MR Spectroscopy and Spectroscopic Imaging for Evaluation of Skeletal Muscle Metabolism: Basics and Applications in Metabolic Diseases

  • Chris Boesch
Part of the Medical Radiology book series (MEDRAD)


Magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) provide metabolic information on the musculoskeletal system, thus helping to understand the biochemical and pathophysiological nature of numerous diseases. In particular, MRS has been used to study the energy metabolism of muscular tissue since the very beginning of magnetic resonance examinations in humans when small-bore magnets for studies of the limbs became available. Even more than in other organs, the observation of non-proton-nuclei was important in muscle tissue. Spatial localization was less demanding in these studies, however, high temporal resolution was necessary to follow metabolism during exercise and recovery. The observation of high-energy phosphates during and after the application of workload gives insight into oxidative phosphorylation, a process that takes place in the mitochondria and characterizes impaired mitochondrial function. New applications in insulin-resistant patients followed the development of volume-selective 1H-MRS in whole-body magnets. Nowadays, multinuclear MRS and MRSI of the musculoskeletal system provide several windows to vital biochemical pathways noninvasively. It is shown how MRS and MRSI have been used in numerous diseases to characterize an involvement of the muscular metabolism.


Magnetic Resonance Spectroscopy Malignant Hyperthermia Mitochondrial Myopathy Limb Girdle Muscular Dystrophy Myotonic Dystrophy Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



1-Hydrogen, protons












Arterial occlusive disease




Becker muscle dystrophies


Chronic progressive external ophthalmoplegia


Chronic obstructive pulmonary disease


Chemical shift imaging


Duchenne muscle dystrophies


Deoxyribonucleic acid


Extramyocellular lipids


Facioscapulohumeral muscular dystrophy




Growth hormone deficiency






Intramyocellular lipids


Image-selected in vivo spectroscopy


Kearns-Sayre syndrome


Limb girdle muscular dystrophy


Leber’s hereditary optic neuropathy


Mitochondrial encephalopathy, lactic acidosis and stroke-like episodes


Myoclonus epilepsy with ragged red fibers


Malignant hyperthermia


Maternally inherited diabetes and deafness


Magnetic resonance imaging


Magnetic resonance spectroscopy


Magnetic resonance spectroscopic imaging


Nicotinamide adenine dinucleotide


Neuropathy, ataxia, and retinitis pigmentosa




Near infrared spectroscopy


Oculopharyngeal muscular dystrophy


Peripheral arterial disease












Concentration of hydrogen


Inorganic phosphate




Point resolved spectroscopy


Apparent maximum rate of oxidative ATP synthesis


Signal-to-noise ratio


Stimulated echo acquisition mode


Tricarboxylic acid cycle


Echo time


Trimethyl ammonium containing metabolites


Repetition time


Transfer ribonucleic acid


Vascular endothelial growth factor


Maximal oxygen uptake


  1. Adamopoulos S, Coats AJ, Brunotte F, Arnolda L, Meyer T, Thompson CH, Dunn JF, Stratton J, Kemp GJ, Radda GK, Rajagopalan B (1993) Physical training improves skeletal muscle metabolism in patients with chronic heart failure. J Am Coll Cardiol 21:1101–1106PubMedGoogle Scholar
  2. Akima H, Foley JM, Prior BM, Dudley GA, Meyer RA (2002) Vastus lateralis fatigue alters recruitment of musculus quadriceps femoris in humans. J Appl Physiol 92:679–684PubMedGoogle Scholar
  3. Akman HO, Davidzon G, Tanji K, Macdermott EJ, Larsen L, Davidson MM, Haller RG, Szczepaniak LS, Lehman TJ, Hirano M, DiMauro S (2010) Neutral lipid storage disease with subclinical myopathy due to a retrotransposal insertion in the PNPLA2 gene. Neuromuscul Disord 20:397–402PubMedGoogle Scholar
  4. Argov Z (1998) Functional evaluation techniques in mitochondrial disorders. Eur Neurol 39:65–71PubMedGoogle Scholar
  5. Argov Z, Bank WJ (1991) Phosphorus magnetic resonance spectroscopy (31P MRS) in neuromuscular disorders. Ann Neurol 30:90–97PubMedGoogle Scholar
  6. Argov Z, Bank WJ, Maris J, Peterson P, Chance B (1987) Bioenergetic heterogeneity of human mitochondrial myopathies: phosphorus magnetic resonance spectroscopy study. Neurology 37:257–262PubMedGoogle Scholar
  7. Argov Z, De Stefano N, Arnold DL (1996) ADP recovery after a brief ischemic exercise in normal and diseased human muscle—a 31P MRS study. NMR Biomed 9:165–172PubMedGoogle Scholar
  8. Argov Z, De SN, Taivassalo T, Chen J, Karpati G, Arnold DL (1997) Abnormal oxidative metabolism in exercise intolerance of undetermined origin. Neuromuscul Disord 7:99–104PubMedGoogle Scholar
  9. Argov Z, Taivassalo T, De SN, Genge A, Karpati G, Arnold DL (1998) Intracellular phosphates in inclusion body myositis—a 31P magnetic resonance spectroscopy study. Muscle Nerve 21:1523–1525PubMedGoogle Scholar
  10. Argov Z, Lofberg M, Arnold DL (2000) Insights into muscle diseases gained by phosphorus magnetic resonance spectroscopy. Muscle Nerve 23:1316–1334PubMedGoogle Scholar
  11. Arnold DL, Matthews PM, Radda GK (1984) Metabolic recovery after exercise and the assessment of mitochondrial function in vivo in human skeletal muscle by means of 31P NMR. Magn Reson Med 1:307–315PubMedGoogle Scholar
  12. Arnold DL, Taylor DJ, Radda GK (1985) Investigation of human mitochondrial myopathies by phosphorus magnetic resonance spectroscopy. Ann Neurol 18:189–196PubMedGoogle Scholar
  13. Bajaj M, Baig R, Suraamornkul S, Hardies LJ, Coletta DK, Cline GW, Monroy A, Koul S, Sriwijitkamol A, Musi N, Shulman GI, DeFronzo RA (2010) Effects of pioglitazone on intramyocellular fat metabolism in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 95:1916–1923PubMedCentralPubMedGoogle Scholar
  14. Banerjee B, Sharma U, Balasubramanian K, Kalaivani M, Kalra V, Jagannathan NR (2010) Effect of creatine monohydrate in improving cellular energetics and muscle strength in ambulatory Duchenne muscular dystrophy patients: a randomized, placebo-controlled 31P MRS study. Magn Reson Imaging 28:698–707PubMedGoogle Scholar
  15. Barbiroli B, Funicello R, Ferlini A, Montagna P, Zaniol P (1992) Muscle energy metabolism in female DMD/BMD carriers: a 31P-MR spectroscopy study. Muscle Nerve 15:344–348PubMedGoogle Scholar
  16. Barbiroli B, Montagna P, Cortelli P, Iotti S, Lodi R, Barboni P, Monari L, Lugaresi E, Frassineti C, Zaniol P (1995) Defective brain and muscle energy metabolism shown by in vivo 31P magnetic resonance spectroscopy in nonaffected carriers of 11778 mtDNA mutation. Neurology 45:1364–1369PubMedGoogle Scholar
  17. Barbiroli B, Frassineti C, Martinelli P, Iotti S, Lodi R, Cortelli P, Montagna P (1997) Coenzyme Q10 improves mitochondrial respiration in patients with mitochondrial cytopathies. An in vivo study on brain and skeletal muscle by phosphorous magnetic resonance spectroscopy. Cell Mol Biol 43:741–749PubMedGoogle Scholar
  18. Barnes PR, Taylor DJ, Kemp GJ, Radda GK (1993) Skeletal muscle bioenergetics in the chronic fatigue syndrome. J Neurol Neurosurg Psychiatry 56:679–683PubMedCentralPubMedGoogle Scholar
  19. Baumgartner I, Thoeny HC, Kummer O, Roefke C, Skjelsvik C, Boesch C, Kreis R (2005) Leg ischemia: assessment with MR angiography and spectroscopy. Radiology 234:833–841PubMedGoogle Scholar
  20. Beckmann N, Seelig J, Wick H (1990) Analysis of glycogen storage disease by in vivo 13C NMR: comparison of normal volunteers with a patient. Magn Reson Med 16:150–160PubMedGoogle Scholar
  21. Befroy DE, Shulman GI (2011) Magnetic resonance spectroscopy studies of human metabolism. Diabetes 60:1361–1369PubMedCentralPubMedGoogle Scholar
  22. Befroy DE, Rothman DL, Petersen KF, Shulman GI (2012) 31P-magnetization transfer magnetic resonance spectroscopy measurements of in vivo metabolism. Diabetes 61:2669–2678PubMedCentralPubMedGoogle Scholar
  23. Beloueche-Babari M, Workman P, Leach MO (2011) Exploiting tumor metabolism for non-invasive imaging of the therapeutic activity of molecularly targeted anticancer agents. Cell Cycle 10:2883–2893PubMedGoogle Scholar
  24. Bendahan D, Confort-Gouny S, Kozak-Ribbens G, Cozzone PJ (1992a) 31-P NMR characterization of the metabolic anomalies associated with the lack of glycogen phosphorylase activity in human forearm muscle. Biochem Biophys Res Commun 185:16–21Google Scholar
  25. Bendahan D, Desnuelle C, Vanuxem D, Confort-Gouny S, Figarella-Branger D, Pellissier JF, Kozak-Ribbens G, Pouget J, Serratrice G, Cozzone PJ (1992b) 31P NMR spectroscopy and ergometer exercise test as evidence for muscle oxidative performance improvement with coenzyme Q in mitochondrial myopathies. Neurology 42:1203–1208Google Scholar
  26. Bendahan D, Kozak-Ribbens G, Rodet L, Confort-Gouny S, Cozzone PJ (1998) 31Phosphorus magnetic resonance spectroscopy characterization of muscular metabolic anomalies in patients with malignant hyperthermia: application to diagnosis. Anesthesiology 88:96–107PubMedGoogle Scholar
  27. Bendahan D, Kozak-Ribbens G, Confort-Gouny S, Ghattas B, Figarella-Branger D, Aubert M, Cozzone PJ (2001) A noninvasive investigation of muscle energetics supports similarities between exertional heat stroke and malignant hyperthermia. Anesth Analg 93:683–689PubMedGoogle Scholar
  28. Bertocci LA, Haller RG, Lewis SF (1993) Muscle metabolism during lactate infusion in human phosphofructokinase deficiency. J Appl Physiol 74:1342–1347PubMedGoogle Scholar
  29. Boesch C (1999) Molecular aspects of magnetic resonance imaging and spectroscopy. Mol Aspects Med 20:185–318PubMedGoogle Scholar
  30. Boesch C (2007) Musculoskeletal spectroscopy. J Magn Reson Imaging 25:321–338PubMedGoogle Scholar
  31. Boesch C, Kreis R (2001) Dipolar coupling and ordering effects observed in magnetic resonance spectra of skeletal muscle. NMR Biomed 14:140–148PubMedGoogle Scholar
  32. Boesch C, Slotboom H, Hoppeler H, Kreis R (1997) In vivo determination of intra-myocellular lipids in human muscle by means of localized 1H-MR-spectroscopy. Magn Reson Med 37:484–493PubMedGoogle Scholar
  33. Boesch C, Machann J, Vermathen P, Schick F (2006) Role of proton MR for the study of muscle lipid metabolism. NMR Biomed 19:968–988PubMedGoogle Scholar
  34. Boss A, Broskey NT, Kreis R, Amati F, Boesch C (2013) In vivo oxidative capacity vs. mitochondrial volume density in skeletal muscle of age-matched, elderly athletes and sedentary subjects—A matter of function and content. Proc Intl Soc Magn Reson Med 21:362Google Scholar
  35. Brillault-Salvat C, Giacomini E, Wary C, Peynsaert J, Jouvensal L, Bloch G, Carlier PG (1997) An interleaved heteronuclear NMRI-NMRS approach to non-invasive investigation of exercising human skeletal muscle. Cell Mol Biol 43:751–762PubMedGoogle Scholar
  36. Cardoso M, Shoubridge E, Arnold D, Leveille M, Prud’Homme M, St-Louis G, Vinay P (1988) NMR monitoring of the energy status of skeletal muscle during hemodialysis using acetate. Clin Invest Med 11:292–296PubMedGoogle Scholar
  37. Carey PE, Halliday J, Snaar JE, Morris PG, Taylor R (2003) Direct assessment of muscle glycogen storage after mixed meals in normal and type 2 diabetic subjects. Am J Physiol 284:E688–E694Google Scholar
  38. Cea G, Bendahan D, Manners D, Hilton-Jones D, Lodi R, Styles P, Taylor DJ (2002) Reduced oxidative phosphorylation and proton efflux suggest reduced capillary blood supply in skeletal muscle of patients with dermatomyositis and polymyositis: a quantitative 31P-magnetic resonance spectroscopy and MRI study. Brain 125:1635–1645PubMedGoogle Scholar
  39. Chance B, Eleff S, Leigh JS, Sokolow D, Sapega A (1981) Mitochondrial regulation of phophocreatine/inorganic phosphate ratios in exercising human muscle: a gated 31P NMR study. Proc Natl Acad Sci USA 78:6714–6718PubMedCentralPubMedGoogle Scholar
  40. Chance B, Eleff S, Bank W, Leigh JS, Warnell R (1982) 31P NMR studies of control of mitochondrial function in phosphofructokinase-deficient human skeletal muscle. Proc Natl Acad Sci USA 79:7714–7718PubMedCentralPubMedGoogle Scholar
  41. Chance B, Leigh JS, Clark BJ, Maris J, Kent J, Nioka S, Smith D (1985) Control of oxidative meatbolism and oxygen delivery in human skeletal muscle: a steady-state analysis of the work/energy cost transfer function. Proc Natl Acad Sci USA 82:8384–8388PubMedCentralPubMedGoogle Scholar
  42. Chance B, Leigh JS, Kent J, McCully K, Nioka S, Clark BJ, Maris JM, Graham T (1986) Multiple controls of oxidative metabolism in living tissues as studied by phosphorus magnetic resonance. Proc Natl Acad Sci USA 83:9458–9462PubMedCentralPubMedGoogle Scholar
  43. Chang G, Wang L, Cardenas-Blanco A, Schweitzer ME, Recht MP, Regatte RR (2010) Biochemical and physiological MR imaging of skeletal muscle at 7 Tesla and above. Semin Musculoskelet Radiol 14:269–278PubMedGoogle Scholar
  44. Chilibeck PD, McCreary CR, Marsh GD, Paterson DH, Noble EG, Taylor AW, Thompson RT (1998) Evaluation of muscle oxidative potential by 31P-MRS during incremental exercise in old and young humans. Eur J Appl Physiol 78:460–465Google Scholar
  45. Chinnery PF, Taylor DJ, Brown DT, Manners D, Styles P, Lodi R (2000) Very low levels of the mtDNA A3243G mutation associated with mitochondrial dysfunction in vivo. Ann Neurol 47:381–384PubMedGoogle Scholar
  46. Chung YL, Alexanderson H, Pipitone N, Morrison C, Dastmalchi M, Stahl-Hallengren C, Richards S, Thomas EL, Hamilton G, Bell JD, Lundberg IE, Scott DL (2007) Creatine supplements in patients with idiopathic inflammatory myopathies who are clinically weak after conventional pharmacologic treatment: six-month, double-blind, randomized, placebo-controlled trial. Arthritis Rheum 57:694–702PubMedGoogle Scholar
  47. Cline GW, Petersen KF, Krssak M, Shen J, Hundal RS, Trajanoski Z, Inzucchi S, Dresner A, Rothman DL, Shulman GI (1999) Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes. N Engl J Med 341:240–246PubMedGoogle Scholar
  48. Coen PM, Jubrias SA, Distefano G, Amati F, Mackey DC, Glynn NW, Manini TM, Wohlgemuth SE, Leeuwenburgh C, Cummings SR, Newman AB, Ferrucci L, Toledo FG, Shankland E, Conley KE, Goodpaster BH (2013) Skeletal muscle mitochondrial energetics are associated with maximal aerobic capacity and walking speed in older adults. J Gerontol A Biol Sci Med Sci 68:447–455Google Scholar
  49. Conley KE, Jubrias SA, Esselman PC (2000) Oxidative capacity and ageing in human muscle. J Physiol 526:203–210PubMedCentralPubMedGoogle Scholar
  50. Cortelli P, Montagna P, Avoni P, Sangiorgi S, Bresolin N, Moggio M, Zaniol P, Mantovani V, Barboni P, Barbiroli B (1991) Leber’s hereditary optic neuropathy: genetic, biochemical, and phosphorus magnetic resonance spectroscopy study in an Italian family. Neurology 41:1211–1215PubMedGoogle Scholar
  51. Costa FM, Canella C, Gasparetto E (2011) Advanced magnetic resonance imaging techniques in the evaluation of musculoskeletal tumors. Radiol Clin North Am 49:1325–1358Google Scholar
  52. Crilley JG, Bendahan D, Boehm EA, Styles P, Rajagopalan B, Wordsworth P, Clarke K (2007) Investigation of muscle bioenergetics in the Marfan syndrome indicates reduced metabolic efficiency. J Cardiovasc Magn Reson 9:709–717PubMedGoogle Scholar
  53. Davies RC, Eston RG, Fulford J, Rowlands AV, Jones AM (2011) Muscle damage alters the metabolic response to dynamic exercise in humans: a 31P-MRS study. J Appl Physiol 111:782–790PubMedGoogle Scholar
  54. Dawson MJ, Gadian DG, Wilkie DR (1977) Contraction and recovery of living muscles studied by 31-P nuclear magnetic resonance. J Physiol 267:703–735PubMedCentralPubMedGoogle Scholar
  55. de Bisschop E, Allein S, Van der Niepen P, Verbeelen D, Luypaert R, Osteaux M, Malaisse W (1997) Effect of amino acid administration on uremic muscle metabolism: a 31P-spectroscopy study. Kidney Int 51:1182–1187PubMedGoogle Scholar
  56. de Blecourt AC, Wolf RF, van Rijswijk MH, Kamman RL, Knipping AA, Mooyaart EL (1991) In vivo 31P magnetic resonance spectroscopy (MRS) of tender points in patients with primary fibromyalgia syndrome. Rheumatol Int 11:51–54PubMedGoogle Scholar
  57. De Feyter HM, van den Broek NM, Praet SF, Nicolay K, van Loon LJ, Prompers JJ (2008) Early or advanced stage type 2 diabetes is not accompanied by in vivo skeletal muscle mitochondrial dysfunction. Eur J Endocrinol 158:643–653PubMedGoogle Scholar
  58. Decombaz J, Schmitt B, Ith M, Decarli B, Diem P, Kreis R, Hoppeler H, Boesch C (2001) Post-exercise fat intake repletes intramyocellular lipids, but no faster in trained than in sedentary subjects. Am J Physiol 281:R760–R769Google Scholar
  59. deKerviler E, Leroy-Willig A, Jehenson P, Duboc D, Eymard B, Syrota A (1991) Exercise-induced muscle modifications: study of healthy subjects and patients with metabolic myopathies with MR imaging and 31-P spectroscopy. Radiology 181:259–264Google Scholar
  60. DiMauro S (2006) Mitochondrial myopathies. Curr Opin Rheumatol 18:636–641PubMedGoogle Scholar
  61. Duboc D, Jehenson P, Tran DS, Marsac C, Syrota A, Fardeau M (1987) Phosphorus NMR spectroscopy study of muscular enzyme deficiencies involving glycogenolysis and glycolysis. Neurology 37:663–671PubMedGoogle Scholar
  62. Duboc D, Jehenson P, Tamby JF, Payen JF, Syrota A, Guerin F (1991) Abnormalities of the skeletal muscle in hypertrophic cardiomyopathy. Spectroscopy using phosphorus-31 nuclear magnetic resonance. Arch Mal Coeur Vaiss 84:185–188PubMedGoogle Scholar
  63. Dudley CR, Taylor DJ, Ng LL, Kemp GJ, Ratcliffe PJ, Radda GK, Ledingham JG (1990) Evidence for abnormal Na+/H+ antiport activity detected by phosphorus nuclear magnetic resonance spectroscopy in exercising skeletal muscle of patients with essential hypertension. Clin Sci 79:491–497PubMedGoogle Scholar
  64. Edwards RH, Wilkie DR, Dawson MJ, Gordon RE, Shaw D (1982) Clinical use of nuclear magnetic resonance in the investigation of myopathy. Lancet 1:725–731PubMedGoogle Scholar
  65. Eleff S, Kennaway NG, Buist NRM, Darley-Usmar VM, Bank WJ, Chance B (1984) 31P NMR study of improvement in oxidative phosphorylation by vitamins K3 and C in a patient with a defect in electron transport at complex III in skeletal muscle. Proc Natl Acad Sci USA 81:3529–3533PubMedCentralPubMedGoogle Scholar
  66. Erkintalo M, Bendahan D, Mattei JP, Fabreguettes C, Vague P, Cozzone PJ (1998) Reduced metabolic efficiency of skeletal muscle energetics in hyperthyroid patients evidenced quantitatively by in vivo phosphorus-31 magnetic resonance spectroscopy. Metabolism 47:769–776PubMedGoogle Scholar
  67. Esterhammer R, Schocke M, Gorny O, Posch L, Messner H, Jaschke W, Fraedrich G, Greiner A (2008) Phosphocreatine kinetics in the calf muscle of patients with bilateral symptomatic peripheral arterial disease during exhaustive incremental exercise. Mol Imaging Biol 10:30–39PubMedGoogle Scholar
  68. Fayad LM, Barker PB, Bluemke DA (2007) Molecular characterization of musculoskeletal tumors by proton MR spectroscopy. Semin Musculoskelet Radiol 11:240–245PubMedGoogle Scholar
  69. Fayad LM, Jacobs MA, Wang X, Carrino JA, Bluemke DA (2012) Musculoskeletal tumors: how to use anatomic, functional, and metabolic MR techniques. Radiology 265:340–356PubMedCentralPubMedGoogle Scholar
  70. Finanger EL, Russman B, Forbes SC, Rooney WD, Walter GA, Vandenborne K (2012) Use of skeletal muscle MRI in diagnosis and monitoring disease progression in Duchenne muscular dystrophy. Phys Med Rehabil Clin N Am 23:1–10, ixGoogle Scholar
  71. Flaherty JT, Weisfeldt ML, Bulkley BH, Gardner TJ, Gott VL, Jacobus WE (1982) Mechanisms of ischemic myocardial cell damage assessed by phosphorus-31 nuclear magnetic resonance. Circulation 65:561–570PubMedGoogle Scholar
  72. Fleischman A, Kron M, Systrom DM, Hrovat M, Grinspoon SK (2009) Mitochondrial function and insulin resistance in overweight and normal-weight children. J Clin Endocrinol Metab 94:4923–4930PubMedCentralPubMedGoogle Scholar
  73. Forbes SC, Paganini AT, Slade JM, Towse TF, Meyer RA (2009) Phosphocreatine recovery kinetics following low- and high-intensity exercise in human triceps surae and rat posterior hindlimb muscles. Am J Physiol 296:R161–R170Google Scholar
  74. Forsen S, Hoffman RA (1963) Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J Chem Phys 39:2892–2901Google Scholar
  75. Frostick SP, Taylor DJ, Dolecki MJ, Radda GK (1992) Human muscle cell denervation: the results of a 31-phosphorus magnetic resonance spectroscopy study. J Hand Surg Br 17:33–45PubMedGoogle Scholar
  76. Gadian D, Ross B, Bore P, Radda G, Hockaday J, Taylor D (1981) Examination of a myopathy by phosphorus nuclear magnetic resonance. Lancet 2:774–775PubMedGoogle Scholar
  77. Glunde K, Bhujwalla ZM (2011) Metabolic tumor imaging using magnetic resonance spectroscopy. Semin Oncol 38:26–41PubMedCentralPubMedGoogle Scholar
  78. Glunde K, Bhujwalla ZM, Ronen SM (2011) Choline metabolism in malignant transformation. Nat Rev Cancer 11:835–848PubMedGoogle Scholar
  79. Gold R, Seibel P, Reinelt G, Schindler R, Landwehr P, Beck A, Reichmann H (1996) Phosphorus magnetic resonance spectroscopy in the evaluation of mitochondrial myopathies: results of a 6-month therapy study with coenzyme Q. Eur Neurol 36:191–196PubMedGoogle Scholar
  80. Grehl T, Muller K, Vorgerd M, Tegenthoff M, Malin JP, Zange J (1998) Impaired aerobic glycolysis in muscle phosphofructokinase deficiency results in biphasic post-exercise phosphocreatine recovery in 31P magnetic resonance spectroscopy. Neuromuscul Disord 8:480–488PubMedGoogle Scholar
  81. Grehl T, Fischer S, Muller K, Malin JP, Zange J (2007) A prospective study to evaluate the impact of 31P-MRS to determinate mitochondrial dysfunction in skeletal muscle of ALS patients. Amyotroph Lateral Scler 8:4–8PubMedGoogle Scholar
  82. Greiner A, Esterhammer R, Messner H, Biebl M, Muhlthaler H, Fraedrich G, Jaschke WR, Schocke MF (2006) High-energy phosphate metabolism during incremental calf exercise in patients with unilaterally symptomatic peripheral arterial disease measured by phosphor 31 magnetic resonance spectroscopy. J Vasc Surg 43:978–986PubMedGoogle Scholar
  83. Gruetter R, Kaelin P, Boesch C, Martin E, Werner B (1990) Non-invasive P-31 magnetic resonance spectroscopy revealed McArdle disease in an asymptomatic child. Eur J Pediatr 149:483–486PubMedGoogle Scholar
  84. Gruetter R, Prolla TA, Shulman RG (1991) 13C NMR visibility of rabbit muscle glycogen in vivo. Magn Reson Med 20:327–332PubMedGoogle Scholar
  85. Guis S, Jouglard J, Kozak-Ribbens G, Figarella-Branger D, Vanuxem D, Pellissier JF, Cozzone PJ (2001) Malignant hyperthermia susceptibility revealed by myalgia and rhabdomyolysis during fluoroquinolone treatment. J Rheumatol 28:1405–1406PubMedGoogle Scholar
  86. Guis S, Mattei JP, Pellissier JF, Nicoli F, Figarella-Branger D, Le Fur Y, Kaplanski G, Pelletier J, Harle JR, Cozzone PJ, Bendahan D (2004) MRI and 31PMR spectroscopy investigations of muscle function disclose no abnormality in macrophagic myofasciitis. J Rheumatol 31:2313–2314PubMedGoogle Scholar
  87. Guis S, Mattei JP, Cozzone PJ, Bendahan D (2005) Pathophysiology and clinical presentations of rhabdomyolysis. Joint Bone Spine 72:382–391PubMedGoogle Scholar
  88. Guis S, Figarella-Branger D, Mattei JP, Nicoli F, Le Fur Y, Kozak-Ribbens G, Pellissier JF, Cozzone PJ, Amabile N, Bendahan D (2006) In vivo and in vitro characterization of skeletal muscle metabolism in patients with statin-induced adverse effects. Arthritis Rheum 55:551–557PubMedGoogle Scholar
  89. Guis S, Mattei JP, Bendahan D (2012) Toxic myopathies. Joint Bone Spine. doi: 10.1016/j.jbspin.2012.10.008 Google Scholar
  90. Gupta RK, Mittal RD, Agarwal KN, Agarwal DK (1994) Muscular sufficiency, serum protein, enzymes and bioenergetic studies (31-phosphorus magnetic resonance spectroscopy) in chronic malnutrition. Acta Paediatr 83:327–331PubMedGoogle Scholar
  91. Hagspiel KD, von Weymarn C, McKinnon G, Haldemann R, Marincek B, von Schulthess GK (1992) Effect of hypothyroidism on phosphorus metabolism in muscle and liver: in vivo P-31 MR spectroscopy study. J Magn Reson Imaging 2:527–532PubMedGoogle Scholar
  92. Harris RC, Hultman E, Kaijser L, Nordesjo LO (1975) The effect of circulatory occlusion on isometric exercise capacity and energy metabolism of the quadriceps muscle in man. Scand J Clin Lab Invest 35:87–95PubMedGoogle Scholar
  93. Haselgrove JC, Subramanian VH, Leigh JS, Gyulai L, Chance B (1982) In vivo one-dimensional imaging of phosphorus metabolites by phosphorus-31 nuclear magnetic resonance. Science 220:1170Google Scholar
  94. Hayes DJ, Hilton-Jones D, Arnold DL, Galloway G, Styles P, Duncan J, Radda GK (1985) A mitochondrial encephalomyopathy. A combined 31P magnetic resonance and biochemical investigation. J Neurol Sci 71:105–118PubMedGoogle Scholar
  95. Heiman-Patterson TD, Argov Z, Chavin JM, Kalman B, Alder H, DiMauro S, Bank W, Tahmoush AJ (1997) Biochemical and genetic studies in a family with mitochondrial myopathy. Muscle Nerve 20:1219–1224PubMedGoogle Scholar
  96. Hickman PF, Kemp GJ, Thompson CH, Salisbury AJ, Wade K, Harris AL, Radda GK (1995) Bryostatin 1, a novel antineoplastic agent and protein kinase C activator, induces human myalgia and muscle metabolic defects: a 31P magnetic resonance spectroscopic study. Br J Cancer 72:998–1003PubMedCentralPubMedGoogle Scholar
  97. Hollingsworth KG, Jones DE, Taylor R, Blamire AM, Newton JL (2010) Impaired cardiovascular response to standing in chronic fatigue syndrome. Eur J Clin Invest 40:608–615PubMedGoogle Scholar
  98. Horska A, Fishbein KW, Fleg JL, Spencer RG (2000) The relationship between creatine kinase kinetics and exercise intensity in human forearm is unchanged by age. Am J Physiol 279:E333–E339Google Scholar
  99. Hoult DI, Busby SJW, Gadian DG, Radda GK, Richards RE, Seeley PJ (1974) Observation of tissue metabolites using 31P nuclear magnetic resonance. Nature 252:285–287PubMedGoogle Scholar
  100. Hsieh TJ, Wang CK, Chuang HY, Jong YJ, Li CW, Liu GC (2007) In vivo proton magnetic resonance spectroscopy assessment for muscle metabolism in neuromuscular diseases. J Pediatr 151:319–321PubMedGoogle Scholar
  101. Hsieh TJ, Jaw TS, Chuang HY, Jong YJ, Liu GC, Li CW (2009) Muscle metabolism in Duchenne muscular dystrophy assessed by in vivo proton magnetic resonance spectroscopy. J Comput Assist Tomogr 33:150–154PubMedGoogle Scholar
  102. Ith M, Huber PM, Egger A, Schmid JP, Kreis R, Christ E, Boesch C (2010) Standardized protocol for a depletion of intramyocellular lipids (IMCL). NMR Biomed 23:532–538PubMedGoogle Scholar
  103. Jacob S, Machann J, Rett K, Brechtel K, Volk A, Renn W, Maerker E, Matthaei S, Schick F, Claussen CD, Haring HU (1999) Association of increased intramyocellular lipid content with insulin resistance in lean nondiabetic offspring of type 2 diabetic subjects. Diabetes 48:1113–1119PubMedGoogle Scholar
  104. Jehenson P, Duboc D, Bloch G, Fardeau M, Syrota A (1991) Diagnosis of muscular glycogenosis by in vivo natural abundance 13C NMR spectroscopy. Neuromuscul Disord 1:99–101PubMedGoogle Scholar
  105. Jenni S, Oetliker C, Allemann S, Ith M, Tappy L, Wuerth S, Egger A, Boesch C, Schneiter PH, Diem P, Christ E, Stettler C (2008) Fuel metabolism during exercise in euglycaemia and hyperglycaemia in patients with type 1 diabetes mellitus—a prospective single-blinded randomised crossover trial. Diabetologia 51:1457–1465PubMedGoogle Scholar
  106. Jensen KE, Jakobsen J, Thomsen C, Henriksen O (1990) Improved energy kinetics following high protein diet in McArdle’s syndrome. A 31P magnetic resonance spectroscopy study. Acta Neurol Scand 81:499–503PubMedGoogle Scholar
  107. Jeppesen TD, Quistorff B, Wibrand F, Vissing J (2007) 31P-MRS of skeletal muscle is not a sensitive diagnostic test for mitochondrial myopathy. J Neurol 254:29–37PubMedGoogle Scholar
  108. Jones DE, Hollingsworth KG, Taylor R, Blamire AM, Newton JL (2010) Abnormalities in pH handling by peripheral muscle and potential regulation by the autonomic nervous system in chronic fatigue syndrome. J Intern Med 267:394–401PubMedGoogle Scholar
  109. Kaminsky P, Robin-Lherbier B, Brunotte F, Escanye JM, Walker P, Klein M, Robert J, Duc M (1992) Energetic metabolism in hypothyroid skeletal muscle, as studied by phosphorus magnetic resonance spectroscopy. J Clin Endocrinol Metab 74:124–129PubMedGoogle Scholar
  110. Kan HE, Klomp DW, Wohlgemuth M, van Loosbroek-Wagemans I, van Engelen BG, Padberg GW, Heerschap A (2010) Only fat infiltrated muscles in resting lower leg of FSHD patients show disturbed energy metabolism. NMR Biomed 23:563–568PubMedGoogle Scholar
  111. Kemp GJ, Taylor DJ, Styles P, Radda GK (1993a) The production, buffering and efflux of protons in human skeletal muscle during exercise and recovery. NMR Biomed 6:73–83Google Scholar
  112. Kemp GJ, Taylor DJ, Thompson CH, Hands LJ, Rajagopalan B, Styles P, Radda GK (1993b) Quantitative analysis by 31P magnetic resonance spectroscopy of abnormal mitochondrial oxidation in skeletal muscle during recovery from exercise. NMR Biomed 6:302–310Google Scholar
  113. Kemp GJ, Hands LJ, Ramaswami G, Taylor DJ, Nicolaides A, Amato A, Radda GK (1995) Calf muscle mitochondrial and glycogenolytic ATP synthesis in patients with claudication due to peripheral vascular disease analysed using 31P magnetic resonance spectroscopy. Clin Sci 89:581–590PubMedGoogle Scholar
  114. Kemp GJ, Roberts N, Bimson WE, Bakran A, Frostick SP (2002) Muscle oxygenation and ATP turnover when blood flow is impaired by vascular disease. Mol Biol Rep 29:187–191PubMedGoogle Scholar
  115. Kemp GJ, Tonon C, Malucelli E, Testa C, Liava A, Manners D, Trevisi E, Martinuzzi A, Barbiroli B, Lodi R (2009) Cytosolic pH buffering during exercise and recovery in skeletal muscle of patients with McArdle’s disease. Eur J Appl Physiol 105:687–694PubMedGoogle Scholar
  116. Kent-Braun JA (2009) Skeletal muscle fatigue in old age: whose advantage? Exerc Sport Sci Rev 37:3–9PubMedCentralPubMedGoogle Scholar
  117. Kent-Braun JA, Sharma KR, Weiner MW, Massie B, Miller RG (1993) Central basis of muscle fatigue in chronic fatigue syndrome. Neurology 43:125–131PubMedGoogle Scholar
  118. Kent-Braun JA, Sharma KR, Miller RG, Weiner MW (1994) Postexercise phosphocreatine resynthesis is slowed in multiple sclerosis. Muscle Nerve 17:835–841PubMedGoogle Scholar
  119. Kent-Braun JA, Ng AV, Doyle JW, Towse TF (2002) Human skeletal muscle responses vary with age and gender during fatigue due to incremental isometric exercise. J Appl Physiol 93:1813–1823PubMedGoogle Scholar
  120. Khushu S, Rana P, Sekhri T, Sripathy G, Tripathi RP (2010) Bio-energetic impairment in human calf muscle in thyroid disorders: a 31P MRS study. Magn Reson Imaging 28:683–689PubMedGoogle Scholar
  121. Ko SF, Huang CC, Hsieh MJ, Ng SH, Lee CC, Lee CC, Lin TK, Chen MC, Lee L (2008) 31P MR spectroscopic assessment of muscle in patients with myasthenia gravis before and after thymectomy: initial experience. Radiology 247:162–169PubMedGoogle Scholar
  122. Kohler SJ, Yen Y, Wolber J, Chen AP, Albers MJ, Bok R, Zhang V, Tropp J, Nelson S, Vigneron DB, Kurhanewicz J, Hurd RE (2007) In vivo 13 carbon metabolic imaging at 3T with hyperpolarized 13C-1-pyruvate. Magn Reson Med 58:65–69PubMedGoogle Scholar
  123. Kornblum C, Schroder R, Muller K, Vorgerd M, Eggers J, Bogdanow M, Papassotiropoulos A, Fabian K, Klockgether T, Zange J (2005) Creatine has no beneficial effect on skeletal muscle energy metabolism in patients with single mitochondrial DNA deletions: a placebo-controlled, double-blind 31P-MRS crossover study. Eur J Neurol 12:300–309PubMedGoogle Scholar
  124. Kozak-Reiss G (1989) New research on muscular function: NMR spectroscopy. Application to malignant hyperthermia. Ann Fr Anesth Reanim 8:400–405PubMedGoogle Scholar
  125. Kozak-Reiss G, Gascard JP, Redouane-Benichou K (1986) Detection of peranesthetic malignant hyperthermia by muscle contracture tests and NMR spectroscopy. Ann Fr Anesth Reanim 5:584–589PubMedGoogle Scholar
  126. Kreis R, Brügger K, Skjelsvik C, Zwicky S, Ith M, Jung B, Baumgartner I, Boesch C (2001) Quantitative 1H magnetic resonance spectroscopy of myoglobin de- and re-oxygenation in skeletal muscle: reproducibility and effects of localization and disease. Magn Reson Med 46:240–248PubMedGoogle Scholar
  127. Krssak M, Petersen KF, Dresner A, DiPietro L, Vogel SM, Rothman DL, Shulman GI, Roden M (1999) Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia 42:113–116PubMedGoogle Scholar
  128. Kuhl CK, Layer G, Traeber F, Zierz S, Block W, Reiser M (1994) Mitochondrial encephalomyopathy: correlation of P-31 exercise MR spectroscopy with clinical findings. Radiology 192:223–230PubMedGoogle Scholar
  129. Kuo GP, Carrino JA (2007) Skeletal muscle imaging and inflammatory myopathies. Curr Opin Rheumatol 19:530–535PubMedGoogle Scholar
  130. Kurhanewicz J, Vigneron DB, Brindle K, Chekmenev EY, Comment A, Cunningham CH, Deberardinis RJ, Green GG, Leach MO, Rajan SS, Rizi RR, Ross BD, Warren WS, Malloy CR (2011) Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for translation to clinical research. Neoplasia 13:81–97PubMedCentralPubMedGoogle Scholar
  131. Kushnir T, Knubovets T, Itzchak Y, Eliav U, Sadeh M, Rapoport L, Kott E, Navon G (1997) In vivo 23Na NMR studies of myotonic dystrophy. Magn Reson Med 37:192–196PubMedGoogle Scholar
  132. Kutsuzawa T, Shioya S, Kurita D, Haida M, Ohta Y, Yamabayashi H (1995) Muscle energy metabolism and nutritional status in patients with chronic obstructive pulmonary disease. A 31P magnetic resonance study. Am J Respir Crit Care Med 152:647–652PubMedGoogle Scholar
  133. Labrune P, Jehenson P, Syrota A, Odievre M (1992) In vivo 13C-NMR evaluation of glycogen content in a patient with glycogen storage disease. J Inherit Metab Dis 15:723–726PubMedGoogle Scholar
  134. Lane RJ, Barrett MC, Taylor DJ, Kemp GJ, Lodi R (1998) Heterogeneity in chronic fatigue syndrome: evidence from magnetic resonance spectroscopy of muscle. Neuromuscul Disord 8:204–209PubMedGoogle Scholar
  135. Lang T, Streeper T, Cawthon P, Baldwin K, Taaffe DR, Harris TB (2010) Sarcopenia: etiology, clinical consequences, intervention, and assessment. Osteoporos Int 21:543–559PubMedCentralPubMedGoogle Scholar
  136. Larson PE, Gold GE (2011) Science to practice: can inflammatory arthritis be monitored by using MR imaging with injected hyperpolarized 13C-pyruvate? Radiology 259:309–310PubMedGoogle Scholar
  137. Lee S, Boesch C, Kuk JL, Arslanian S (2013) Effects of an overnight intravenous lipid infusion on intramyocellular lipid content and insulin sensitivity in African-American versus Caucasian adolescents. Metabolism 62:417–423PubMedGoogle Scholar
  138. Leroy-Willig A, Fromes Y, Paturneau-Jouas M, Carlier P (2003) Assessing gene and cell therapies applied in striated skeletal and cardiac muscle: is there a role for nuclear magnetic resonance? Neuromuscul Disord 13:397–407PubMedGoogle Scholar
  139. Levy P, Wuyam B, Pepin JL, Reutenauer H, Payen JF (1997) Skeletal muscle abnormalities in chronic obstructive lung disease with respiratory insufficiency. Value of P31 magnetic resonance spectroscopy. Rev Mal Respir 14:183–191PubMedGoogle Scholar
  140. Lewis SF, Haller RG, Cook JD, Nunnally RL (1985) Muscle fatigue in McArdle’s disease studied by 31P-NMR: effect of glucose infusion. J Appl Physiol 59:1991–1994PubMedGoogle Scholar
  141. Lindquist D (2008) What can 31P MR spectroscopy tell us about muscle disease? Radiology 247:1–2PubMedGoogle Scholar
  142. Liska D, Dufour S, Zern TL, Taksali S, Cali AM, Dziura J, Shulman GI, Pierpont BM, Caprio S (2007) Interethnic differences in muscle, liver and abdominal fat partitioning in obese adolescents. PLoS One 2:e569PubMedCentralPubMedGoogle Scholar
  143. Ljungberg M, Sunnerhagen KS, Vikhoff-Baaz B, Starck G, Forssell-Aronsson E, Hedberg M, Ekholm S, Grimby G (2003) 31P MRS evaluation of fatigue in anterior tibial muscle in postpoliomyelitis patients and healthy volunteers. Clin Physiol Funct Imaging 23:190–198PubMedGoogle Scholar
  144. Lodi R, Montagna P, Iotti S, Zaniol P, Barboni P, Puddu P, Barbiroli B (1994) Brain and muscle energy metabolism studied in vivo by 31P-magnetic resonance spectroscopy in NARP syndrome. J Neurol Neurosurg Psychiatry 57:1492–1496PubMedCentralPubMedGoogle Scholar
  145. Lodi R, Muntoni F, Taylor J, Kumar S, Sewry CA, Blamire A, Styles P, Taylor DJ (1997a) Correlative MR imaging and 31P-MR spectroscopy study in sarcoglycan deficient limb girdle muscular dystrophy. Neuromuscul Disord 7:505–511Google Scholar
  146. Lodi R, Taylor DJ, Tabrizi SJ, Kumar S, Sweeney M, Wood NW, Styles P, Radda GK, Schapira AH (1997b) In vivo skeletal muscle mitochondrial function in Leber’s hereditary optic neuropathy assessed by 31P magnetic resonance spectroscopy. Ann Neurol 42:573–579Google Scholar
  147. Lodi R, Cooper JM, Bradley JL, Manners D, Styles P, Taylor DJ, Schapira AH (1999a) Deficit of in vivo mitochondrial ATP production in patients with Friedreich ataxia. Proc Natl Acad Sci USA 96:11492–11495Google Scholar
  148. Lodi R, Kemp GJ, Muntoni F, Thompson CH, Rae C, Taylor J, Styles P, Taylor DJ (1999b) Reduced cytosolic acidification during exercise suggests defective glycolytic activity in skeletal muscle of patients with Becker muscular dystrophy. An in vivo 31P magnetic resonance spectroscopy study. Brain 122:121–130Google Scholar
  149. Lodi R, Hart PE, Rajagopalan B, Taylor DJ, Crilley JG, Bradley JL, Blamire AM, Manners D, Styles P, Schapira AH, Cooper JM (2001) Antioxidant treatment improves in vivo cardiac and skeletal muscle bioenergetics in patients with Friedreich’s ataxia. Ann Neurol 49:590–596PubMedGoogle Scholar
  150. Machann J, Schick F, Jacob S, Lutz O, Häring HU, Claussen CD (1998) MR-spectroscopic determination of extra- and intramyocellular lipids in human calf muscle and correlation with insulin sensitivity. Magn Reson Mater Phy 6-Suppl1: 220Google Scholar
  151. Machann J, Stefan N, Schick F (2008) (1)H MR spectroscopy of skeletal muscle, liver and bone marrow. Eur J Radiol 67:275–284PubMedGoogle Scholar
  152. MacKenzie JD, Yen YF, Mayer D, Tropp JS, Hurd RE, Spielman DM (2011) Detection of inflammatory arthritis by using hyperpolarized 13C-pyruvate with MR imaging and spectroscopy. Radiology 259:414–420PubMedCentralPubMedGoogle Scholar
  153. Madsen M, Krusenstjerna-Hafstrom T, Moller L, Christensen B, Vendelbo MH, Pedersen SB, Frystyk J, Jessen N, Hansen TK, Stodkilde-Jorgensen H, Flyvbjerg A, Jorgensen JO (2012) Fat content in liver and skeletal muscle changes in a reciprocal manner in patients with acromegaly during combination therapy with a somatostatin analog and a GH receptor antagonist: a randomized clinical trial. J Clin Endocrinol Metab 97:1227–1235PubMedGoogle Scholar
  154. Maillefert JF, Eicher JC, Walker P, Dulieu V, Rouhier-Marcer I, Branly F, Cohen M, Brunotte F, Wolf JE, Casillas JM, Didier JP (1998) Effects of low-frequency electrical stimulation of quadriceps and calf muscles in patients with chronic heart failure. J Cardiopulm Rehabil 18:277–282PubMedGoogle Scholar
  155. Mancini DM, Wilson JR, Bolinger L, Li H, Kendrick K, Chance B, Leigh JS (1994) In vivo magnetic resonance spectroscopy measurement of deoxymyoglobin during exercise in patients with heart failure. Demonstration of abnormal muscle metabolism despite adequate oxygenation. Circulation 90:500–508PubMedGoogle Scholar
  156. Martinuzzi A, Liava A, Trevisi E, Frare M, Tonon C, Malucelli E, Manners D, Kemp GJ, Testa C, Barbiroli B, Lodi R (2008) Randomized, placebo-controlled, double-blind pilot trial of ramipril in McArdle’s disease. Muscle Nerve 37:350–357PubMedGoogle Scholar
  157. Massa R, Lodi R, Barbiroli B, Servidei S, Sancesario G, Manfredi G, Zaniol P, Bernardi G (1996) Partial block of glycolysis in late-onset phosphofructokinase deficiency myopathy. Acta Neuropathol 91:322–329PubMedGoogle Scholar
  158. Massie B, Conway M, Yonge R, Frostick S, Ledingham J, Sleight P, Radda G, Rajagopalan B (1987a) Skeletal muscle metabolism in patients with congestive heart failure: relation to clinical severity and blood flow. Circulation 76:1009–1019Google Scholar
  159. Massie BM, Conway M, Yonge R, Frostick S, Sleight P, Ledingham J, Radda G, Rajagopalan B (1987b) 31P nuclear magnetic resonance evidence of abnormal skeletal muscle metabolism in patients with congestive heart failure. Am J Cardiol 60:309–315Google Scholar
  160. Massie BM, Conway M, Rajagopalan B, Yonge R, Frostick S, Ledingham J, Sleight P, Radda G (1988) Skeletal muscle metabolism during exercise under ischemic conditions in congestive heart failure. Evidence for abnormalities unrelated to blood flow. Circulation 78:320–326PubMedGoogle Scholar
  161. Mattei JP, Bendahan D, Cozzone P (2004) P-31 magnetic resonance spectroscopy. A tool for diagnostic purposes and pathophysiological insights in muscle diseases. Reumatismo 56:9–14PubMedGoogle Scholar
  162. Matthews PM, Berkovic SF, Shoubridge EA, Andermann F, Karpati G, Carpenter S, Arnold DL (1991) In vivo magnetic resonance spectroscopy of brain and muscle in a type of mitochondrial encephalomyopathy (MERRF). Ann Neurol 29:435–438PubMedGoogle Scholar
  163. Matthews PM, Ford B, Dandurand RJ, Eidelman DH, O’Connor D, Sherwin A, Karpati G, Andermann F, Arnold DL (1993) Coenzyme Q10 with multiple vitamins is generally ineffective in treatment of mitochondrial disease. Neurology 43:884–890PubMedGoogle Scholar
  164. McCully KK, Argov Z, Boden BP, Brown RL, Bank WJ, Chance B (1988) Detection of muscle injury in humans with 31-P magnetic resonance spectroscopy. Muscle Nerve 11:212–216PubMedGoogle Scholar
  165. McCully KK, Forciea MA, Hack LM, Donlon E, Wheatley RW, Oatis CA, Goldberg T, Chance B (1991) Muscle metabolism in older subjects using 31P magnetic resonance spectroscopy. Can J Physiol Pharmacol 69:576–580PubMedGoogle Scholar
  166. McCully KK, Fielding RA, Evans WJ, Leigh JS Jr, Posner JD (1993) Relationships between in vivo and in vitro measurements of metabolism in young and old human calf muscles. J Appl Physiol 75:813–819PubMedGoogle Scholar
  167. McCully KK, Natelson BH, Iotti S, Sisto S, Leigh JS Jr (1996) Reduced oxidative muscle metabolism in chronic fatigue syndrome. Muscle Nerve 19:621–625PubMedGoogle Scholar
  168. McCully KK, Smith S, Rajaei S, Leigh JS, Natelson BH (2003) Blood flow and muscle metabolism in chronic fatigue syndrome. Clin Sci 104:641–647PubMedGoogle Scholar
  169. Meyer RA, Kushmerick MJ, Brown TR (1982) Application of 31P-NMR spectroscopy to the study of striated muscle metabolism. Am J Physiol 242:C1–C11PubMedGoogle Scholar
  170. Miller RG (2002) Role of fatigue in limiting physical activities in humans with neuromuscular diseases. Am J Phys Med Rehabil 81:S99–S107PubMedGoogle Scholar
  171. Miller RG, Boska MD, Moussavi RS, Carson PJ, Weiner MW (1988) 31P nuclear magnetic resonance studies of high energy phosphates and pH in human muscle fatigue. Comparison of aerobic and anaerobic exercise. J Clin Invest 81:1190–1196PubMedCentralPubMedGoogle Scholar
  172. Minotti JR, Johnson EC, Hudson TL, Zuroske G, Murata G, Fukushima E, Cagle TG, Chick TW, Massie BM, Icenogle MV (1990) Skeletal muscle response to exercise training in congestive heart failure. J Clin Invest 86:751–758PubMedCentralPubMedGoogle Scholar
  173. Mizuno M, Quistorff B, Theorell H, Theorell M, Chance B (1997) Effects of oral supplementation of coenzyme Q10 on 31P-NMR detected skeletal muscle energy metabolism in middle-aged post-polio subjects and normal volunteers. Mol Aspects Med 18:S291–S298PubMedGoogle Scholar
  174. Mole PA, Chung Y, Tran TK, Sailasuta N, Hurd R, Jue T (1999) Myoglobin desaturation with exercise intensity in human gastrocnemius muscle. Am J Physiol 277:R173–R180PubMedGoogle Scholar
  175. Montain SJ, Smith SA, Mattot RP, Zientara GP, Jolesz FA, Sawka MN (1998) Hypohydration effects on skeletal muscle performance and metabolism: a 31P-MRS study. J Appl Physiol 84:1889–1894PubMedGoogle Scholar
  176. Moon RB, Richards JH (1973) Determination of intracellular pH by 31P magnetic resonance. J Biol Chem 248:7276–7278PubMedGoogle Scholar
  177. Negendank W (1992) Studies of human tumors by MRS: a review. NMR Biomed 5:303–324PubMedGoogle Scholar
  178. Newman ED, Kurland RJ (1992) P-31 magnetic resonance spectroscopy in polymyositis and dermatomyositis. Altered energy utilization during exercise. Arthritis Rheum 35:199–203PubMedGoogle Scholar
  179. Newman RJ, Bore PJ, Chan L, Gadian DG, Styles P, Taylor D, Radda GK (1982) Nuclear magnetic resonance studies of forearm muscle in Duchenne dystrophy. Br Med J 284:1072–1074Google Scholar
  180. Okuma H, Kurita D, Ohnuki T, Haida M, Shinohara Y (2007) Muscle metabolism in patients with polymyositis simultaneously evaluated by using 31P-magnetic resonance spectroscopy and near-infrared spectroscopy. Int J Clin Pract 61:684–689PubMedGoogle Scholar
  181. Olgin J, Argov Z, Rosemberg H, Tuchler M, Chance B (1988) Non-invasive evaluation of malignant hyperthermia susceptiblity with phosphorus nuclear magnetic resonance spectroscopy. Anesthesiology 68:507–513PubMedGoogle Scholar
  182. Olgin J, Rosenberg H, Allen G, Seestedt R, Chance B (1991) A blinded comparison of noninvasive, in vivo phosphorus nuclear magnetic resonance spectroscopy and the in vitro halothane/caffeine contracture test in the evaluation of malignant hyperthermia susceptibility. Anesth Analg 72:36–47PubMedGoogle Scholar
  183. Pan JW, Hamm JR, Hetherington HP, Rothman DL, Shulman RG (1991) Correlation of lactate and pH in human skeletal muscle after exercise by 1H NMR. Magn Reson Med 20:57–65PubMedGoogle Scholar
  184. Park JH, Vansant JP, Kumar NG, Gibbs SJ, Curvin MS, Price RR, Partain CL, James AE (1990) Dermatomyositis: correlative MR imaging and P-31 MR spectroscopy for quantitative characterization of inflammatory disease. Radiology 177:473–479PubMedGoogle Scholar
  185. Park JH, Olsen NJ, King L, Vital T, Buse R, Kari S, Hernanz-Schulman M, Price RR (1995) Use of magnetic resonance imaging and P-31 magnetic resonance spectroscopy to detect and quantify muscle dysfunction in the amyopathic and myopathic variants of dermatomyositis. Arthritis Rheum 38:68–77PubMedGoogle Scholar
  186. Park JH, Kari S, King LE Jr, Olsen NJ (1998a) Analysis of 31P MR spectroscopy data using artificial neural networks for longitudinal evaluation of muscle diseases: dermatomyositis. NMR Biomed 11:245–256Google Scholar
  187. Park JH, Phothimat P, Oates CT, Hernanz-Schulman M, Olsen NJ (1998b) Use of P-31 magnetic resonance spectroscopy to detect metabolic abnormalities in muscles of patients with fibromyalgia. Arthritis Rheum 41:406–413Google Scholar
  188. Park JH, Niermann KJ, Ryder NM, Nelson AE, Das A, Lawton AR, Hernanz-Schulman M, Olsen NJ (2000) Muscle abnormalities in juvenile dermatomyositis patients: P-31 magnetic resonance spectroscopy studies. Arthritis Rheum 43:2359–2367PubMedGoogle Scholar
  189. Parry A, Matthews PM (2003) Roles for imaging in understanding the pathophysiology, clinical evaluation, and management of patients with mitochondrial disease. J Neuroimaging 13:293–302PubMedGoogle Scholar
  190. Payen JF, Bosson JL, Bourdon L, Jacquot C, Le Bas JF, Stieglitz P, Benabid AL (1993) Improved noninvasive diagnostic testing for malignant hyperthermia susceptibility from a combination of metabolites determined in vivo with 31P-magnetic resonance spectroscopy. Anesthesiology 78:848–855PubMedGoogle Scholar
  191. Pedersen BL, Baekgaard N, Quistorff B (2009) Muscle mitochondrial function in patients with type 2 diabetes mellitus and peripheral arterial disease: implications in vascular surgery. Eur J Vasc Endovasc Surg 38:356–364PubMedGoogle Scholar
  192. Penn AM, Lee JW, Thuillier P, Wagner M, Maclure KM, Menard MR, Hall LD, Kennaway NG (1992) MELAS syndrome with mitochondrial tRNA(Leu)(UUR) mutation: correlation of clinical state, nerve conduction, and muscle 31P magnetic resonance spectroscopy during treatment with nicotinamide and riboflavin. Neurology 42:2147–2152PubMedGoogle Scholar
  193. Penn AM, Roberts T, Hodder J, Allen PS, Zhu G, Martin WR (1995) Generalized mitochondrial dysfunction in Parkinson’s disease detected by magnetic resonance spectroscopy of muscle. Neurology 45:2097–2099PubMedGoogle Scholar
  194. Perseghin G, Price TB, Petersen KF, Roden M, Cline GW, Gerow K, Rothman DL, Shulman GI (1996) Increased glucose transport-phosphorylation and muscle glycogen synthesis after exercise training in insulin-resistant subjects. N Engl J Med 335:1357–1362PubMedGoogle Scholar
  195. Perseghin G, Scifo P, De Cobelli F, Pagliato E, Battezzati A, Arcelloni C, Vanzulli A, Testolin G, Pozza G, Del Maschio A, Luzi L (1999) Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H–13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes 48:1600–1606PubMedGoogle Scholar
  196. Petersen KF, Shulman GI (2006) New insights into the pathogenesis of insulin resistance in humans using magnetic resonance spectroscopy. Obesity 14(Suppl 1):34S–40SPubMedGoogle Scholar
  197. Petersen KF, Hendler R, Price T, Perseghin G, Rothman DL, Held N, Amatruda JM, Shulman GI (1998) 13C/31P NMR studies on the mechanism of insulin resistance in obesity. Diabetes 47:381–386PubMedGoogle Scholar
  198. Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, DiPietro L, Cline GW, Shulman GI (2003) Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300:1140–1142PubMedCentralPubMedGoogle Scholar
  199. Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350:664–671PubMedCentralPubMedGoogle Scholar
  200. Pfleiderer B, Lange J, Loske KD, Sunderkotter C (2004) Metabolic disturbances during short exercises in dermatomyositis revealed by real-time functional 31P magnetic resonance spectroscopy. Rheumatology 43:696–703PubMedGoogle Scholar
  201. Phielix E, Mensink M (2008) Type 2 diabetes mellitus and skeletal muscle metabolic function. Physiol Behav 94:252–258PubMedGoogle Scholar
  202. Phielix E, Szendroedi J, Roden M (2011) Mitochondrial function and insulin resistance during aging—a mini-review. Gerontology 57:387–396PubMedGoogle Scholar
  203. Philip PA, Thompson CH, Carmichael J, Rea D, Mitchell K, Taylor DJ, Stuart NS, Dennis I, Rajagopalan B, Ganesan T (1993) A phase I study of the left-shifting agent BW12C79 plus mitomycin C and the effect on the skeletal muscle metabolism using 31P magnetic resonance spectroscopy. Cancer Res 53:5649–5653PubMedGoogle Scholar
  204. Pola A, Sadananthan SA, Yaligar J, Nagarajan V, Han W, Kuchel PW, Velan SS (2012) Skeletal muscle lipid metabolism studied by advanced magnetic resonance spectroscopy. Prog NMR Spectroscopy 65:66–76Google Scholar
  205. Price TB, Krishnan-Sarin S, Rothman DL (2003) Smoking impairs muscle recovery from exercise. Am J Physiol 285:E116–E122Google Scholar
  206. Propper DJ, Braybrooke JP, Taylor DJ, Lodi R, Styles P, Cramer JA, Collins WC, Levitt NC, Talbot DC, Ganesan TS, Harris AL (1999) Phase I trial of the selective mitochondrial toxin MKT077 in chemo-resistant solid tumours. Ann Oncol 10:923–927PubMedGoogle Scholar
  207. Quistorff B, Johansen L, Sahlin K (1993) Absence of phosphocreatine resynthesis in human calf muscle during ischaemic recovery. Biochem J 291:681–686PubMedCentralPubMedGoogle Scholar
  208. Radda GK, Bore PJ, Gadian DG, Ross BD, Styles P, Taylor DJ, Morgan-Hughes J (1982) 31P NMR examination of two patients with NADH-CoQ reductase deficiency. Nature 295:608–609PubMedGoogle Scholar
  209. Reeves RR (1996) Effects of thyroid hormone treatment on 31P-NMR spectroscopy of muscle and on nerve conduction studies in a patient with long-standing severe hypothyroidism. J Am Osteopath Assoc 96:424–428PubMedGoogle Scholar
  210. Ross BD, Radda GK, Gadian DG, Rocker G, Esiri M, Falconer-Smith J (1981) Examination of a case of suspected McArdle’s syndrome by 31P nuclear magnetic resonance. N Engl J Med 304:1338–1342PubMedGoogle Scholar
  211. Rothman DL, Shulman RG, Shulman GI (1992) 31P nuclear magnetic resonance measurements of muscle glucose-6-phosphate: evidence for reduced insulin-dependent muscle glucose transport or phosphorylation activity in non-insulin-dependent diabetes mellitus. J Clin Invest 89:1069–1075PubMedCentralPubMedGoogle Scholar
  212. Rothman DL, Magnusson I, Cline G, Gerard D, Kahn CR, Shulman RG, Shulman GI (1995) Decreased muscle glucose transport/phosphorylation is an early defect in the pathogenesis of non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci USA 92:983–987PubMedCentralPubMedGoogle Scholar
  213. Rotman S, Slotboom J, Kreis R, Boesch C, Jequier E (2000) Muscle glycogen recovery after exercise measured by 13C-MRS in humans: effect of nutritional solutions. Magn Reson Mater Phys 11:114–121Google Scholar
  214. Salerno C, Iotti S, Lodi R, Crifo C, Barbiroli B (1997) Failure of muscle energy metabolism in a patient with adenylosuccinate lyase deficiency. An in vivo study by phosphorus NMR spectroscopy. Biochim Biophys Acta 1360:271–276PubMedGoogle Scholar
  215. Sato T, Katabami T, Furukawa K, Narimatsu H, Hashimoto T, Nakajima Y, Ohta A, Sasaoka T, Tanaka Y (2012) Intracellular lipid content of liver and skeletal muscle in patients with adult growth hormone deficiency without diabetes mellitus. Obes Res Clin Pract 6:e321–e329Google Scholar
  216. Savage DB, Petersen KF, Shulman GI (2007) Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol Rev 87:507–520PubMedCentralPubMedGoogle Scholar
  217. Scheuermann-Freestone M, Madsen PL, Manners D, Blamire AM, Buckingham RE, Styles P, Radda GK, Neubauer S, Clarke K (2003) Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes. Circulation 107:3040–3046PubMedGoogle Scholar
  218. Schick F, Eismann B, Jung WI, Bongers H, Bunse M, Lutz O (1993) Comparison of localized proton NMR signals of skeletal muscle and fat tissue in vivo: two lipid compartments in muscle tissue. Magn Reson Med 29:158–167PubMedGoogle Scholar
  219. Schocke MF, Esterhammer R, Ostermann S, Santner W, Gorny O, Fraedrich G, Jaschke WR, Greiner A (2006) High-energy phosphate metabolism during calf ergometry in patients with isolated aorto-iliac artery stenoses. Invest Radiol 41:874–882PubMedGoogle Scholar
  220. Schocke M, Esterhammer R, Greiner A (2008) High-energy phosphate metabolism in the exercising muscle of patients with peripheral arterial disease. Vasa 37:199–210PubMedGoogle Scholar
  221. Schröder L, Weber MA, Ulrich M, Regula JU (2006) Metabolic imaging of atrophic muscle tissue using appropriate markers in 1H and 31P NMR spectroscopy. Neuroradiology 48:809–816PubMedGoogle Scholar
  222. Schroers A, Kley RA, Stachon A, Horvath R, Lochmuller H, Zange J, Vorgerd M (2006) Gentamicin treatment in McArdle disease: failure to correct myophosphorylase deficiency. Neurology 66:285–286PubMedGoogle Scholar
  223. Schunk K, Romaneehsen B, Rieker O, Duber C, Kersjes W, Schadmand-Fischer S, Schmiedt W, Thelen M (1998) Dynamic phosphorus-31 magnetic resonance spectroscopy in arterial occlusive disease: effects of vascular therapy on spectroscopic results. Invest Radiol 33:329–335PubMedGoogle Scholar
  224. Seo Y, Murakami M, Watari H, Imai Y, Yoshizaki K, Nishikawa H, Moromoto T (1983) Intracellular pH determination by a 31P-NMR technique. The second dissociation constant of phosphoric acid in a biological system. J Biochem 94:729–734PubMedGoogle Scholar
  225. Sharma U, Kumar V, Wadhwa S, Jagannathan NR (2007) In vivo (31)P MRS study of skeletal muscle metabolism in patients with postpolio residual paralysis. Magn Reson Imaging 25:244–249PubMedGoogle Scholar
  226. Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA, Shulman RG (1990) Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med 322:223–228PubMedGoogle Scholar
  227. Siciliano G, Rossi B, Martini A, Angelini C, Martinuzzi A, Lodi R, Zaniol P, Barbiroli B, Muratorio A (1995) Myophosphorylase deficiency affects muscle mitochondrial respiration as shown by 31P-MR spectroscopy in a case with associated multifocal encephalopathy. J Neurol Sci 128:84–91PubMedGoogle Scholar
  228. Simms RW, Roy SH, Hrovat M, Anderson JJ, Skrinar G, LePoole SR, Zerbini CA, de Luca C, Jolesz F (1994) Lack of association between fibromyalgia syndrome and abnormalities in muscle energy metabolism. Arthritis Rheum 37:794–800PubMedGoogle Scholar
  229. Sivakumar K, Vasconcelos O, Goldfarb L, Dalakas MC (1996) Late-onset muscle weakness in partial phosphofructokinase deficiency: a unique myopathy with vacuoles, abnormal mitochondria, and absence of the common exon 5/intron 5 junction point mutation. Neurology 46:1337–1342PubMedGoogle Scholar
  230. Subhawong TK, Wang X, Durand DJ, Jacobs MA, Carrino JA, Machado AJ, Fayad LM (2012) Proton MR spectroscopy in metabolic assessment of musculoskeletal lesions. AJR Am J Roentgenol 198:162–172PubMedGoogle Scholar
  231. Taivassalo T, De Stefano N, Argov Z, Matthews PM, Chen J, Genge A, Karpati G, Arnold DL (1998) Effects of aerobic training in patients with mitochondrial myopathies. Neurology 50:1055–1060PubMedGoogle Scholar
  232. Taivassalo T, De SN, Chen J, Karpati G, Arnold DL, Argov Z (1999) Short-term aerobic training response in chronic myopathies. Muscle Nerve 22:1239–1243PubMedGoogle Scholar
  233. Tarnopolsky M (2012) Exercise testing in metabolic myopathies. Phys Med Rehabil Clin N Am 23:173–86, xiiGoogle Scholar
  234. Tarnopolsky MA, Raha S (2005) Mitochondrial myopathies: diagnosis, exercise intolerance, and treatment options. Med Sci Sports Exerc 37:2086–2093PubMedGoogle Scholar
  235. Taylor DJ (2000) Clinical utility of muscle MR spectroscopy. Semin Musculoskelet Radiol 4:481–502PubMedGoogle Scholar
  236. Taylor DJ, Bore PJ, Styles P, Gadian DG, Radda GK (1983) Bioenergetics of intact human muscle: a 31P nuclear magnetic resonance study. Mol Biol Med 1:77–94PubMedGoogle Scholar
  237. Taylor DJ, Styles P, Matthews PM, Arnold DA, Gadian DG, Bore P, Radda GK (1986) Energetics of human muscels: exercise-induced ATP depletion. Magn Reson Med 3:44–54PubMedGoogle Scholar
  238. Taylor DJ, Rajagopalan B, Radda GK (1992) Cellular energetics in hypothyroid muscle. Eur J Clin Invest 22:358–365PubMedGoogle Scholar
  239. Taylor DJ, Kemp GJ, Woods CG, Edwards JH, Radda GK (1993) Skeletal muscle bioenergetics in myotonic dystrophy. J Neurol Sci 116:193–200PubMedGoogle Scholar
  240. Taylor DJ, Krige D, Barnes PR, Kemp GJ, Carroll MT, Mann VM, Cooper JM, Marsden CD, Schapira AH (1994) A 31P magnetic resonance spectroscopy study of mitochondrial function in skeletal muscle of patients with Parkinson’s disease. J Neurol Sci 125:77–81PubMedGoogle Scholar
  241. Taylor DJ, Amato A, Hands LJ, Kemp GJ, Ramaswami G, Nicolaides A, Radda GK (1996) Changes in energy metabolism of calf muscle in patients with intermittent claudication assessed by 31P magnetic resonance spectroscopy: a phase II open study. Vasc Med 1:241–245PubMedGoogle Scholar
  242. Teranishi T, Ohara T, Maeda K, Zenibayashi M, Kouyama K, Hirota Y, Kawamitsu H, Fujii M, Sugimura K, Kasuga M (2007) Effects of pioglitazone and metformin on intracellular lipid content in liver and skeletal muscle of individuals with type 2 diabetes mellitus. Metabolism 56:1418–1424PubMedGoogle Scholar
  243. Thamer C, Machann J, Bachmann O, Haap M, Dahl D, Wietek B, Tschritter O, Niess A, Brechtel K, Fritsche A, Claussen C, Jacob S, Schick F, Haring HU, Stumvoll M (2003) Intramyocellular lipids: anthropometric determinants and relationships with maximal aerobic capacity and insulin sensitivity. J Clin Endocrinol Metab 88:1785–1791PubMedGoogle Scholar
  244. Thompson CH, Davies RJ, Kemp GJ, Taylor DJ, Radda GK, Rajagopalan B (1993) Skeletal muscle metabolism during exercise and recovery in patients with respiratory failure. Thorax 48:486–490PubMedCentralPubMedGoogle Scholar
  245. Thompson CH, Kemp GJ, Barnes PR, Rajagopalan B, Styles P, Taylor DJ, Radda GK (1994) Uraemic muscle metabolism at rest and during exercise. Nephrol Dial Transplant 9:1600–1605PubMedGoogle Scholar
  246. Thompson CH, Macaulay VM, O’Byrne KJ, Kemp GJ, Wilner SM, Talbot DC, Harris AL, Radda GK (1996) Modulation of bryostatin 1 muscle toxicity by nifedipine: effects on muscle metabolism and oxygen supply. Br J Cancer 73:1161–1165PubMedCentralPubMedGoogle Scholar
  247. Torriani M, Townsend E, Thomas BJ, Bredella MA, Ghomi RH, Tseng BS (2012) Lower leg muscle involvement in Duchenne muscular dystrophy: an MR imaging and spectroscopy study. Skeletal Radiol 41:437–445PubMedCentralPubMedGoogle Scholar
  248. Tosetti M, Linsalata S, Battini R, Volpi L, Cini C, Presciutti O, Muntoni F, Cioni G, Siciliano G (2011) Muscle metabolic alterations assessed by 31-phosphorus magnetic resonance spectroscopy in mild Becker muscular dystrophy. Muscle Nerve 44:816–819PubMedGoogle Scholar
  249. Trenell MI, Sue CM, Kemp GJ, Sachinwalla T, Thompson CH (2006a) Aerobic exercise and muscle metabolism in patients with mitochondrial myopathy. Muscle Nerve 33:524–531Google Scholar
  250. Trenell MI, Thompson CH, Sue CM (2006b) Exercise and myotonic dystrophy: a 31P magnetic resonance spectroscopy and magnetic resonance imaging case study. Ann Neurol 59:871–872Google Scholar
  251. Trenell MI, Sue CM, Thompson CH, Kemp GJ (2007) Supplemental oxygen and muscle metabolism in mitochondrial myopathy patients. Eur J Appl Physiol 99:541–547PubMedGoogle Scholar
  252. Trepp R, Fluck M, Stettler C, Boesch C, Ith M, Kreis R, Hoppeler H, Howald H, Schmid JP, Diem P, Christ ER (2008) Effect of growth hormone (GH) on human skeletal muscle lipid metabolism in GH-deficiency. Am J Physiol 294:E1127–E1134Google Scholar
  253. van Elderen SG, Doornbos J, van Essen EH, Lemkes HH, Maassen JA, Smit JW, De Roos A (2009) Phosphorus-31 magnetic resonance spectroscopy of skeletal muscle in maternally inherited diabetes and deafness A3243G mitochondrial mutation carriers. J Magn Reson Imaging 29:127–131PubMedGoogle Scholar
  254. van Tienen FH, Praet SF, De Feyter HM, van den Broek NM, Lindsey PJ, Schoonderwoerd KG, de Coo I, Nicolay K, Prompers JJ, Smeets HJ, van Loon LJ (2012) Physical activity is the key determinant of skeletal muscle mitochondrial function in type 2 diabetes. J Clin Endocrinol Metab 97:3261–3269PubMedGoogle Scholar
  255. Vanderthommen M, Duteil S, Wary C, Raynaud JS, Leroy-Willig A, Crielaard JM, Carlier PG (2003) A comparison of voluntary and electrically induced contractions by interleaved 1H- and 31P-NMRS in humans. J Appl Physiol 94:1012–1024PubMedGoogle Scholar
  256. Vermathen P, Saillen P, Boss A, Zehnder M, Boesch C (2012) Skeletal muscle 1H MRSI before and after prolonged exercise I. muscle specific depletion of intramyocellular lipids. Magn Reson Med 68:1357–1367PubMedGoogle Scholar
  257. Vissing J, Vissing SF, MacLean DA, Saltin B, Quistorff B, Haller RG (1998) Sympathetic activation in exercise is not dependent on muscle acidosis. Direct evidence from studies in metabolic myopathies. J Clin Invest 101:1654–1660PubMedCentralPubMedGoogle Scholar
  258. Vita G, Toscano A, Bresolin N, Meola G, Fortunato F, Baradello A, Barbiroli B, Frassineti C, Zaniol P, Messina C (1994) Muscle phosphoglycerate mutase (PGAM) deficiency in the first Caucasian patient: biochemistry, muscle culture and 31P-MR spectroscopy. J Neurol 241:289–294PubMedGoogle Scholar
  259. Vorgerd M, Zange J (2002) Carbohydrate oxidation disorders of skeletal muscle. Curr Opin Clin Nutr Metab Care 5:611–617PubMedGoogle Scholar
  260. Vorgerd M, Grehl T, Jager M, Muller K, Freitag G, Patzold T, Bruns N, Fabian K, Tegenthoff M, Mortier W, Luttmann A, Zange J, Malin JP (2000) Creatine therapy in myophosphorylase deficiency (McArdle disease): a placebo-controlled crossover trial. Arch Neurol 57:956–963PubMedGoogle Scholar
  261. Vorgerd M, Kilimann MW, Zange J, Malin JP (2002a) Muskelglykogenosen. Dtsch Ärzteblatt 99:A2328–A2340Google Scholar
  262. Vorgerd M, Zange J, Kley R, Grehl T, Husing A, Jager M, Muller K, Schroder R, Mortier W, Fabian K, Malin JP, Luttmann A (2002b) Effect of high-dose creatine therapy on symptoms of exercise intolerance in McArdle disease: double-blind, placebo-controlled crossover study. Arch Neurol 59:97–101Google Scholar
  263. Walker UA (2008) Imaging tools for the clinical assessment of idiopathic inflammatory myositis. Curr Opin Rheumatol 20:656–661PubMedGoogle Scholar
  264. Wang Z, Noyszewski EA, Leigh JS (1990) In vivo MRS measurement of deoxymyoglobin in human forearms. Magn Reson Med 14:562–567PubMedGoogle Scholar
  265. Wang X, Jacobs MA, Fayad L (2011) Therapeutic response in musculoskeletal soft tissue sarcomas: evaluation by MRI. NMR Biomed 24:750–763PubMedCentralPubMedGoogle Scholar
  266. Wary C, Laforet P, Eymard B, Fardeau M, Leroy-Willig A, Bassez G, Leroy JP, Caillaud C, Poenaru L, Carlier PG (2003) Evaluation of muscle glycogen content by 13C NMR spectroscopy in adult-onset acid maltase deficiency. Neuromuscul Disord 13:545–553PubMedGoogle Scholar
  267. Wary C, Nadaj-Pakleza A, Laforet P, Claeys KG, Carlier R, Monnet A, Fleury S, Baligand C, Eymard B, Labrune P, Carlier PG (2010) Investigating glycogenosis type III patients with multi-parametric functional NMR imaging and spectroscopy. Neuromuscul Disord 20:548–558PubMedGoogle Scholar
  268. Weber MA, Essig M, Kauczor HU (2007) Radiological diagnostics of muscle diseases. Fortschr Röntgenstr 179:712–720Google Scholar
  269. Weber MA, Krakowski-Roosen H, Schroder L, Kinscherf R, Krix M, Kopp-Schneider A, Essig M, Bachert P, Kauczor HU, Hildebrandt W (2009) Morphology, metabolism, microcirculation, and strength of skeletal muscles in cancer-related cachexia. Acta Oncol 48:116–124PubMedGoogle Scholar
  270. Weiss R, Dufour S, Taksali SE, Tamborlane WV, Petersen KF, Bonadonna RC, Boselli L, Barbetta G, Allen K, Rife F, Savoye M, Dziura J, Sherwin R, Shulman GI, Caprio S (2003) Prediabetes in obese youth: a syndrome of impaired glucose tolerance, severe insulin resistance, and altered myocellular and abdominal fat partitioning. Lancet 362:951–957PubMedCentralPubMedGoogle Scholar
  271. Weissman JD, Constantinitis I, Hudgins P, Wallace DC (1992) 31P magnetic resonance spectroscopy suggests impaired mitochondrial function in AZT-treated HIV-infected patients. Neurology 42:619–623PubMedGoogle Scholar
  272. Wells GD, Noseworthy MD, Hamilton J, Tarnopolski M, Tein I (2008) Skeletal muscle metabolic dysfunction in obesity and metabolic syndrome. Can J Neurol Sci 35:31–40PubMedGoogle Scholar
  273. Wells GD, Wilkes DL, Schneiderman JE, Rayner T, Elmi M, Selvadurai H, Dell SD, Noseworthy MD, Ratjen F, Tein I, Coates AL (2011) Skeletal muscle metabolism in cystic fibrosis and primary ciliary dyskinesia. Pediatr Res 69:40–45PubMedGoogle Scholar
  274. Wilhelm T, Bachert P (2001) In vivo 31P echo-planar spectroscopic imaging of human calf muscle. J Magn Reson 149:126–130PubMedGoogle Scholar
  275. Wilson JR, Fink L, Maris J, Ferraro N, Power-Vanwart J, Eleff S, Chance B (1985) Evaluation of energy metabolism in skeletal muscle of patients with heart failure with gated phosphorus-31 nuclear magnetic resonance. Circulation 71:57–62PubMedGoogle Scholar
  276. Wong R, Lopaschuk G, Zhu G, Walker D, Catellier D, Burton D, Teo K, Collins-Nakai R, Montague T (1992) Skeletal muscle metabolism in the chronic fatigue syndrome. In vivo assessment by 31P nuclear magnetic resonance spectroscopy. Chest 102:1716–1722PubMedGoogle Scholar
  277. Wray DW, Nishiyama SK, Monnet A, Wary C, Duteil S, Carlier PG, Richardson RS (2009a) Multiparametric NMR-based assessment of skeletal muscle perfusion and metabolism during exercise in elderly persons: preliminary findings. J Gerontol A Biol Sci Med Sci 64:968–974Google Scholar
  278. Wray DW, Nishiyama SK, Monnet A, Wary C, Duteil SS, Carlier PG, Richardson RS (2009b) Antioxidants and aging: NMR-based evidence of improved skeletal muscle perfusion and energetics. Am J Physiol 297:H1870–H1875Google Scholar
  279. Wu JS, Buettner C, Smithline H, Ngo LH, Greenman RL (2011) Evaluation of skeletal muscle during calf exercise by 31-phosphorus magnetic resonance spectroscopy in patients on statin medications. Muscle Nerve 43:76–81PubMedCentralPubMedGoogle Scholar
  280. Zange J, Grehl T, Disselhorst-Klug C, Rau G, Muller K, Schroder R, Tegenthoff M, Malin JP, Vorgerd M (2003) Breakdown of adenine nucleotide pool in fatiguing skeletal muscle in McArdle’s disease: a noninvasive 31P-MRS and EMG study. Muscle Nerve 27:728–736PubMedGoogle Scholar
  281. Zatina MA, Berkowitz HD, Gross GM, Maris JM, Chance B (1986) 31P nuclear magnetic resonance spectroscopy: noninvasive biochemical analysis of the ischemic extremity. J Vasc Surg 3:411–420PubMedGoogle Scholar
  282. Zochodne DW, Koopman WJ, Witt NJ, Thompson T, Driedger AA, Gravelle D, Bolton CF (1992) Forearm P-31 nuclear magnetic resonance spectroscopy studies in oculopharyngeal muscular dystrophy. Can J Neurol Sci 19:174–179PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.AMSM (DKF and DIPR)University and Inselspital BernBernSwitzerland

Personalised recommendations