Nuclear Medicine Procedures for Treatment Evaluation and Administration

  • Javier Arbizu
  • Macarena Rodriguez-Fraile
  • Josep M Martí-Climent
  • Inés Domínguez-Prado
  • Carmen Vigil
Part of the Medical Radiology book series (MEDRAD)


The 90Yttrium radioembolisation (RE) procedure requires the collaboration of a multidisciplinary team that includes hepatologists, oncologists, interventional radiologists and nuclear medicine specialists working together in close collaboration. To avoid toxicity to the patient, a thorough angiographic evaluation is performed to identify extrahepatic vessels that may feed the tumours (to guarantee efficacy). To mimic the microsphere application during the treatment, angiographic evaluation is accomplished with 99mTechnetium-labelled macroaggregated albumin injection into the vessel of interest, followed by imaging. Both procedures combined are essential to plan the RE therapy, and to detect and eventually occlude every collateral vessel arising from a hepatic artery that may carry microspheres to the gastrointestinal tract or other extrahepatic organs. Moreover, this approach permits the calculation of hepatopulmonary shunting, and tumour and liver tissue targeting. With this information taken together, the treatment is designed and activity is calculated to maximise the dose of radiation delivered to liver tumours while safely preserving the non-tumoural parenchyma.


Positron Emission Tomography Single Photon Emission Compute Tomography Planar Scintigraphy Nuclear Medicine Procedure Lung Shunt Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.




90Y RE

90Yttrium-loaded microspheres radioembolisation




99mTechnetium-labelled macroaggregated albumin


Single photon emission computed tomography imaging


Single photon emission computed tomography imaging combined with X-ray computer tomography


Positron emission tomography


Positron emission tomography combined with X-ray computer tomography


Magnetic resonance imaging


Becquerel; unit of radioactivity


Ordered subsets expectation maximisation iterative reconstruction


Region of interest


Hepatopulmonary or lung shunting


Grey; units of radiation dose


Medical internal radiation dosimetry


Tumour targeting or tumour-to-non-tumour ratio


5 Fluorouracil




  1. Ahmadzadehfar H, Sabet A, Biermann K, Muckle M, Brockmann H, Kuhl C, Wilhelm K, Biersack HJ, Ezziddin S (2010) The significance of 99 mTc-MAA SPECT/CT liver perfusion imaging in treatment planning for 90Y-microsphere selective internal radiation treatment. J Nucl Med 51(8):1206–1212PubMedCrossRefGoogle Scholar
  2. Ahmadzadehfar H, Muckle M, Sabet A, Wilhelm K, Kuhl C, Biermann K, Haslerud T, Biersack HJ, Ezziddin S (2011) The significance of bremsstrahlung SPECT/CT after yttrium-90 radioembolization treatment in the prediction of extrahepatic side effects. Eur J Nucl Med Mol Imaging 39:309–315 Google Scholar
  3. Ahmadzadehfar H, Sabet A, Meyer C, Habibi E, Biersack HJ, Ezziddin S (2012) The importance of tc-MAA SPECT/CT for therapy planning of radioembolization in a patient treated with bevacizumab. Clin Nucl Med 37(11):1129–1130PubMedCrossRefGoogle Scholar
  4. Bagni O, D’Arienzo M, Chiaramida P, Chiacchiararelli L, Cannas P, D’Agostini A, Cianni R, Salvatori R, Scopinaro F (2012) 90Y-PET for the assessment of microsphere biodistribution after selective internal radiotherapy. Nucl Med Commun 33(2):198–204PubMedCrossRefGoogle Scholar
  5. Bilbao JI, Garrastachu P, Herráiz MJ, Rodríguez M, Inarrairaegui M, Rodríguez J, Hernández C, de la Cuesta AM, Arbizu J, Sangro B (2010) Safety and efficacy assessment of flow redistribution by occlusion of intrahepatic vessels prior to radioembolization in the treatment of liver tumors. Cardiovasc Interv Radiol 33(3):523–531CrossRefGoogle Scholar
  6. Campbell JM, Wong CO, Muzik O, Marples B, Joiner M, Burmeister J (2009) Early dose response to yttrium-90 microsphere treatment of metastatic liver cancer by a patient-specific method using single photon emission computed tomography and positron emission tomography. Int J Radiat Oncol Biol Phys 74(1):313–320PubMedCrossRefGoogle Scholar
  7. Carretero C, Munoz-Navas M, Betes M, Angos R, Subtil JC, Fernandez-Urien I, De la Riva S, Sola J, Bilbao JI, de Luis E (2007) Gastroduodenal injury after radioembolization of hepatic tumors. Am J Gastroenterol 102(6):1216–1220PubMedCrossRefGoogle Scholar
  8. Covey AM, Brody LA, Maluccio MA, Getrajdman GI, Brown KT (2002) Variant hepatic arterial anatomy revisited: digital subtraction angiography performed in 600 patients. Radiology 224(2):542–547PubMedCrossRefGoogle Scholar
  9. Cremonesi M, Ferrari M, Bartolomei M, Orsi F, Bonomo G, Aricò D, Mallia A, De Cicco C, Pedroli G, Paganelli G (2008) Radioembolisation with 90Y-microspheres: dosimetric and radiobiological investigation for multi-cycle treatment. Eur J Nucl Med Mol Imaging 35(11):2088–2096PubMedCrossRefGoogle Scholar
  10. D’Arienzo M, Chiaramida P, Chiacchiararelli L, Coniglio A, Cianni R, Salvatori R, Ruzza A, Scopinaro F, Bagni O (2012) 90Y PET-based dosimetry after selective internal radiotherapy treatments. Nucl Med Commun 33(6):633–640PubMedCrossRefGoogle Scholar
  11. Dancey JE, Shepherd FA, Paul K, Sniderman KW, Houle S, Gabrys J, Hendler AL, Goin JE (2000) Treatment of nonresectable hepatocellular carcinoma with intrahepatic 90Y-microspheres. J Nucl Med 41(10):1673–1681PubMedGoogle Scholar
  12. Even-Sapir E, Keidar Z, Bar-Shalom R (2009) Hybrid imaging (SPECT/CT and PET/CT)–improving the diagnostic accuracy of functional/metabolic and anatomic imaging. Sem Nucl Med 39:264–275CrossRefGoogle Scholar
  13. Fabbri C, Sarti G, Cremonesi M, Ferrari M, Dia AD, Agostini M, Botta F, Paganelli G (2009) Quantitative analysis of 90Y bremsstrahlung SPECT-CT images for application to 3D patient-specific dosimetry. Cancer Biother Radiopharm 24(1):145–154PubMedCrossRefGoogle Scholar
  14. Flamen P, Vanderlinden B, Delatte P, Ghanem G, Ameye L, Van Den Eynde M, Hendlisz A (2008) Multimodality imaging can predict the metabolic response of unresectable colorectal liver metastases to radioembolization therapy with yttrium-90 labeled resin microspheres. Phys Med Biol 53(22):6591–6603PubMedCrossRefGoogle Scholar
  15. Ford KW (1955) Predicted 0+ level in 40Zr90. Phys Rev 98:1516–1517CrossRefGoogle Scholar
  16. Garin E, Lenoir L, Rolland Y, Edeline J, Mesbah H, Laffont S, Poree P, Clement B, Raoul JL, Boucher E (2012) Dosimetry based on 99 mTc-macroaggregated albumin SPECT/CT accurately predicts tumor response and survival in hepatocellular carcinoma patients treated with 90Y-loaded glass microspheres: preliminary results. J Nucl Med 53(2):255–263PubMedCrossRefGoogle Scholar
  17. Garin E, Rolland Y, Lenoir L, Pracht M, Mesbah H, Poree P, Laffont S, Clement B, Raoul JL, Boucher E (2011) Utility of quantitative tc-MAA SPECT/CT for yttrium-labelled microsphere treatment planning: calculating vascularized hepatic volume and dosimetric approach. Int J Mol Imaging. doi: 10.1155/2011/398051
  18. Giammarile F, Bodei L, Chiesa C, Flux G, Forrer F, Kraeber-Bodere F, Brans B, Lambert B, Konijnenberg M, Borson-Chazot F et al (2011) EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds. Eur J Nucl Med Mol Imaging 38(7):1393–1406PubMedCrossRefGoogle Scholar
  19. Gulec SA, Mesoloras G, Dezarn WA, McNeillie P, Kennedy AS (2007) Safety and efficacy of Y-90 microsphere treatment in patients with primary and metastatic liver cancer: the tumor selectivity of the treatment as a function of tumor to liver flow ratio. J Transl Med 5:15PubMedCentralPubMedCrossRefGoogle Scholar
  20. Gulec S, Sztejnberg M, Siegel J (2010) Hepatic structural dosimetry in 90Y microsphere treatment: a monte carlo modeling approach based on lobular microanatomy. J Nucl Med 51:301–310PubMedCrossRefGoogle Scholar
  21. Gupta A, Gill A, Shrikanthan S, Srinivas S (2012) Nontargeted Y-90 microsphere radioembolization to duodenum visualized on Y-90 PET/CT and bremsstrahlung SPECT/CT. Clin Nucl Med 37:98–99PubMedCrossRefGoogle Scholar
  22. Hamami ME, Poeppel TD, Müller S, Heusner T, Bockisch A, Hilgard P, Antoch G (2009) SPECT/CT with 99 mTc-MAA in radioembolization with 90Y microspheres in patients with hepatocellular cancer. J Nucl Med 50:688–692PubMedCrossRefGoogle Scholar
  23. Haug AR, Heinemann V, Bruns CJ, Hoffmann R, Jakobs T, Bartenstein P, Hacker M (2011) 18F-FDG PET independently predicts survival in patients with cholangiocellular carcinoma treated with 90Y microspheres. Eur J Nucl Med Mol Imaging 38:1037–1045PubMedCrossRefGoogle Scholar
  24. Ho S, Lau W, Leung T, Chan M, Ngar Y, Johnson P, Li A (1996) Partition model for estimating radiation doses from yttrium-90 microspheres in treating hepatic tumours. Eur J Nucl Med Mol Imaging 23:947–952CrossRefGoogle Scholar
  25. Jha AK, Zade AA, Rangarajan V, Purandare N, Shah SA, Agrawal A, Kulkarni SS, Shetty N (2012) Comparative analysis of hepatopulmonary shunt obtained from pretherapy 99 mTc MAA scintigraphy and post-therapy 90Y bremsstrahlung imaging in 90Y microsphere therapy. Nucl Med Commun 33:486–490PubMedCrossRefGoogle Scholar
  26. Kao YH, Tan EH, Ng CE, Goh SW (2011) Yttrium-90 time-of-flight PET/CT is superior to bremsstrahlung SPECT/CT for postradioembolization imaging of microsphere biodistribution. Clin Nucl Med 36(12):186–187CrossRefGoogle Scholar
  27. Kao YH, Tan AEH, Burgmans MC, Irani FG, Khoo LS, Lo RHG, Tay KH, Tan BS, Chow PKH, Ng DCE (2012) Image-guided personalized predictive dosimetry by artery-specific SPECT/CT partition modeling for safe and effective 90Y radioembolization. J Nucl Med 53(4):559–566PubMedCrossRefGoogle Scholar
  28. Kennedy A, Nag S, Salem R, Murthy R, McEwan AJ, Nutting C, Benson A, Espat J, Bilbao JI, Sharma RA (2007) Recommendations for radioembolization of hepatic malignancies using yttrium-90 microsphere brachytherapy: a consensus panel report from the radioembolization brachytherapy oncology consortium. Int J Radiat Oncol Biol Phys 68(1):13–23PubMedCrossRefGoogle Scholar
  29. Kennedy AS, McNeillie P, Dezarn WA, Nutting C, Sangro B, Wertman D, Garafalo M, Liu D, Coldwell D, Savin M et al (2009) Treatment parameters and outcome in 680 treatments of internal radiation with resin 90Y-microspheres for unresectable hepatic tumors. Int J Radiat Oncol Biol Phys 74(5):1494–1500PubMedCrossRefGoogle Scholar
  30. Kennedy A, Coldwell D, Sangro B, Wasan H, Salem R (2012) Radioembolization for the treatment of liver tumors: general principles. Am J Clin Oncol 35(1):91–99PubMedCrossRefGoogle Scholar
  31. Knesaurek K, Machac J, Muzinic M, DaCosta M, Zhang Z, Heiba S (2010) Quantitative comparison of yttrium-90 (90Y)-microspheres and technetium-99 m (99 mTc)-macroaggregated albumin SPECT images for planning 90Y therapy of liver cancer. Technol Cancer Res Treat 9(3):253–262PubMedGoogle Scholar
  32. Lambert B, Mertens J, Sturm EJ, Stienaers S, Defreyne L, D’Asseler Y (2010) 99 mTc-labelled macroaggregated albumin (MAA) scintigraphy for planning treatment with 90Y microspheres. Eur J Nucl Med Mol Imaging 37(12):2328–2333PubMedCrossRefGoogle Scholar
  33. Lau W, Leung T, Ho S, Chan M, Leung N, Lin J, Metreweli C, Li A (1994) Diagnostic pharmaco-scintigraphy with hepatic intraarterial technetium-99m macroaggregated albumin in the determination of tumour to non-tumour uptake ratio in hepatocellular carcinoma. Br J Radiol 67(794):136–139PubMedCrossRefGoogle Scholar
  34. Lau WY, Kennedy AS, Kim YH, Lai HK, Lee RC, Leung TW, Liu CS, Salem R, Sangro B, Shuter B et al (2012) Patient selection and activity planning guide for selective internal radiotherapy with yttrium-90 resin microspheres. Int J Radiat Oncol Biol Phys 82(1):401–407PubMedCrossRefGoogle Scholar
  35. Lenoir L, Edeline J, Rolland Y, Pracht M, Raoul JL, Ardisson V, Bourguet P, Clement B, Boucher E, Garin E (2012) Usefulness and pitfalls of MAA SPECT/CT in identifying digestive extrahepatic uptake when planning liver radioembolization. Eur J Nucl Med Mol Imaging 39(5):872–880PubMedCentralPubMedCrossRefGoogle Scholar
  36. Leong QM, Lai HK, Lo RG, Teo TK, Goh A, Chow PK (2009) Radiation dermatitis following radioembolization for hepatocellular carcinoma: a case for prophylactic embolization of a patent falciform artery. J Vasc Interv Radiol 20(6):833–836PubMedCrossRefGoogle Scholar
  37. Leung WT, Lau WY, Ho SK, Chan M, Leung NW, Lin J, Metreweli C, Johnson PJ, Li AK (1994) Measuring lung shunting in hepatocellular carcinoma with intrahepatic-arterial technetium-99m macroaggregated albumin. J Nucl Med 35(1):70–73PubMedGoogle Scholar
  38. Leung TW, Lau WY, Ho SK, Ward SC, Chow JH, Chan MS, Metreweli C, Johnson PJ, Li AK (1995) Radiation pneumonitis after selective internal radiation treatment with intraarterial 90yttrium-microspheres for inoperable hepatic tumors. Int J Radiat Oncol Biol Phys 33(4):919–924PubMedCrossRefGoogle Scholar
  39. Lhommel R, Goffette P, Van den Eynde M, Jamar F, Pauwels S, Bilbao JI, Walrand S (2009) Yttrium-90 TOF PET scan demonstrates high-resolution biodistribution after liver SIRT. Eur J Nucl Med Mol Imaging 36(10):1696PubMedCrossRefGoogle Scholar
  40. Lhommel R, van Elmbt L, Goffette P, Van den Eynde M, Jamar F, Pauwels S, Walrand S (2010) Feasibility of 90 Y TOF PET-based dosimetry in liver metastasis therapy using SIR-spheres. Eur J Nucl Med Mol Imaging 37(9):1654–1662PubMedCrossRefGoogle Scholar
  41. Maziere B, Loc’h C, Steinling M, Comar D (1986) Stable labelling of serum albumin microspheres with gallium-68. Int J Radiat Appl Instrum Part A Appl Radiat Isot 37(4):360–361CrossRefGoogle Scholar
  42. Murthy R, Nunez R, Szklaruk J, Erwin W, Madoff DC, Gupta S, Ahrar K, Wallace MJ, Cohen A, Coldwell DM (2005) Yttrium-90 microsphere therapy for hepatic malignancy: devices, indications, technical considerations, and potential complications. Radiographics 25(Suppl 1):S41–S55PubMedCrossRefGoogle Scholar
  43. Riaz A, Lewandowski RJ, Kulik LM, Mulcahy MF, Sato KT, Ryu RK, Omary RA, Salem R (2009) Complications following radioembolization with yttrium-90 microspheres: a comprehensive literature review. J Vasc Interv Radiol 20(9):1121–1130PubMedCrossRefGoogle Scholar
  44. Rodríguez-Fraile M, Arbizu J, Iñarrairaegui M, Martí-Climent J, Quincoces G, Garrastachu P, Domínguez I, Peñuelas I, Sangro B, Richter J (2008) Evaluation of 99mTc-MAA SPECT as a biomarker of liver tumor response to radioembolization with 90-yttrium. Eur J Nucl Med Mol Imaging 35(Suppl 2):S278Google Scholar
  45. Rong X, Du Y, Frey EC (2012a) A method for energy window optimization for quantitative tasks that includes the effects of model-mismatch on bias: application to Y-90 bremsstrahlung SPECT imaging. Phys Med Biol 57:3711–3725PubMedCentralPubMedCrossRefGoogle Scholar
  46. Rong X, Du Y, Ljungberg M, Rault E, Vandenberghe S, Frey EC (2012b) Development and evaluation of an improved quantitative 90Y bremsstrahlung SPECT method. Med Phys 39:2346–2358PubMedCentralPubMedCrossRefGoogle Scholar
  47. Sabet A, Ahmadzadehfar H, Muckle M, Haslerud T, Wilhelm K, Biersack HJ, Ezziddin S (2011) Significance of oral administration of sodium perchlorate in planning liver-directed radioembolization. J Nucl Med 52:1063–1067PubMedCrossRefGoogle Scholar
  48. Salem R, Thurston KG (2006) Radioembolization with 90yttrium microspheres: a state-of-the-art brachytherapy treatment for primary and secondary liver malignancies: Part 1: Technical and methodologic considerations. J Vasc Interv Radiol 17:1251–1278PubMedCrossRefGoogle Scholar
  49. Sánchez-Martínez M, Colantes M, Rodriguez-Fraile M, Dominguez-Prado I, Vidal A, Iñarrairaegui M, Bilbao J, Sangro B, Peñuelas I (2012) Fluorine-18 radiolabelling of SIR-spheres as biodistribution surrogate od radiospheres treatment: in vivo micro-PET and in vitro stability studies. Eur J Nucl Med Mol Imaging 39 (Suppl 2):S-168Google Scholar
  50. Selwyn R, Avila-Rodriguez M, Converse A, Hampel J, Jaskowiak C, McDermott J, Warner T, Nickles R, Thomadsen B (2007) 18F-labeled resin microspheres as surrogates for 90Y resin microspheres used in the treatment of hepatic tumors: a radiolabeling and PET validation study. Phys Med Biol 52:7397–7408PubMedCrossRefGoogle Scholar
  51. Van de Wiele C, Maes A, Brugman E, D’Asseler Y, De Spiegeleer B, Mees G, Stellamans K (2012) SIRT of liver metastases: physiological and pathophysiological considerations. Eur J Nucl Med Mol Imaging 39:1646–1655Google Scholar
  52. van Elmbt L, Vandenberghe S, Walrand S, Pauwels S, Jamar F (2011) Comparison of yttrium-90 quantitative imaging by TOF and non-TOF PET in a phantom of liver selective internal radiotherapy. Phys Med Biol 56:6759–6777PubMedCrossRefGoogle Scholar
  53. Wu SY, Kuo JW, Chang TK, Liu RS, Lee RC, Wang SJ, Lin WJ, Wang HE (2012) Preclinical characterization of 18F-MAA, a novel PET surrogate of 99mTc-MAA. Nucl Med Biol 39:1026–1033PubMedCrossRefGoogle Scholar
  54. Yorke ED, Jackson A, Rosenzweig KE, Braban L, Leibel SA, Ling CC (2005) Correlation of dosimetric factors and radiation pneumonitis for non-small-cell lung cancer patients in a recently completed dose escalation study. Int J Radiat Oncol Biol Phys 63:672–682PubMedCrossRefGoogle Scholar
  55. Yu N, Srinivas SM, Difilippo FP, Shrikanthan S, Levitin A, McLennan G, Spain J, Xia P, Wilkinson A (2013) Lung dose calculation with SPECT/CT for 90Yittrium radioembolization of liver cancer. Int J Radiat Oncol Biol Phys 85:834–839PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2013

Authors and Affiliations

  • Javier Arbizu
    • 1
  • Macarena Rodriguez-Fraile
    • 1
  • Josep M Martí-Climent
    • 1
  • Inés Domínguez-Prado
    • 1
  • Carmen Vigil
    • 1
  1. 1.Department of Nuclear MedicineClinica Universidad De NavarraPamplonaSpain

Personalised recommendations