Inclusion-body myositis, a multifactorial muscle disease associated with aging: current concepts of pathogenesis. Curr Opin Rheumatol 19(6):550–559PubMedCrossRefGoogle Scholar
  3. Barkhausen J, Quick HH, Lauenstein T et al (2001) Whole-body MR imaging in 30 seconds with real-time true FISP and a continuously rolling table platform: feasibility study. Radiology 220(1):252–256PubMedCrossRefGoogle Scholar
  4. Bohan A, Peter JB (1975) Polymyositis and dermatomyositis (first of two parts). New England J Med 292(7):344–347CrossRefGoogle Scholar
  5. Carlier RY, Laforet P, Wary C et al (2011) Whole-body muscle MRI in 20 patients suffering from late onset Pompe disease: involvement patterns. Neuromuscul Disord NMD 21(11):791–799CrossRefGoogle Scholar
  6. Chan WP, Liu GC (2002) MR imaging of primary skeletal muscle diseases in children. AJR Am J Roentgenol 179(4):989–997PubMedCrossRefGoogle Scholar
  7. Costa AF, Di Primio GA, Schweitzer ME (2012) Magnetic resonance imaging of muscle disease: a pattern-based approach. Muscle Nerve 46(4):465–481PubMedCrossRefGoogle Scholar
  8. Curiel RV, Jones R, Brindle K (2009) Magnetic resonance imaging of the idiopathic inflammatory myopathies: structural and clinical aspects. Ann N Y Acad Sci 1154:101–114PubMedCrossRefGoogle Scholar
  9. Dalakas MC, Hohlfeld R (2003) Polymyositis and dermatomyositis. Lancet 362(9388):971–982PubMedCrossRefGoogle Scholar
  10. Daldrup-Link HE, Franzius C, Link TM et al (2001) Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR Am J Roentgenol 177(1):229–236PubMedCrossRefGoogle Scholar
  11. Eustace S, Tello R, DeCarvalho V et al (1997) A comparison of whole-body turboSTIR MR imaging and planar 99 mTc-methylene diphosphonate scintigraphy in the examination of patients with suspected skeletal metastases. AJR Am J Roentgenol 169(6):1655–1661PubMedCrossRefGoogle Scholar
  12. Eustace SJ, Walker R, Blake M, Yucel EK (1999) Whole-body MR imaging. practical issues, clinical applications, and future directions. Magn Reson Imaging Clin N Am 7(2):209–236PubMedGoogle Scholar
  13. Fischer D, Walter MC, Kesper K et al (2005) Diagnostic value of muscle MRI in differentiating LGMD2I from other LGMDs. J Neurol 252(5):538–547PubMedCrossRefGoogle Scholar
  14. Fleckenstein JL, Reimers CD (1996) Inflammatory myopathies: radiologic evaluation. Radiol Clin North Am 34(2):427–439, xiiGoogle Scholar
  15. Garcia J (2000) MRI in inflammatory myopathies. Skeletal Radiol 29(8):425–438PubMedCrossRefGoogle Scholar
  16. Griswold MA, Jakob PM, Heidemann RM et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med Official J Soci Magn Reson Med/Soci Magn Reson Med 47(6):1202–1210CrossRefGoogle Scholar
  17. Hegele RA, Joy TR, Al-Attar SA, Rutt BK (2007) Thematic review series: adipocyte biology. Lipodystrophies: windows on adipose biology and metabolism. J Lipid Res 48(7):1433–1444PubMedCrossRefGoogle Scholar
  18. Horvath LJ, Burtness BA, McCarthy S, Johnson KM (1999) Total-body echo-planar MR imaging in the staging of breast cancer: comparison with conventional methods–early experience. Radiology 211(1):119–128PubMedCrossRefGoogle Scholar
  19. Johnson KM, Leavitt GD, Kayser HW (1997) Total-body MR imaging in as little as 18 seconds. Radiology 202(1):262–267PubMedGoogle Scholar
  20. Kesper K, Kornblum C, Reimann J, Lutterbey G, Schroder R, Wattjes MP (2009) Pattern of skeletal muscle involvement in primary dysferlinopathies: a whole-body 3.0-T magnetic resonance imaging study. Acta Neurol Scand 120(2):111–118PubMedCrossRefGoogle Scholar
  21. Kornblum C, Lutterbey G, Bogdanow M et al (2006) Distinct neuromuscular phenotypes in myotonic dystrophy types 1 and 2: a whole body highfield MRI study. J Neurol 253(6):753–761PubMedCrossRefGoogle Scholar
  22. Kramer H, Schoenberg SO, Nikolaou K et al (2005) Cardiovascular screening with parallel imaging techniques and a whole-body MR imager. Radiology 236(1):300–310PubMedCrossRefGoogle Scholar
  23. Larkman DJ, Nunes RG (2007) Parallel magnetic resonance imaging. Phys Med Biol 52(7):R15–R55PubMedCrossRefGoogle Scholar
  24. Lauenstein TC, Freudenberg LS, Goehde SC et al (2002) Whole-body MRI using a rolling table platform for the detection of bone metastases. Eur Radiol 12(8):2091–2099PubMedGoogle Scholar
  25. Lenk S, Fischer S, Kotter I, Claussen CD, Schlemmer HP (2004) Possibilities of whole-body MRI for investigating musculoskeletal diseases. Der Radiologe 44(9):844–853PubMedCrossRefGoogle Scholar
  26. Maillard SM, Jones R, Owens C et al (2004) Quantitative assessment of MRI T2 relaxation time of thigh muscles in juvenile dermatomyositis. Rheumatology (Oxford) 43(5):603–608CrossRefGoogle Scholar
  27. May DA, Disler DG, Jones EA, Balkissoon AA, Manaster BJ (2000) Abnormal signal intensity in skeletal muscle at MR imaging: patterns, pearls, and pitfalls. Radiographics 20 Spec No:S295–S315Google Scholar
  28. Mercuri E, Pichiecchio A, Counsell S et al (2002) A short protocol for muscle MRI in children with muscular dystrophies. Eur J Paediatric Neurol EJPN Official J Eur Paediatric Neurol Soci 6(6):305–307Google Scholar
  29. Mercuri E, Pichiecchio A, Allsop J, Messina S, Pane M, Muntoni F (2007) Muscle MRI in inherited neuromuscular disorders: past, present, and future. J Magn Reson Imaging JMRI 25(2):433–440CrossRefGoogle Scholar
  30. Napier N, Shortt C, Eustace S (2006) Muscle edema: classification, mechanisms, and interpretation. Semin Musculoskeletal Radiol 10(4):258–267CrossRefGoogle Scholar
  31. O’Connell MJ, Powell T, Brennan D, Lynch T, McCarthy CJ, Eustace SJ (2002) Whole-body MR imaging in the diagnosis of polymyositis. AJR Am J Roentgenol 179(4):967–971PubMedCrossRefGoogle Scholar
  32. Olive M, Armstrong J, Miralles F et al (2007) Phenotypic patterns of desminopathy associated with three novel mutations in the desmin gene. Neuromuscul Disord NMD 17(6):443–450CrossRefGoogle Scholar
  33. Ozsarlak O, Parizel PM, De Schepper AM, De Jonghe P, Martin JJ (2004) Whole-body MR screening of muscles in the evaluation of neuromuscular diseases. Eur Radiol 14(8):1489–1493PubMedGoogle Scholar
  34. Quijano-Roy S, Avila-Smirnow D, Carlier RY (2012) Whole body muscle MRI protocol: pattern recognition in early onset NM disorders. Neuromuscul Disord NMD 22(Suppl 2):S68–S84CrossRefGoogle Scholar
  35. Reimers CD, Schedel H, Fleckenstein JL et al (1994) Magnetic resonance imaging of skeletal muscles in idiopathic inflammatory myopathies of adults. J Neurol 241(5):306–314PubMedCrossRefGoogle Scholar
  36. Rybak LD, Torriani M (2003) Magnetic resonance imaging of sports-related muscle injuries. Top Magn Reson Imaging TMRI 14(2):209–219CrossRefGoogle Scholar
  37. Schmidt GP, Haug AR, Schoenberg SO, Reiser MF (2006) Whole-body MRI and PET-CT in the management of cancer patients. Eur Radiol 16(6):1216–1225PubMedCrossRefGoogle Scholar
  38. Schmidt GP, Reiser MF, Baur-Melnyk A (2007a) Whole-body imaging of the musculoskeletal system: the value of MR imaging. Skeletal Radiol 36(12):1109–1119PubMedCentralPubMedCrossRefGoogle Scholar
  39. Schmidt GP, Schoenberg SO, Schmid R et al (2007b) Screening for bone metastases: whole-body MRI using a 32-channel system versus dual-modality PET-CT. Eur Radiol 17(4):939–949PubMedCrossRefGoogle Scholar
  40. Schmidt GP, Wintersperger B, Graser A, Baur-Melnyk A, Reiser MF, Schoenberg SO (2007c) High-resolution whole-body magnetic resonance imaging applications at 1.5 and 3 Tesla: a comparative study. Invest Radiol 42(6):449–459PubMedCrossRefGoogle Scholar
  41. Schramm N, Born C, Weckbach S, Reilich P, Walter MC, Reiser MF (2008) Involvement patterns in myotilinopathy and desminopathy detected by a novel neuromuscular whole-body MRI protocol. Eur Radiol 18(12):2922–2936PubMedCrossRefGoogle Scholar
  42. Selcen D, Engel AG (2004) Mutations in myotilin cause myofibrillar myopathy. Neurology 62(8):1363–1371PubMedCrossRefGoogle Scholar
  43. Selcen D, Engel AG (2011) Myofibrillar myopathies. Handb Clin Neurol 101:143–154PubMedCrossRefGoogle Scholar
  44. Shelly MJ, Bolster F, Foran P, Crosbie I, Kavanagh EC, Eustace SJ (2010) Whole-body magnetic resonance imaging in skeletal muscle disease. Semin Musculoskeletal Radiol 14(1):47–56CrossRefGoogle Scholar
  45. Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med Official J Soci Magn Reson Med/Soci Magn Reson Med 38(4):591–603CrossRefGoogle Scholar
  46. Sookhoo S, Mackinnon I, Bushby K, Chinnery PF, Birchall D (2007) MRI for the demonstration of subclinical muscle involvement in muscular dystrophy. Clin Radiol 62(2):160–165PubMedCrossRefGoogle Scholar
  47. Steinborn MM, Heuck AF, Tiling R, Bruegel M, Gauger L, Reiser MF (1999) Whole-body bone marrow MRI in patients with metastatic disease to the skeletal system. J Comput Assist Tomogr 23(1):123–129PubMedCrossRefGoogle Scholar
  48. Tomasova Studynkova J, Charvat F, Jarosova K, Vencovsky J (2007) The role of MRI in the assessment of polymyositis and dermatomyositis. Rheumatology (Oxford) 46(7):1174–1179Google Scholar
  49. Walker UA (2008) Imaging tools for the clinical assessment of idiopathic inflammatory myositis. Curr Opin Rheumatol 20(6):656–661PubMedCrossRefGoogle Scholar
  50. Weber MA, Essig M, Kauczor HU (2007) Radiological diagnostics of muscle diseases. RoFo Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin 179(7):712–720PubMedCrossRefGoogle Scholar
  51. Weber MA, Nagel AM, Jurkat-Rott K, Lehmann-Horn F (2011) Sodium (23Na) MRI detects elevated muscular sodium concentration in Duchenne muscular dystrophy. Neurology 77(23):2017–2024PubMedCrossRefGoogle Scholar
  52. Weckbach S (2009) Whole-body MR imaging for patients with rheumatism. Eur J Radiol 70(3):431–441Google Scholar
  53. Weckbach S (2012) Whole-body MRI for inflammatory arthritis and other multifocal rheumatoid diseases. Semin Musculoskeletal Radiol 16(5):377–388Google Scholar
  54. Weckbach S, Schoenberg SO (2009) Whole body MR imaging in diabetes. Eur J Radiol 70(3):424–430PubMedCrossRefGoogle Scholar
  55. Zenge MO, Ladd ME, Vogt FM, Brauck K, Barkhausen J, Quick HH (2005) Whole-body magnetic resonance imaging featuring moving table continuous data acquisition with high-precision position feedback. Magn Reson Med Official J Soci Magn Reson Med/Soci Magn Reson Med 54(3):707–711CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nicolai Schramm
    • 1
  • Sabine Weckbach
    • 2
  • Stephen Eustace
    • 3
  • Niamh M. Long
    • 4
  1. 1.Institute for Clinical RadiologyLudwig-Maximilians-University Hospital MunichMunichGermany
  2. 2.Institute of Diagnostic and Interventional RadiologyUniversity Hospital HeidelbergHeidelbergGermany
  3. 3.FFSEM, Newman Professor of RadiologyUniversity College Dublin, Consultant Musculoskeletal Radiologist, Departments of Radiology, Mater Misericordiae University Hospital and Cappagh National, Orthopaedic HospitalDublinIreland
  4. 4.Department of RadiologySpecialist Registrar in Diagnostic Radiology, Cappagh National Orthopaedic HospitalDublinIreland

Personalised recommendations