Dosimetry and Dose Calculation

  • Andrew S. Kennedy
  • William A. Dezarn
  • Patrick McNeillie
  • Bruno Sangro
Part of the Medical Radiology book series (MEDRAD)


The selection of the optimal activity of 90Y for implantation for an individual patient requires understanding of the strengths and potential weaknesses of various calculation methods. Details of each methods origin and derivation are presented with inclusion of the most recent consensus recommendations on which approach is best used for primary and metastatic malignancies of the liver.


Normal Liver Glass Microsphere Resin Microsphere Medical Internal Radiation Dose Radiation Induce Liver Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anderson JH, Angerson WJ, Willmott N, Kerr DJ, McArdle CS, Cooke TG (1991) Regional delivery of microspheres to liver metastases: the effects of particle size and concentration on intrahepatic distribution. Br J Cancer 64:1031–1034PubMedCentralPubMedCrossRefGoogle Scholar
  2. Anderson JH, Angerson WJ, Willmott N, Kerr DJ, McArdle CS, Cooke TG (1992) Is there a relationship between regional microsphere distribution and hepatic arterial blood flow? Br J Cancer 66:287–289PubMedCentralPubMedCrossRefGoogle Scholar
  3. Archer SG, Gray BN (1989) Vascularization of small liver metastases. Br J Surg 76(6):545–548PubMedCrossRefGoogle Scholar
  4. Bentzen SM, Constine LS, Deasy JO, Eisbruch A, Jackson A, Marks LB et al (2010) Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC): an introduction to the scientific issues. Int J Radiat Oncol Biol Phys 76(3 Suppl):S3–S9PubMedCentralPubMedCrossRefGoogle Scholar
  5. Blanchard RJ, Grotenhuis I, LaFave JW (1964) Treatment of experimental tumors: utilization of radioactive microspheres. Arch Surg 89:406PubMedCrossRefGoogle Scholar
  6. Bolliger A, Inglis K (1933) Experimental liver disease produced by X-ray irradiation of the exposed organ. J Pathol 36:19–30CrossRefGoogle Scholar
  7. Burton MA, Gray BN, Self GW, Heggie JC, Townsend PS (1985) Manipulation of experimental rat and rabbit liver tumor blood flow with angiotensin II. Cancer Res 45(11 Pt 1):5390–5393PubMedGoogle Scholar
  8. Burton MA, Gray BN, Coletti A (1988) Effect of angiotensin II on blood flow in the transplanted sheep squamous cell carcinoma. Eur J Cancer Clin Oncol 24(8):1373–1376PubMedCrossRefGoogle Scholar
  9. Burton MA, Gray BN, Jones C, Coletti A (1989a) Intraoperative dosimetry of 90Y in liver tissue. Int J Rad Appl Instrum B 16(5):495–498PubMedCrossRefGoogle Scholar
  10. Burton MA, Gray BN, Klemp PF, Kelleher DK, Hardy N (1989b) Selective internal radiation therapy: distribution of radiation in the liver. Eur J Cancer Clin Oncol 25(10):1487–1491PubMedCrossRefGoogle Scholar
  11. Burton MA, Gray BN, Kelleher DK, Klemp PF (1990) Selective internal radiation therapy: validation of intraoperative dosimetry. Radiology 175(1):253–255PubMedGoogle Scholar
  12. Campbell AM, Bailey IH, Burton MA (2000) Analysis of the distribution of intra-arterial microspheres in human liver following hepatic yttrium-90 microsphere therapy. Phys Med Biol 45:1023–1033PubMedCrossRefGoogle Scholar
  13. Campbell AM, Bailey IH, Burton MA (2001) Tumor dosimetry in human liver following hepatic yttrium-90 microsphere therapy. Phys Med Biol 46:487–498PubMedCrossRefGoogle Scholar
  14. Chamberlain MN, Gray BN, Heggie JC, Chmiel RL, Bennett RC (1983) Hepatic metastases–a physiological approach to treatment. Br J Surg 70(10):596–598PubMedCrossRefGoogle Scholar
  15. Dawson LA (2005) Hepatic arterial yttrium 90 microspheres: another treatment option for hepatocellular carcinoma. J Vasc Interv Radiol 16(2 Pt 1):161–164PubMedCrossRefGoogle Scholar
  16. Dawson LA, Lawrence TS (2004) The role of radiotherapy in the treatment of liver metastases. Cancer J 10(2):139–144Google Scholar
  17. Dawson LA, Ten Haken RK (2005) Partial volume tolerance of the liver to radiation. Semin Radiat Oncol 15(4):279–283PubMedCrossRefGoogle Scholar
  18. Doub HP, Bolliger A, Hartman FW (1925) Radiation sickness in dog. Am J Roentgenol 13:54Google Scholar
  19. Doub HP, Hartman FW, Bolliger A (1927) X-rays in the cannine liver. Radiology 8:142Google Scholar
  20. Fajardo LF, Colby TV (1980) Pathogenesis of veno-occlusive liver disease after radiation. Arch Pathol Lab Med 104:584–588PubMedGoogle Scholar
  21. Fajardo LF, Berthrong M, Anderson RE (2001) Liver. Radiation Pathology, 1st edn. Oxford University Press, New York, pp 249–257Google Scholar
  22. Fox RA, Klemp PF, Egan G, Mina LL, Burton MA, Gray BN (1991) Dose distribution following selective internal radiation therapy. Int J Radiat Oncol Biol Phys 21(2):463–467PubMedCrossRefGoogle Scholar
  23. Gil-Alzugaray B, Chopitea A, Inarrairaegui M, Bilbao JI, Rodriguez-Fraile M, Rodriguez J et al (2013a) Prognostic factors and prevention of radioembolization-induced liver disease. Hepatology 57(3):1078–1087 (Epub) 2012/12/120Google Scholar
  24. Gil-Alzugaray B, Chopitea A, Inarrairaegui M, Bilbao JI, Rodriguez-Fraile M, Rodriguez J et al (2013b) Correction. Hepatology 1 (Epub 6 May 2013)Google Scholar
  25. Goldberg JA, Bradnam MS, Kerr DJ, McKillop JH, Bessent RG, McArdle CS et al (1987) Single photon emission computed tomographic studies (SPECT) of hepatic arterial perfusion scintigraphy (HAPS) in patients with colorectal liver metastases: improved tumour targetting by microspheres with angiotensin II. Nucl Med Commun 8(12):1025–1032PubMedCrossRefGoogle Scholar
  26. Goldberg JA, Kerr DJ, Willmott N, McKillop JH, McArdle CS (1988) Pharmacokinetics and pharmacodynamics of locoregional 5 fluorouracil (5FU) in advanced colorectal liver metastases. Br J Cancer 57(2):186–189PubMedCentralPubMedCrossRefGoogle Scholar
  27. Goldberg JA, Murray T, Kerr DJ, Willmott N, Bessent RG, McKillop JH et al (1991) The use of angiotensin II as a potential method of targeting cytotoxic microspheres in patients with intrahepatic tumour. Br J Cancer 63(2):308–310PubMedCentralPubMedCrossRefGoogle Scholar
  28. Grady ED, Sale WT, Rollins LC (1963) Localization of radioactivity by intravascular injection of large radioactive particles. Ann Surg 157(1):97–114PubMedCentralPubMedCrossRefGoogle Scholar
  29. Gray BN, Burton MA, Kelleher DK, Anderson J, Klemp P (1989) Selective internal radiation (SIR) therapy for treatment of liver metastases: measurement of response rate. J Surg Oncol 42(3):192–196PubMedCrossRefGoogle Scholar
  30. Gray BN, Burton MA, Kelleher D, Klemp P, Matz L (1990) Tolerance of the liver to the effects of Yttrium-90 radiation. Int J Radiat Oncol Biol Phys 18(3):619–623PubMedCrossRefGoogle Scholar
  31. Gray BN, Anderson JE, Burton MA, van Hazel G, Codde J, Morgan C et al (1992) Regression of liver metastases following treatment with yttrium-90 microspheres. Aust N Z J Surg 62(2):105–110PubMedCrossRefGoogle Scholar
  32. Gulec SA, Mesoloras G, Stabin M (2006a) Dosimetric techniques in 90Y-microsphere therapy of liver cancer: the MIRD equations for dose calculations. J Nucl Med 47(7):1209–1211PubMedGoogle Scholar
  33. Gulec SA, Mesoloras G, Dezarn WA, McNeillie P, Kennedy AS (2006b) Safety and efficacy evaluation of Y-90 microsphere treatment using medical internal radiation dosimetry (MIRD) in patients with liver malignancies. J Nucl Med 47:493PGoogle Scholar
  34. Ho S, Lau WY, Leung TW, Chan M, Ngar YK, Johnson PJ et al (1996) Partition model for estimating radiation doses from yttrium-90 microspheres in treating hepatic tumours. Eur J Nucl Med 23(8):947–952PubMedCrossRefGoogle Scholar
  35. Ho S, Lau WY, Leung TW, Chan M, Johnson PJ, Li AK (1997a) Clinical evaluation of the partition model for estimating radiation doses from yttrium-90 microspheres in the treatment of hepatic cancer. Eur J Nucl Med 24(3):293–298PubMedGoogle Scholar
  36. Ho S, Lau WY, Leung TW, Chan M, Chan KW, Lee WY et al (1997b) Tumour-to-normal uptake ratio of 90Y microspheres in hepatic cancer assessed with 99Tcm macroaggregated albumin. Br J Radiol 70(836):823–828PubMedGoogle Scholar
  37. Jaffray DA, Lindsay PE, Brock KK, Deasy JO, Tome WA (2010) Accurate accumulation of dose for improved understanding of radiation effects in normal tissue. Int J Radiat Oncol Biol Phys 76(3 Suppl):S135–S139PubMedCrossRefGoogle Scholar
  38. Kao YH, Hock Tan AE, Burgmans MC, Irani FG, Khoo LS, Gong Lo RH et al (2012) Image-guided personalized predictive dosimetry by artery-specific SPECT/CT partition modeling for safe and effective 90Y radioembolization. J Nucl Med 53(4):559–566Google Scholar
  39. Kennedy AS, Nutting C, Coldwell D, Gaiser J, Drachenberg C (2004a) Pathologic response and microdosimetry of 90Y microspheres in man: Review of four explanted whole livers. Int J Radiat Oncol Biol Phys 60(5):1552–1563PubMedCrossRefGoogle Scholar
  40. Kennedy AS, Coldwell D, Nutting C, Tucker G, Van Echo DA (eds) (2004b) 90Y-microspheres in the treatment of colorectal metastases: USA experience. In: Fifteenth international congress on anti-cancer treatment, Feb 10 2004. T.C.O., ParisGoogle Scholar
  41. Kennedy AS, Dezarn WA, McNeillie P, Overton C, England M, Sailer SL (2006a) Fractionation, dose selection, and response of hepatic metastases of neuroendocrine tumors after 90 Y—microsphere brachytherapy. Brachytherapy 5:103–104Google Scholar
  42. Kennedy AS, Dezarn WA, McNeillie P, Overton C, England M, Sailer SL (2006b) Dose selection of resin 90Y-microspheres for liver brachytherapy: a single center review. Brachytherapy 5:104Google Scholar
  43. Kennedy AS, McNeillie P, Dezarn WA, Nutting C, Sangro B, Wertman D et al (2009) Treatment parameters and outcome in 680 treatments of internal radiation with resin 90Y-microspheres for unresectable hepatic tumors. Int J Radiat Oncol Biol Phys 74(5):1494–1500PubMedCrossRefGoogle Scholar
  44. Kennedy AS, Dezarn WA, Weiss A (2011) Patient specific 3D image-based radiation dose estimates for 90Y microsphere hepatic radioembolization in metastatic tumors. J Nucl Med Radiat Ther 2(111):1–8Google Scholar
  45. Kennedy AS, Ball D, Cohen SJ, Cohn M, Coldwell D, Drooz A et al (2013) Safety and efficacy of resin 90Y-microspheres in 548 patients with colorectal liver metastases progressing on systemic chemotherapy. J Clin Oncol 31(4 suppl):264Google Scholar
  46. Kim YS, LaFave JW, MacLean LD (1962) The use of radiating microspheres in the treatment of experimental and human malignancy. Surgery 52:220PubMedGoogle Scholar
  47. Lau WY, Kennedy AS, Kim YH, Lai HK, Lee RC, Leung TW et al (2012) Patient selection and activity planning guide for selective internal radiotherapy with yttrium-90 resin microspheres. Int J Radiat Oncol Biol Phys 82(1):401–407PubMedCrossRefGoogle Scholar
  48. Pan CC, Kavanagh BD, Dawson LA, Li XA, Das SK, Miften M et al (2010) Radiation-associated liver injury. Int J Radiat Oncol Biol Phys 76(3 Suppl):S94–S100PubMedCrossRefGoogle Scholar
  49. Pillai KM, McKeever PE, Knutsen CA, Terrio PA, Prieskorn DM, Ensminger W (1991) Microscopic analysis of arterial microsphere distribution in rabbit liver and hepatic VX2 tumor. Select Cancer Ther 7(2):39–48CrossRefGoogle Scholar
  50. Sangro B, Gil-Alzugaray B, Rodriguez J, Sola I, Martinez-Cuesta A, Viudez A et al (2008) Liver disease induced by radioembolization of liver tumors: description and possible risk factors. Cancer 112(7):1538–1546PubMedCrossRefGoogle Scholar
  51. Sarfaraz M, Kennedy AS, Cao ZJ, Li A, Yu C (2001) Radiation dose distribution in patients treated with Y-90 Microspheres for non-resectable hepatic tumors. Int J Rad Biol Phys 51(3 S1):32–33Google Scholar
  52. Sarfaraz M, Kennedy AS, Cao ZJ, Sackett GD, Yu CX, Lodge MA, Murthy R, Line BR, Van Echo DA (2003) Physical aspects of yttrium-90 microsphere therapy for nonresectable hepatic tumors. Med Phys 30(2):199–203PubMedCrossRefGoogle Scholar
  53. Sarfaraz M, Kennedy AS, Lodge MA, Li XA, Wu X, Yu CX (2004) Radiation absorbed dose distribution in a patient treated with yttrium-90 microspheres for hepatocellular carcinoma. Med Phys 31(9):2449–2453PubMedCrossRefGoogle Scholar
  54. Stabin M (2006) Nuclear medicine dosimetry. Phys Med Biol 51(13):R187–R202PubMedCrossRefGoogle Scholar
  55. Stabin MG, Konijnenberg MW (2000) Re-evaluation of absorbed fractions for photons and electrons in spheres of various sizes. J Nucl Med 41(1):149–160PubMedGoogle Scholar
  56. Stabin MG, Siegel JA (2003) Physical models and dose factors for use in internal dose assessment. Health Phys 85(3):294–310PubMedCrossRefGoogle Scholar
  57. Toohey RE, Stabin MG, Watson EE (2000) The AAPM/RSNA physics tutorial for residents: internal radiation dosimetry: principles and applications. Radiographics 20(2):533–546 (quiz 1–2)Google Scholar
  58. Van Hazel G, Blackwell A, Anderson J, Price D, Moroz P, Bower G, Cardaci J, Gray B (2004) Randomised Phase II trial of SIR-spheres plus flrorouracil/leucovrin chemotherapy versus fluororacil/leucovorin chemotherapy alone in advanced colorectal cancer. J Surg Oncol 88(2):78–85PubMedCrossRefGoogle Scholar
  59. Warren LS (1928) Physiological effects of X-rays. Physiol Rev 8:114Google Scholar
  60. Wu Y, Cahill PA, Sitzmann JV (1996) Decreased angiotensin II receptors mediate decreased vascular response in hepatocellular cancer. Ann Surg 223(2):225–231PubMedCentralPubMedCrossRefGoogle Scholar
  61. Ya PM, Guzman T, Loken MK, Perry JF (1961) Isotope localization with tagged microspheres. Surgery 49(5):644–650PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andrew S. Kennedy
    • 1
    • 2
  • William A. Dezarn
    • 3
  • Patrick McNeillie
    • 4
    • 5
  • Bruno Sangro
    • 6
    • 7
    • 8
  1. 1.Radiation Oncology, Sarah Cannon, Radiation Oncology ResearchSarah Cannon Research InstituteNashvilleUSA
  2. 2.Department of Biomedical Engineering, Department of Mechanical and Aerospace EngineeringNorth Carolina State UniversityRaleighUSA
  3. 3.SiloamUSA
  4. 4.University of North CarolinaChapel HillUSA
  5. 5.School of MedicineChapel HillUSA
  6. 6.Liver Unit, Clinica Universidad de NavarraPamplonaSpain
  7. 7.Universidad de NavarraPamplonaSpain
  8. 8.Centro de Investigacion Biomedica en Red de EnfermedadesHepaticas y Digestivas (CIBEREHD)PamplonaSpain

Personalised recommendations