Radioembolization-Induced Liver Disease

  • Bruno Sangro
  • Mercedes Iñarrairaegui
  • Andrew S. Kennedy
Part of the Medical Radiology book series (MEDRAD)


The aim of liver radioembolization is to deliver an effective dose of radiation to liver tumors while the nontumoral liver is only exposed to much lower, nonharmful dose. However, irradiation of the nontumoral compartment of the liver may produce cell damage that can translate into changes in laboratory tests or clinical signs of liver dysfunction. Radioembolization-induced liver disease has been recently described as a syndrome consisting in jaundice and ascites that appears 1–2 months after treatment in the absence of tumor progression or bile duct occlusion. This complication is extremely rare in the absence of cirrhosis or intense prior exposure to chemotherapeutic agents particularly if chemotherapy is continued immediately after radioembolization. Its incidence is likely to be lower than 10 % and it has a transient or stable course in most cases, but it may unusually lead to overt liver failure. A conservative dose prescription and the use of low-dose steroids or ursodeoxycholic acid have been suggested as prophylactic measures.


External Beam Radiation Therapy Liver Volume Ursodeoxycholic Acid Normal Tissue Complication Probability Glass Microsphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



CIBEREHD is funded by Instituto de Salud Carlos III.

The authors wish to thank Paloma Sangro for her valuable work in the review of the literature and the preparation of the manuscript.


  1. Bearman SI, Shuhart MC, Hinds MS, McDonald GB (1992) Recombinant human tissue plasminogen activator for the treatment of established severe venocclusive disease of the liver after bone marrow transplantation. Blood 80(10):2458–2462PubMedGoogle Scholar
  2. Bilbao JI, Martino A, Luis E, Díaz-Dorronsoro L, Alonso-Burgos A, de la Martínez A, Cuesta A et al (2009) Biocompatibility, inflammatory response, and recannalization characteristics of nonradioactive resin microspheres: histological findings. Cardiovasc Intervent Radiol 32(4):727–736PubMedCentralPubMedCrossRefGoogle Scholar
  3. Carr BI (2004) Hepatic arterial90Yttrium glass microspheres (Therasphere) for unresectable hepatocellular carcinoma: interim safety and survival data on 65 patients. Liver Transpl 10(S2):S107–S110Google Scholar
  4. Cheng JC-H, Wu J-K, Huang C-M, Liu H-S, Huang DY, Cheng SH et al (2002) Radiation-induced liver disease after three-dimensional conformal radiotherapy for patients with hepatocellular carcinoma: dosimetric analysis and implication. Int J Radiat Oncol Biol Phys 54(1):156–162PubMedCrossRefGoogle Scholar
  5. Cheng JC-H, Wu J-K, Lee PC-T, Liu H-S, Jian JJ-M, Lin Y-M et al (2004) Biologic susceptibility of hepatocellular carcinoma patients treated with radiotherapy to radiation-induced liver disease. Int J Radiat Oncol Biol Phys 60(5):1502–1509Google Scholar
  6. Chiesa C, Maccauro M, Romito R, Spreafico C, Pellizzari S, Negri A et al (2011) Need, feasibility and convenience of dosimetric treatment planning in liver selective internal radiation therapy with (90)Y microspheres: the experience of the National Tumor Institute of Milan. Q J Nucl Med Mol Imaging 55(2):168–197PubMedGoogle Scholar
  7. Dancey JE, Shepherd FA, Paul K, Sniderman KW, Houle S, Gabrys J et al (2000) Treatment of nonresectable hepatocellular carcinoma with intrahepatic 90Y-microspheres. J Nucl Med 41(10):1673–1681PubMedGoogle Scholar
  8. Dawson LA, Ten Haken RK (2005) Partial volume tolerance of the liver to radiation. Semin Radiat Oncol 15(4):279–283PubMedCrossRefGoogle Scholar
  9. Dawson LA, Normolle D, Balter JM, McGinn CJ, Lawrence TS, Haken Ten RK (2002) Analysis of radiation-induced liver disease using the Lyman NTCP model. Int J Radiat Oncol Biol Phys 53(4):810–821PubMedCrossRefGoogle Scholar
  10. Ezziddin S, Meyer C, Kahancova S, Haslerud T, Willinek W, Wilhelm K et al (2012) 90Y radioembolization after radiation exposure from peptide receptor radionuclide therapy. J Nucl Med 53(11):1663–1669PubMedCrossRefGoogle Scholar
  11. Flamen P, Vanderlinden B, Delatte P, Ghanem G, Ameye L, Van Den Eynde M et al (2008) Multimodality imaging can predict the metabolic response of unresectable colorectal liver metastases to radioembolization therapy with Yttrium-90 labeled resin microspheres. Phys Med Biol 53(22):6591–6603PubMedCrossRefGoogle Scholar
  12. Furuse J, Ishii H, Nagase M, Kawashima M, Ogino T, Yoshino M (2005) Adverse hepatic events caused by radiotherapy for advanced hepatocellular carcinoma. J Gastroenterol Hepatol 20(10):1512–1518PubMedCrossRefGoogle Scholar
  13. Geschwind J-FH, Salem R, Carr BI, Soulen MC, Thurston KG, Goin KA et al (2004) Yttrium-90 microspheres for the treatment of hepatocellular carcinoma. Gastroenterology 127(5):S194–S205PubMedCrossRefGoogle Scholar
  14. Gil-Alzugaray B, Chopitea A, Iñarrairaegui M, Bilbao JI, Rodriguez-Fraile M, Rodriguez J et al. (2012) Prognostic factors and prevention of radioembolization-induced liver disease. Hepatology. doi:  10.1002/hep.26191. [Epub ahead of print]
  15. Gray B, van Hazel G, Hope M, Burton M, Moroz P, Anderson J et al (2001) Randomised trial of SIR-Spheres plus chemotherapy vs. chemotherapy alone for treating patients with liver metastases from primary large bowel cancer. Ann Oncol 12(12):1711–1720PubMedCrossRefGoogle Scholar
  16. Hall E (2006) Physics and chemistry of radiation absortion. In: Radiobiology for the Radiologist. Lippincott Williams & Wilkins, Philadelphia, pp 5–16Google Scholar
  17. Hendlisz A, Eynde MVD, Peeters M, Maleux G, Lambert B, Vannoote J et al (2010) Phase III trial comparing protracted intravenous fluorouracil infusion alone or with Yttrium-90 resin microspheres radioembolization for liver-limited metastatic colorectal cancer refractory to standard chemotherapy. J Clin Oncol 28(23):3687–3694PubMedCrossRefGoogle Scholar
  18. Hilgard P, Hamami M, Fouly AE, Scherag A, Müller S, Ertle J et al (2010) Radioembolization with yttrium-90 glass microspheres in hepatocellular carcinoma: European experience on safety and long-term survival. Hepatology 52(5):1741–1749PubMedCrossRefGoogle Scholar
  19. Ingold JA, Reed GB, Kaplan HS, Bagshaw MA (1965) Radiation hepatitis. Am J Roentgenol Radium Ther Nucl Med 93:200–208PubMedGoogle Scholar
  20. Jakobs TF, Hoffmann RT, Dehm K, Trumm C, Stemmler H-J, Tatsch K et al (2008) Hepatic Yttrium-90 radioembolization of chemotherapy-refractory colorectal cancer liver metastases. JVIR. 19(8):1187–1195PubMedCrossRefGoogle Scholar
  21. Jiang M, Fischman A, Nowakowski FS et al (2012) Segmental perfusion differences on paired Tc-99m macroaggregated albumin (MAA) hepatic perfusion imaging and Yttrium-90 (Y-90) bremsstrahlung imaging studies in SIR-Sphere radioembolization: associations with angiography. J Nucl Med Radiat Ther 3:122. doi: 10.4172/2155-9619.1000122
  22. Kao YH, Hock Tan AE, Burgmans MC, Irani FG, Khoo LS, Gong Lo RH et al (2012) Image-guided personalized predictive dosimetry by artery-specific SPECT/CT partition modeling for safe and effective 90Y radioembolization. J Nucl Med 53(4):559–566PubMedCrossRefGoogle Scholar
  23. Kennedy AS, Nutting C, Coldwell D, Gaiser J, Drachenberg C (2004) Pathologic response and microdosimetry of 90Y microspheres in man: Review of four explanted whole livers. Int J Radiat Oncol Biol Phys 60(5):1552–1563Google Scholar
  24. Kennedy AS, Coldwell D, Nutting C, Murthy R, Wertman DE Jr, Loehr SP et al (2006) Resin 90Y-microsphere brachytherapy for unresectable colorectal liver metastases: modern USA experience. Int J Radiat Oncol Biol Phys 65(2):412–425PubMedCrossRefGoogle Scholar
  25. Kennedy AS, Dezarn WA, McNeillie P, Coldwell D, Nutting C, Carter D et al (2008) Radioembolization for unresectable neuroendocrine hepatic metastases using resin 90Y-microspheres: early results in 148 patients. Am J Clin Oncol 31(3):271–279PubMedCrossRefGoogle Scholar
  26. Kennedy AS, McNeillie P, Dezarn WA, Nutting C, Sangro B, Wertman D et al (2009) Treatment parameters and outcome in 680 treatments of internal radiation with resin 90Y-microspheres for unresectable hepatic tumors. Int J Radiat Oncol Biol Phys 74(5):1494–1500PubMedCrossRefGoogle Scholar
  27. Khan AZ, Morris-Stiff G, Makuuchi M (2009) Patterns of chemotherapy-induced hepatic injury and their implications for patients undergoing liver resection for colorectal liver metastases. J Hepatobiliary Pancreat Surg 16(2):137–144PubMedCrossRefGoogle Scholar
  28. King J, Quinn R, Glenn DM, Janssen J, Tong D, Liaw W et al (2008) Radioembolization with selective internal radiation microspheres for neuroendocrine liver metastases. Cancer 113(5):921–929PubMedCrossRefGoogle Scholar
  29. Knesaurek K, Machac J, Muzinic M, DaCosta M, Zhang Z, Heiba S (2010) Quantitative comparison of yttrium-90 (90Y)-microspheres and technetium-99 m (99 mTc)-macroaggregated albumin SPECT images for planning 90Y therapy of liver cancer. Technol Cancer Res Treat 9(3):253–262PubMedGoogle Scholar
  30. Kulik LM, Carr BI, Mulcahy MF, Lewandowski RJ, Atassi B, Ryu RK et al (2008) Safety and efficacy of 90Y radiotherapy for hepatocellular carcinoma with and without portal vein thrombosis. Hepatology 47(1):71–81PubMedGoogle Scholar
  31. Lau W-Y, Kennedy AS, Kim YH, Lai HK, Lee R-C, Leung TWT et al (2012) Patient selection and activity planning guide for selective internal radiotherapy with Yttrium-90 resin microspheres. Int J Radiat Oncol Biol Phys 82(1):401–407PubMedCrossRefGoogle Scholar
  32. Lawrence TS, Ten Haken RK, Kessler ML, Robertson JM, Lyman JT, Lavigne ML et al (1992) The use of 3-D dose volume analysis to predict radiation hepatitis. Int J Radiat Oncol Biol Phys 23(4):781–788PubMedCrossRefGoogle Scholar
  33. Lawrence TS, Robertson JM, Anscher MS, Jirtle RL, Ensminger WD, Fajardo LF (1995) Hepatic toxicity resulting from cancer treatment. Int J Radiat Oncol Biol Phys 31(5):1237–1248PubMedCrossRefGoogle Scholar
  34. Lim L, Gibbs P, Yip D, Shapiro JD, Dowling R, Smith D et al (2005) Prospective study of treatment with selective internal radiation therapy spheres in patients with unresectable primary or secondary hepatic malignancies. Intern Med J 35(4):222–227PubMedCrossRefGoogle Scholar
  35. Mazzaferro V, Sposito C, Bhoori S, Romito R, Chiesa C, Morosi C et al (2012) Yttrium90 radioembolization for intermediate-advanced hepatocarcinoma: a phase II study. Hepatology n/a–n/aGoogle Scholar
  36. Mulcahy MF, Lewandowski RJ, Ibrahim SM, Sato KT, Ryu RK, Atassi B et al (2009) Radioembolization of colorectal hepatic metastases using Yttrium-90 microspheres. Cancer 115(9):1849–1858PubMedCrossRefGoogle Scholar
  37. Nosher JL, Ohman-Strickland PA, Jabbour S, Narra V, Nosher B (2011) Changes in liver and spleen volumes and liver function after radioembolization with Yttrium-90 resin microspheres vol 22(12). JVIR. Elsevier Inc, pp 1706–1713Google Scholar
  38. Park W, Lim DH, Paik SW, Koh KC, Choi MS, Park CK et al (2005) Local radiotherapy for patients with unresectable hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 61(4):1143–1150PubMedCrossRefGoogle Scholar
  39. Piana PM, Gonsalves CF, Sato T, Anne PR, McCann JW, Ad VB et al (2011) Toxicities after radioembolization with Yttrium-90 SIR-Spheres: incidence and contributing risk factors at a single center vol 22(10). JVIR. Elsevier Inc, pp 1373–1379Google Scholar
  40. Reed GB, Cox AJ (1966) The human liver after radiation injury. A form of veno-occlusive disease. Am J Pathol 48(4):597–611PubMedCentralPubMedGoogle Scholar
  41. Salem R, Lewandowski RJ, Atassi B, Gordon SC, Gates VL, Barakat O et al (2005) Treatment of unresectable hepatocellular carcinoma with use of 90Y microspheres (therasphere): safety, tumor response, and survival. J Vasc Interv Radiol 16(12):1627–1639PubMedCrossRefGoogle Scholar
  42. Salem R, Lewandowski RJ, Mulcahy MF, Riaz A, Ryu RK, Ibrahim S, et al (2010) Radioembolization for hepatocellular carcinoma using Yttrium-90 microspheres: a comprehensive report of long-term outcomes. Gastroenterology, vol 138(1). Elsevier Inc, pp 52–64Google Scholar
  43. Sangro B, Bilbao JI, Boan J, Martinez-Cuesta A, Benito A, Rodriguez J et al (2006) Radioembolization using 90Y-resin microspheres for patients with advanced hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 66(3):792–800PubMedCrossRefGoogle Scholar
  44. Sangro B, Gil-Alzugaray B, Rodriguez J, Sola I, Martinez-Cuesta A, Viudez A et al (2008) Liver disease induced by radioembolization of liver tumors. Cancer 112(7):1538–1546PubMedCrossRefGoogle Scholar
  45. Sangro B, Carpanese L, Cianni R, Golfieri R, Gasparini D, Ezziddin S et al (2011) Survival after yttrium-90 resin microsphere radioembolization of hepatocellular carcinoma across Barcelona clinic liver cancer stages: a European evaluation. Hepatology 54(3):868–878PubMedCrossRefGoogle Scholar
  46. Sangro B, Iñarrairaegui M, Bilbao JI (2012) Radioembolization for hepatocellular carcinoma. J Hepatol. European Association for the Study of the Liver 56(2):464–473Google Scholar
  47. Scrobohaci ML, Drouet L, Monem-Mansi A, Devergie A, Baudin B, D’Agay MF et al (1991) Liver veno-occlusive disease after bone marrow transplantation changes in coagulation parameters and endothelial markers. Thromb Res 63(5):509–519PubMedCrossRefGoogle Scholar
  48. Seidensticker R, Seidensticker M, Damm R, Mohnike K, Schütte K, Malfertheiner P et al (2011a) Hepatic toxicity after radioembolization of the liver using 90Y-microspheres: sequential lobar versus whole liver approach. Cardiovasc Intervent Radiol 35(5):1109–1118PubMedCrossRefGoogle Scholar
  49. Seidensticker R, Denecke T, Kraus P, Seidensticker M, Mohnike K, Fahlke J et al (2011b) Matched-pair comparison of radioembolization plus best supportive care versus best supportive care alone for chemotherapy refractory liver-dominant colorectal metastases. Cardiovasc Intervent Radiol 35(5):1066–1073PubMedCrossRefGoogle Scholar
  50. Sharma RA, van Hazel GA, Morgan B, Berry DP, Blanshard K, Price D et al (2007) Radioembolization of liver metastases from colorectal cancer using Yttrium-90 microspheres with concomitant systemic oxaliplatin, fluorouracil, and leucovorin chemotherapy. J Clin Oncol 25(9):1099–1106PubMedCrossRefGoogle Scholar
  51. Shim SJ, Seong J, Lee IJ, Han KH, Chon CY, Ahn SH (2007) Radiation-induced hepatic toxicity after radiotherapy combined with chemotherapy for hepatocellular carcinoma. Hepatol Res 37(11):906–913PubMedCrossRefGoogle Scholar
  52. Strigari L, Sciuto R, Rea S, Carpanese L, Pizzi G, Soriani A et al (2010) Efficacy and toxicity related to treatment of hepatocellular carcinoma with 90Y-SIR Spheres: radiobiologic considerations. J Nucl Med 51(9):1377–1385PubMedCrossRefGoogle Scholar
  53. Van Hazel G, Blackwell A, Anderson J, Price D, Moroz P, Bower G et al (2004) Randomised phase 2 trial of SIR-Spheres plus fluorouracil/leucovorin chemotherapy versus fluorouracil/leucovorin chemotherapy alone in advanced colorectal cancer. J Surg Oncol 88(2):78–85PubMedCrossRefGoogle Scholar
  54. van Hazel GA, Pavlakis N, Goldstein D, Olver IN, Tapner MJ, Price D et al (2009) Treatment of fluorouracil-refractory patients with liver metastases from colorectal cancer by using Yttrium-90 resin microspheres plus concomitant systemic Irinotecan chemotherapy. J Clin Oncol 27(25):4089–4095PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Bruno Sangro
    • 1
    • 2
  • Mercedes Iñarrairaegui
    • 1
    • 2
  • Andrew S. Kennedy
    • 3
    • 4
  1. 1.Clinica Universidad de NavarraPamplonaSpain
  2. 2.Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBEREHD)PamplonaSpain
  3. 3.Radiation Oncology Research, Sarah Cannon Research InstituteTennesseeUSA
  4. 4.Department of Biomedical Engineering, Department of Mechanical and Aerospace EngineeringNorth Carolina State University RaleighRaleighUSA

Personalised recommendations