Integration of Gene Signatures and Genomic Data into Radiation Oncology Practice

  • Maria A. Thomas
  • Ramachandran Rashmi
  • Jacqueline Payton
  • Imran Zoberi
  • Julie K. Schwarz
Part of the Medical Radiology book series (MEDRAD)


One of the goals of personalized medicine is to utilize biomarkers to sub-classify patients into risk groups that can be used to guide recommendations for therapy. In addition to classical risk factors, gene signatures and genomics are being developed as a means to biologically characterize tumors and to stratify patients according to the risk associated with the specific molecular aberrations present in their disease. Gene signatures and genomics are currently being investigated as a personalized medicine strategy for many cancers, but have been studied most extensively in breast cancer. In this disease, the results of genetic signatures have come to influence current recommendations for adjuvant chemotherapy for appropriately selected patient populations. In this chapter, we will review the use of gene signatures and genomics in the development of personalized oncology, with an emphasis on applications for breast cancer.


Breast Cancer Triple Negative Breast Cancer Recurrence Score Breast Conservation Therapy Massively Parallel Signature Sequencing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abdulkarim BS, Cuartero J, Hanson J, Deschenes J, Lesniak D, Sabri S (2011) Increased risk of locoregional recurrence for women with T1–2N0 triple-negative breast cancer treated with modified radical mastectomy without adjuvant radiation therapy compared with breast-conserving therapy. J Clin Oncol 29(21):2852–2858PubMedCrossRefGoogle Scholar
  2. Albain KS, Barlow WE, Shak S et al (2010) Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol 11(1):55–65PubMedCentralPubMedCrossRefGoogle Scholar
  3. Banerji S, Cibulskis K, Rangel-Escareno C et al (2012) Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 486(7403):405–409PubMedCrossRefGoogle Scholar
  4. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57(1):289−300Google Scholar
  5. Buyse M, Loi S, van’t Veer LJ et al (2006) Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 98(17):1183–1192PubMedCrossRefGoogle Scholar
  6. Chang HY, Sneddon JB, Alizadeh AA et al (2004) Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol 2(2):E7PubMedCentralPubMedCrossRefGoogle Scholar
  7. Chang HY, Nuyten DS, Sneddon JB et al (2005) Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc Natl Acad Sci USA 102(10):3738–3743PubMedCentralPubMedCrossRefGoogle Scholar
  8. Comprehensive Molecular Portraits of Human Breast Tumours (2012) Nature 490(7418): 61−70Google Scholar
  9. Curtis C, Shah SP, Chin SF et al (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486(7403):346–352PubMedCentralPubMedGoogle Scholar
  10. Davies C, Godwin J, Gray R et al (2011) Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 378(9793):771–784PubMedCrossRefGoogle Scholar
  11. De Palma M, Hanahan D (2012) The biology of personalized cancer medicine: facing individual complexities underlying hallmark capabilities. Mol Oncol 6(2):111–127PubMedCrossRefGoogle Scholar
  12. Ding L, Ellis MJ, Li S et al (2010) Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464(7291):999–1005PubMedCentralPubMedCrossRefGoogle Scholar
  13. Dowsett M, Cuzick J, Wale C et al (2010) Prediction of risk of distant recurrence using the 21-gene recurrence score in node-negative and node-positive postmenopausal patients with breast cancer treated with anastrozole or tamoxifen: a TransATAC study. J Clin Oncol 28(11):1829–1834PubMedCrossRefGoogle Scholar
  14. Ellis MJ, Ding L, Shen D et al (2012) Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 486(7403):353–360PubMedCentralPubMedGoogle Scholar
  15. Ely S (2009) Personalized medicine: individualized care of cancer patients. Transl Res 154(6):303–308PubMedCrossRefGoogle Scholar
  16. Eschrich S, Zhang H, Zhao H et al (2009a) Systems biology modeling of the radiation sensitivity network: a biomarker discovery platform. Int J Radiat Oncol Biol Phys 75(2):497–505PubMedCentralPubMedCrossRefGoogle Scholar
  17. Eschrich SA, Pramana J, Zhang H et al (2009b) A gene expression model of intrinsic tumor radiosensitivity: prediction of response and prognosis after chemoradiation. Int J Radiat Oncol Biol Phys 75(2):489–496PubMedCentralPubMedCrossRefGoogle Scholar
  18. Eschrich SA, Fulp WJ, Pawitan Y et al (2012) Validation of a radiosensitivity molecular signature in breast cancer. Clin Cancer Res 18(18):5134–5143PubMedCrossRefGoogle Scholar
  19. Fan C, Oh DS, Wessels L et al (2006) Concordance among gene-expression-based predictors for breast cancer. N Engl J Med 355(6):560–569PubMedCrossRefGoogle Scholar
  20. Gianni L, Zambetti M, Clark K et al (2005) Gene expression profiles in paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer. J Clin Oncol 23(29):7265–7277PubMedCrossRefGoogle Scholar
  21. Gianni L, Pienkowski T, Im YH et al (2012) Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol 13(1):25–32PubMedCrossRefGoogle Scholar
  22. Ginsburg GS, Willard HF (2009) Genomic and personalized medicine: foundations and applications. Transl Res 154(6):277–287PubMedCrossRefGoogle Scholar
  23. Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B, Senn HJ (2011) Strategies for subtypes–dealing with the diversity of breast cancer: highlights of the St. Gallen international expert consensus on the primary therapy of early breast cancer 2011. Ann Oncol 22(8):1736–1747PubMedCentralPubMedCrossRefGoogle Scholar
  24. Haffty BG, Buchholz TA (2010) Molecular predictors of locoregional recurrence in breast cancer: ready for prime time? J Clin Oncol 28(10):1627–1629PubMedCrossRefGoogle Scholar
  25. Hamilton SR (2012) Molecular pathology. Mol Oncol 6(2):177–181PubMedCrossRefGoogle Scholar
  26. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning, 2nd ed. Springer SeriesGoogle Scholar
  27. Helland A, Johnsen H, Froyland C et al (2006) Radiation-induced effects on gene expression: an in vivo study on breast cancer. Radiother Oncol 80(2):230–235PubMedCrossRefGoogle Scholar
  28. Henry NL, Hayes DF (2012) Cancer biomarkers. Mol Oncol 6(2):140–146PubMedCrossRefGoogle Scholar
  29. Hu Z, Fan C, Oh DS et al (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7:96PubMedCentralPubMedCrossRefGoogle Scholar
  30. Kim C, Taniyama Y, Paik S (2009) Gene expression-based prognostic and predictive markers for breast cancer: a primer for practicing pathologists. Arch Pathol Lab Med 133(6):855–859PubMedCentralPubMedGoogle Scholar
  31. Kreike B, Halfwerk H, Kristel P et al (2006) Gene expression profiles of primary breast carcinomas from patients at high risk for local recurrence after breast-conserving therapy. Clin Cancer Res 12(19):5705–5712PubMedCrossRefGoogle Scholar
  32. Kreike B, Halfwerk H, Armstrong N et al (2009) Local recurrence after breast-conserving therapy in relation to gene expression patterns in a large series of patients. Clin Cancer Res 15(12):4181–4190Google Scholar
  33. La Thangue NB, Kerr DJ (2011) Predictive biomarkers: a paradigm shift towards personalized cancer medicine. Nat Rev Clin Oncol 8(10):587–596PubMedCrossRefGoogle Scholar
  34. Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921PubMedCrossRefGoogle Scholar
  35. Loi S, Haibe-Kains B, Desmedt C et al (2007) Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade. J Clin Oncol 25(10):1239–1246PubMedCrossRefGoogle Scholar
  36. Ma XJ, Salunga R, Dahiya S et al (2008) A five-gene molecular grade index and HOXB13:IL17BR are complementary prognostic factors in early stage breast cancer. Clin Cancer Res 14(9):2601–2608PubMedCrossRefGoogle Scholar
  37. Mamounas EP, Tang G, Fisher B et al (2010) Association between the 21-gene recurrence score assay and risk of locoregional recurrence in node-negative, estrogen receptor-positive breast cancer: results from NSABP B-14 and NSABP B-20. J Clin Oncol 28(10):1677–1683PubMedCentralPubMedCrossRefGoogle Scholar
  38. Manolio TA (2010) Genomewide association studies and assessment of the risk of disease. N Engl J Med 363(2):166–176PubMedGoogle Scholar
  39. Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci USA 74(2):560–564PubMedCentralPubMedCrossRefGoogle Scholar
  40. Medeiros F, Rigl CT, Anderson GG, Becker SH, Halling KC (2007) Tissue handling for genome-wide expression analysis: a review of the issues, evidence, and opportunities. Arch Pathol Lab Med 131(12):1805–1816PubMedGoogle Scholar
  41. Mendelsohn J, Ringborg U, Schilsky RL (2012) Personalized cancer—a strategy to counteract an increasing cancer challenge. Mol Oncol 6(2):109–110PubMedCrossRefGoogle Scholar
  42. Mook S, Schmidt MK, Weigelt B et al (2010) The 70-gene prognosis signature predicts early metastasis in breast cancer patients between 55 and 70 years of age. Ann Oncol 21(4):717–722PubMedCrossRefGoogle Scholar
  43. Nuyten D, Kreike B, Hart A et al (2006) Predicting a local recurrence after breast-conserving therapy by gene expression profiling. Breast Cancer Res 8(5):R62Google Scholar
  44. Ogawa K, Murayama S, Mori M (2007) Predicting the tumor response to radiotherapy using microarray analysis (Review). Oncol Rep 18(5):1243–1248PubMedGoogle Scholar
  45. Paik S, Shak S, Tang G et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351(27):2817–2826PubMedCrossRefGoogle Scholar
  46. Paik S, Tang G, Shak S et al (2006) Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol 24:3726–3734Google Scholar
  47. Perez EA, Romond EH, Suman VJ et al (2011) Four-year follow-up of trastuzumab plus adjuvant chemotherapy for operable human epidermal growth factor receptor 2-positive breast cancer: joint analysis of data from NCCTG N9831 and NSABP B-31. J Clin Oncol 29(25):3366–3373PubMedCentralPubMedCrossRefGoogle Scholar
  48. Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752PubMedCrossRefGoogle Scholar
  49. Piening BD, Wang P, Subramanian A, Paulovich AG (2009) A radiation-derived gene expression signature predicts clinical outcome for breast cancer patients. Radiat Res 171(2):141–154PubMedCentralPubMedCrossRefGoogle Scholar
  50. Pignol JP, Rakovitch E, Olivotto IA (2011) Is breast conservation therapy superior to mastectomy for women with triple-negative breast cancers? J Clin Oncol 29(21):2841–2843PubMedCrossRefGoogle Scholar
  51. Pleasance ED, Stephens PJ, O’Meara S et al (2010a) A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 463(7278):184–190CrossRefGoogle Scholar
  52. Pleasance ED, Cheetham RK, Stephens PJ et al (2010b) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463(7278):191–196CrossRefGoogle Scholar
  53. Prat A, Ellis MJ, Perou CM (2011) Practical implications of gene-expression-based assays for breast oncologists. Nat Rev Clin Oncol 9(1):48−57Google Scholar
  54. Quackenbush J (2006) Microarray analysis and tumor classification. N Engl J Med 354(23):2463–2472PubMedCrossRefGoogle Scholar
  55. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74(12):5463–5467PubMedCentralPubMedCrossRefGoogle Scholar
  56. Schilsky RL (2010) Personalized medicine in oncology: the future is now. Nat Rev Drug Discov 9(5):363–366PubMedCrossRefGoogle Scholar
  57. Shah SP, Roth A, Goya R et al (2012) The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486(7403):395–399PubMedGoogle Scholar
  58. Simon RM, Paik S, Hayes DF (2009) Use of archived specimens in evaluation of prognostic and predictive biomarkers. J Natl Cancer Inst 101(21):1446–1452PubMedCentralPubMedCrossRefGoogle Scholar
  59. Smith I, Procter M, Gelber RD et al (2007) 2-year follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer: a randomised controlled trial. Lancet 369(9555):29–36PubMedCrossRefGoogle Scholar
  60. Solin LJ, Gray R, Goldstein LJ et al (2012) Prognostic value of biologic subtype and the 21-gene recurrence score relative to local recurrence after breast conservation treatment with radiation for early stage breast carcinoma: results from the eastern cooperative oncology group E2197 study. Breast Cancer Res Treat 134(2):683–692PubMedCentralPubMedCrossRefGoogle Scholar
  61. Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98(19):10869–10874PubMedCentralPubMedCrossRefGoogle Scholar
  62. Sorlie T, Tibshirani R, Parker J et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100(14):8418–8423PubMedCentralPubMedCrossRefGoogle Scholar
  63. Stephens PJ, Tarpey PS, Davies H et al (2012) The landscape of cancer genes and mutational processes in breast cancer. Nature 486(7403):400–404PubMedCentralPubMedGoogle Scholar
  64. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100(16):9440–9445PubMedCentralPubMedCrossRefGoogle Scholar
  65. Stratton MR (2011) Exploring the genomes of cancer cells: progress and promise. Science 331(6024):1553–1558PubMedCrossRefGoogle Scholar
  66. Stratton MR, Campbell PJ, Futreal PA (2009) The cancer genome. Nature 458(7239):719–724PubMedCentralPubMedCrossRefGoogle Scholar
  67. Stricker T, Catenacci DV, Seiwert TY (2011) Molecular profiling of cancer—the future of personalized cancer medicine: a primer on cancer biology and the tools necessary to bring molecular testing to the clinic. Semin Oncol 38(2):173–185PubMedCrossRefGoogle Scholar
  68. Tefferi A, Bolander ME, Ansell SM, Wieben ED, Spelsberg TC (2002) Primer on medical genomics. Part III: microarray experiments and data analysis. Mayo Clin Proc 77(9):927–940PubMedGoogle Scholar
  69. Teutsch SM, Bradley LA, Palomaki GE et al (2009) The evaluation of genomic applications in practice and prevention (EGAPP) initiative: methods of the EGAPP working group. Genet Med 11(1):3–14PubMedCentralPubMedCrossRefGoogle Scholar
  70. Torres-Roca JF, Eschrich S, Zhao H et al (2005) Prediction of radiation sensitivity using a gene expression classifier. Cancer Res 65(16):7169–7176PubMedCrossRefGoogle Scholar
  71. Tran B, Dancey JE, Kamel-Reid S et al (2012) Cancer genomics: technology, discovery, and translation. J Clin Oncol 30(6):647–660PubMedCrossRefGoogle Scholar
  72. Tseng GC, Ghosh D, Feingold E (2012) Comprehensive literature review and statistical considerations for microarray meta-analysis. Nucleic Acids Res 40(9):3785–3799PubMedCentralPubMedCrossRefGoogle Scholar
  73. van de Vijver MJ, He YD, van’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347(25):1999–2009PubMedCrossRefGoogle Scholar
  74. van’t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871): 530−536Google Scholar
  75. Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291(5507):1304–1351PubMedCrossRefGoogle Scholar
  76. Voduc KD, Cheang MC, Tyldesley S, Gelmon K, Nielsen TO, Kennecke H (2010) Breast cancer subtypes and the risk of local and regional relapse. J Clin Oncol 28(10):1684–1691PubMedCrossRefGoogle Scholar
  77. Wetterstrand KA, DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP). Accessed March 29 2013

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Maria A. Thomas
    • 1
  • Ramachandran Rashmi
    • 1
  • Jacqueline Payton
    • 2
  • Imran Zoberi
    • 1
  • Julie K. Schwarz
    • 1
    • 3
  1. 1.Department of Radiation OncologyWashington University School of Medicine in St. LouisSt. LouisUSA
  2. 2.Department of Pathology and ImmunologyWashington University School of Medicine in St. LouisSt. LouisUSA
  3. 3.Department of Cell Biology and PhysiologyWashington University School of Medicine in St. LouisSt. LouisUSA

Personalised recommendations