Advertisement

90Y Microspheres: Concepts and Principles

  • Andrew S. Kennedy
  • William A. Dezarn
  • Patrick McNeillie
Chapter
Part of the Medical Radiology book series (MEDRAD)

Abstract

Effective use of intra-arterial radioactive microsphere therapy for liver malignancies requires understanding of many disciplines. Mastery of radiation physics, radiobiology, vascular anatomy, and modifiers of particle flow all complement the established skill of the physician team delivering 90Y microspheres in these complex patients. This chapter introduces and explains the key concepts involved from the many disciplines that combined to produce safe, effective, and evolving liver radiotherapy.

Keywords

Hepatic Artery Stereotactic Body Radiotherapy Resin Microsphere Oxygen Enhancement Ratio Microsphere Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ackerman NB, Lien WM, Kondi ES, Silverman NA (1970) The blood supply of experimental liver metastases I: the distribution of hepatic artery and portal vein blood to “small” and “large” tumors. Surgery 66(6):1067–1072Google Scholar
  2. Ariel IM (1965) Treatment of inoperable primary pancreatic and liver cancer by the intra-arterial administration of radioactive isotopes (Y90 radiating microspheres). Ann Surg 162:267–278PubMedCentralPubMedCrossRefGoogle Scholar
  3. Ariel IM, Pack GT (1967) Treatment of inoperable cancer of the liver by intra-arterial radioactive isotopes and chemotherapy. Cancer 20(5):793–804PubMedCrossRefGoogle Scholar
  4. Ariel IM, Padula G (1982) Treatment of asymptomatic metastatic cancer to the liver from primary colon and rectal cancer by the intraarterial administration of chemotherapy and radioactive isotopes. J Surg Oncol 20(3):151–156PubMedCrossRefGoogle Scholar
  5. Austin-Seymour MM, Chen GT, Castro JR (1986) Dose volume histogram analysis of liver radiation tolerance. J Radiat Oncol Biol Phys 12:31–35CrossRefGoogle Scholar
  6. Basciano CA, Kleinstreuer C, Kennedy AS, Dezarn WA, Childress E (2010) Computer modeling of controlled microsphere release and targeting in a representative hepatic artery system. Ann Biomed Eng 38(5):1862–1879PubMedCrossRefGoogle Scholar
  7. Blanchard RJ, Grotenhuis I, LaFave JW (1964) Treatment of experimental tumors: utilization of radioactive microspheres. Arch Surg 89:406PubMedCrossRefGoogle Scholar
  8. Blanchard RJ, LaFave JW, Kim YS (1965) Treatment of patients with advanced cancer using Y-90 microspheres. Cancer 18:375PubMedCrossRefGoogle Scholar
  9. Breedis C, Young G (1954) The blood supply of neoplasms in the liver. Am J Pathol 30:969–984PubMedCentralPubMedGoogle Scholar
  10. Caldarola L, Rosa U, Badellino F (1965) Preparation of 32P labelled resin microspheres for radiation treatment of tumors by intraarterial injection. Panminerva Med 7:102Google Scholar
  11. Caldarola L, Badellino F, Del Fante FM (1966) L’impiego del P32 nel trattamento chirurgico dei tumori maligni oro-maxillo-faciali. Minerva Stomatol 15:471PubMedGoogle Scholar
  12. Campbell AM, Bailey IH, Burton MA (2000) Analysis of the distribution of intra-arterial microspheres in human liver following hepatic yttrium-90 microsphere therapy. Phys Med Biol 45:1023–1033PubMedCrossRefGoogle Scholar
  13. Carr B, Salem R, Sheetz M et al (2002a) Hepatic arterial yttrium labeled glass microspheres (TheraSphere) as treatment for unresectable HCC in 36 patients. Proceedings of ASCOGoogle Scholar
  14. Carr B, Torok F, Sheetz M et al (2002b) A novel and safe therapy for advanced-stage hepatocellular carcinoma (HCC): hepatic arterial 90Yttrium-labeled glass microspheres (TheraSphere). Int J Cancer Supplement 13:459Google Scholar
  15. Childress EM, Kleinstreuer C, Kennedy AS (2012) A new catheter for tumor-targeting with radioactive microspheres in representative hepatic artery systems–part II: solid tumor-targeting in a patient-inspired hepatic artery system. J Biomech Eng 134(5):051005PubMedCrossRefGoogle Scholar
  16. Coldwell D, Kennedy AS, Van Echo DA, al. e (2001) Feasibility of treatment of hepatic tumors utilizing embolization with yttrium-90 glass microspheres. J Vasc Interv Radiol 12(S1): S113Google Scholar
  17. Dawson LA, Ten Haken RK, Lawrence TS (2001) Partial irradiation of the liver. Semin Radiat Oncol 11(3):240–246PubMedCrossRefGoogle Scholar
  18. Di Matteo G, Gennarelli L, Lenti R (1962) Una nuova metodica per la fissazione elettiva dell’ Au198 adsorbio su carbonio in terriori lobari e sublobari. Gazz Intern Med Chir 67:1875Google Scholar
  19. Dogliotti AM, Caldarola L, Badellino F (1966) Endoarterial regional injection of radioisotopes in the treatment of malignant tumours. IJARI 17:51Google Scholar
  20. Fajardo LF, Berthrong M, Anderson RE (2001) Chapter 15: liver. Radiation Pathology, 1st edn. Oxford University Press, New York pp 249–257Google Scholar
  21. Fox RA, Klemp PF, Egan G, Mina LL, Burton MA, Gray BN (1991) Dose distribution following selective internal radiation therapy. Int J Radiat Oncol Biol Phys 21(2):463–467PubMedCrossRefGoogle Scholar
  22. Grady ED (1979) Internal radiation therapy of hepatic cancer. Dis Colon Rectum 22(6):371–375PubMedCrossRefGoogle Scholar
  23. Hahn PF, Jackson MA, Goldie H (1951) Liver cirrhosis with ascites, induced in dogs by chronic massive hepatic irradiation with radioactive colloidal gold. Science 114:303–305PubMedCrossRefGoogle Scholar
  24. Hall E (2000) Radiobiology for the Radiologist, 5th edn. Lippincott, Williams & Wilkins, Philidelphia pp 5–16, 80–87Google Scholar
  25. Ingold J, Reed G, Kaplan H (1965) Radiation hepatitis. Am J Roentgenol 93:200–208Google Scholar
  26. Kennedy AS, Salem R (2003) Comparison of two 90Yttrium microsphere agents for hepatic artery brachytherapy. In: Proceedings of the 14th international congress on anti-cancer treatment, vol 1, p 156Google Scholar
  27. Kennedy AS, Raleigh JA, Varia MA (1997) Proliferation and hypoxia in human squamous cell carcinoma of the cervix: first report of combined immunohistochemical assays. Int J Radiat Oncol Biol Phys 37(4):897–905PubMedCrossRefGoogle Scholar
  28. Kennedy AS, Murthy R, Sarfaraz M, Yu C, Line BR, Ma L, et al (2001a) Outpatient hepatic artery brachytherapy for primary and secondary hepatic malignancies. Radiology 221P(Suppl):468Google Scholar
  29. Kennedy AS, Murthy R, Van Echo DA (2001b) Preliminary results of outpatient hepatic artery brachytherapy for colorectal hepatic metastases. Eu J Cancer 37(Suppl 6):289Google Scholar
  30. Kennedy AS, Murthy R, Kwok Y, al. e (2002a) Hepatic Artery Brachytherapy for Unresectable Hepatocellular Carcinoma: An Outpatient Treatment Approach. In: Proceedings of the 12th international congress on anti-cancer treatment vol 1, pp 198–199Google Scholar
  31. Kennedy AS, Van Echo DA, Murthy R (2002b) Hepatic artery brachytherapy for neuroendocrine carcinoma. Regul Pept 108(1):32Google Scholar
  32. Kennedy AS, Van Echo DA, Murthy R (2002c) Colorectal (CRC) liver metastases and hepatocellular carcinoma (HCC) treated with outpatient hepatic artery brachytherapy, therasphere: imaging response and toxicity. Int J Cancer S13:226–227Google Scholar
  33. Kennedy AS, Coldwell D, Nutting C, Tucker G, Van Echo DA (eds) (2004a) 90Y-microspheres in the treatment of colorectal metastases: USA experience. In: Proceedings of the 15th international congress on anti-cancer treatment, T.C.O, Paris, France 10 Feb 2004Google Scholar
  34. Kennedy AS, Nutting C, Coldwell D, Gaiser J, Drachenberg C (2004b) Pathologic response and microdosimetry of 90Y microspheres in man: review of four explanted whole livers. Int J Radiat Oncol Biol Phys 60(5):1552–1563CrossRefGoogle Scholar
  35. Kennedy AS, Kleinstreuer C, Basciano CA, Dezarn WA (2010) Computer modeling of yttrium-90-microsphere transport in the hepatic arterial tree to improve clinical outcomes. Int J Radiat Oncol Biol Phys 76(2):631–637PubMedCrossRefGoogle Scholar
  36. Kleinstreuer C, Basciano CA, Childress EM, Kennedy AS (2012) A new catheter for tumor targeting with radioactive microspheres in representative hepatic artery systems. Part I: impact of catheter presence on local blood flow and microsphere delivery. J Biomech Eng 134(5):051004PubMedCrossRefGoogle Scholar
  37. Knox SJ, Goris ML, Trisler K, Negrin R, Davis T, Liles TM, et al (1996) Yttrium-90-labeled anti-CD20 monoclonal antibody therapy of recurrent B-cell lymphoma. Clin Cancer Res 2(3):457–470. PubMed PMID: 9816191. engGoogle Scholar
  38. Lawrence TS, Ten Haken RK, Kessler ML, Robertson JM, Lyman JT, Lavigne ML et al (1992) The use of 3-D dose volume analysis to predict radiation hepatitis. Int J Radiat Oncol Biol Phys 23(4):781–788PubMedCrossRefGoogle Scholar
  39. Lawrence TS, Robertson JM, Anscher MS, Jirtle RL, Ensminger WD, Fajardo LF (1995) Hepatic toxicity resulting from cancer treatment. Int J Radiat Oncol Biol Phys 31(5):1237–1248PubMedCrossRefGoogle Scholar
  40. Lien WM, Ackerman NB (1970) The blood supply of experimental liver metastases II: A microcirculatory study of the normal and tumor vessels of the liver with the use of perfused silicone rubber. Surgery 68(2):334–340PubMedGoogle Scholar
  41. Macklis RM, Beresford BA, Humm JL (1994) Radiobiologic studies of low-dose-rate 90Y-lymphoma therapy. Cancer 73(3 Suppl):966–973. PubMed PMID: 8306286. engGoogle Scholar
  42. Meade VM, Burton MA, Gray BN, Self GW (1987) Distribution of different sized microspheres in experimental hepatic tumours. Eur J Cancer Clin Oncol 23(1):37–41PubMedCrossRefGoogle Scholar
  43. Morgan B, Kennedy AS, Lewington V, Jones B, Sharma RA (2011) Intra-arterial brachytherapy of hepatic malignancies: watch the flow. Nat Rev Clin oncol 8(2):115–120PubMedCrossRefGoogle Scholar
  44. Muller JH, Rossier PH (1947) Treatment of cancer of the lungs by artificial radioactivity. Experientia 3:75PubMedCrossRefGoogle Scholar
  45. Muller JH, Rossier PH (1951) A new method for the treatment of cancer of the lungs by means of artificial radioactivity (Zn63 and Au198). Acta Radiol 35:449–468PubMedCrossRefGoogle Scholar
  46. Murthy R, Line BR, Kennedy AS et al (2002a) Clinical utility of Brehmstralung scan (BRM-Scan) after TheraSphere (TS). J Vasc Interv Radiol 13(2):S2Google Scholar
  47. Murthy R, Kennedy AS, Tucker G et al (2002b) Outpatient trans arterial hepatic ‘low dose rate’ (TAH-LDR) brachytherapy for unresectable hepatocellular carcinoma. Proceedings of American Association for Cancer Research, vol 43, p 485Google Scholar
  48. Murthy R, Kennedy AS, Coldwell D (2002c) Technical aspects of TheraSphere (TS) infusion. J Vasc Interv Radiol 13(2):S2Google Scholar
  49. Ogata K, Hizawa K, Yoshida M (1963) Hepatic injury following irradiation: a morphologic study. Tukushima J Exp Med 9:240–251Google Scholar
  50. Pillai KM, McKeever PE, Knutsen CA, Terrio PA, Prieskorn DM, Ensminger W (1991) Microscopic analysis of arterial microsphere distribution in rabbit liver and hepatic VX2 tumor. Sel Cancer Ther 7(2):39–48PubMedCrossRefGoogle Scholar
  51. Richards AL, Kleinstreuer C, Kennedy AS, Childress E, Buckner GD (2012) Experimental microsphere targeting in a representative hepatic artery system. IEEE Trans Bio-Med Eng 59(1):198–204CrossRefGoogle Scholar
  52. Salem R, Thurston KG, Carr B (2002) Yttrium-90 microspheres: Radiation therapy for unresectable liver cancer. J Vasc Interv Radiol 13:S223–S229PubMedCrossRefGoogle Scholar
  53. Sarfaraz M, Kennedy AS, Cao ZJ, Li A, Yu C (2001) Radiation dose distribution in patients treated with Y-90 Microspheres for non-resectable hepatic tumors. Int J Rad Biol Phys 51(3 S1):32–33Google Scholar
  54. Van Echo DA, Kennedy AS, Coldwell D (2001) TheraSphere (TS) at 143 Gy median dose for mixed hepatic cancers; feasibility and toxicities. Amer Soc Clin Oncol 260a:1038Google Scholar
  55. Wiseman GA, Witzig TE (2005) Yttrium-90 (90Y) ibritumomab tiuxetan (Zevalin) induces long-term durable responses in patients with relapsed or refractory B-Cell non-Hodgkin’s lymphoma. Cancer Biother Radiopharm 20(2):185–188. PubMed PMID: 15869453. engGoogle Scholar
  56. Wiseman GA, Leigh BR, Erwin WD, Sparks RB, Podoloff DA, Schilder RJ, et al (2003) Radiation dosimetry results from a Phase II trial of ibritumomab tiuxetan (Zevalin) radioimmunotherapy for patients with non-Hodgkin’s lymphoma and mild thrombocytopenia. Cancer Biother Radiopharm 18(2):165–178. PubMed PMID: 12804042. engGoogle Scholar
  57. Withers HR (2002) Gastrointestinal cancer: radiation oncology. In: Kelsen DP, Daly JM, Levin B, Kern SE, Tepper JE (eds) Gastrointestinal oncology: principles and practice, 1st edn. Lippincott Williams & Wilkins, Philadelphia, pp 83–96Google Scholar
  58. Wollner IS, Knutsen CA, Ullrich KA, Chrisp CE, Juni JE, Andrews JC et al (1987) Effects of hepatic arterial yttrium-90 microsphere administration alone and combined with regional bromodeoxyuridine infusion in dogs. Cancer Res 47:3285–3290PubMedGoogle Scholar
  59. Wollner I, Knutsen C, Smith P, Prieskorn D, Chrisp C, Andrews J et al (1988) Effects of hepatic arterial yttrium 90 glass microspheres in dogs. Cancer 61(7):1336–1344PubMedCrossRefGoogle Scholar
  60. Zeman E (2000) Biologic Basis of Radiation Oncology. In: Gunderson L, Tepper J (eds) Clinical radiation oncology, 1st edn. Churchill Livingstone, Philadelphia, pp 1–41Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andrew S. Kennedy
    • 1
    • 2
    • 3
  • William A. Dezarn
    • 4
  • Patrick McNeillie
    • 5
  1. 1.Department of Radiation OncologySarah Cannon Cancer InstituteNashvilleUSA
  2. 2.Radiation Oncology ResearchSarah Cannon Research InstituteNashvilleUSA
  3. 3.Department of Biomedical Engineering, Department of Mechanical and Aerospace EngineeringNorth Carolina State UniversityRaleighUSA
  4. 4.Private ConsultantSiloamUSA
  5. 5.School of MedicineUniversity of North CarolinaChapel HillUSA

Personalised recommendations