Radiological Detection and Assessment of Tumor Response

  • Tobias F. Jakobs
Part of the Medical Radiology book series (MEDRAD)


The liver is the most common site of metastatic spread in malignancies. In autopsy studies, the incidence of hepatic metastases is up to 100 % dependent on the primary tumor. Even if this fact represents the final status of a malignancy, about half of all patients dying from a malignant disease will have apparent hepatic metastases. The risk of developing hepatic metastases varies widely among different types of primary malignancy.


Magnetic Resonance Imaging Positron Emission Tomography Hepatic Metastasis Hepatic Arterial Infusion Chemotherapy Osseous Metastasis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Antoch G et al (2003) Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. JAMA 290(24):3199–3206PubMedCrossRefGoogle Scholar
  2. Arulampalam TH et al (2004) FDG-PET for the pre-operative evaluation of colorectal liver metastases. Eur J Surg Oncol 30(3):286–291PubMedCrossRefGoogle Scholar
  3. Barker DW et al (2005) Evaluation of liver metastases after radiofrequency ablation: utility of 18F-FDG PET and PET/CT. AJR Am J Roentgenol 184(4):1096–1102PubMedCrossRefGoogle Scholar
  4. Barkhausen J et al (2001) Whole-body MR imaging in 30 seconds with real-time true FISP and a continuously rolling table platform: feasibility study. Radiology 220(1):252–256PubMedCrossRefGoogle Scholar
  5. Belton AL et al (2003) Tumour size measurement in an oncology clinical trial: comparison between off-site and on-site measurements. Clin Radiol 58(4):311–314PubMedCrossRefGoogle Scholar
  6. Beyer T et al (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41(8):1369–1379PubMedGoogle Scholar
  7. Bohm B et al (2004) Impact of positron emission tomography on strategy in liver resection for primary and secondary liver tumors. J Cancer Res Clin Oncol 130(5):266–272PubMedCrossRefGoogle Scholar
  8. Bruix J et al (2001) Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European association for the study of the liver. J Hepatol 35(3):421–430PubMedCrossRefGoogle Scholar
  9. Cohade C et al (2003) Direct comparison of (18) F-FDG PET and PET/CT in patients with colorectal carcinoma. J Nucl Med 44(11):1797–1803PubMedGoogle Scholar
  10. Delbeke D, Martin WH (2004) PET and PET-CT for evaluation of colorectal carcinoma. Semin Nucl Med 34(3):209–223PubMedCrossRefGoogle Scholar
  11. Delbeke D et al (1997) Staging recurrent metastatic colorectal carcinoma with PET. J Nucl Med 38(8):1196–1201PubMedGoogle Scholar
  12. Deng J et al (2006a) Diffusion-weighted MR imaging for determination of hepatocellular carcinoma response to yttrium-90 radioembolization. J Vasc Interv Radiol 17(7):1195–1200PubMedCrossRefGoogle Scholar
  13. Deng J et al (2006b) In vivo diffusion-weighted imaging of liver tumor necrosis in the VX2 rabbit model at 1.5 Tesla. Invest Radiol 41(4):410–414PubMedCrossRefGoogle Scholar
  14. Duke E et al (2010) Agreement between competing imaging measures of response of hepatocellular carcinoma to yttrium-90 radioembolization. J Vasc Interv Radiol 21(4):515–521PubMedCentralPubMedCrossRefGoogle Scholar
  15. Eisenhauer EA et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247PubMedCrossRefGoogle Scholar
  16. Eustace S et al (1997) A comparison of whole-body turboSTIR MR imaging and planar 99mTc-methylene diphosphonate scintigraphy in the examination of patients with suspected skeletal metastases. AJR Am J Roentgenol 169(6):1655–1661PubMedCrossRefGoogle Scholar
  17. Fernandez FG et al (2004) Five-year survival after resection of hepatic metastases from colorectal cancer in patients screened by positron emission tomography with F-18 fluorodeoxyglucose (FDG-PET). Ann Surg 240(3):438–447PubMedCentralPubMedCrossRefGoogle Scholar
  18. Forner A et al (2009) Evaluation of tumor response after locoregional therapies in hepatocellular carcinoma: are response evaluation criteria in solid tumors reliable? Cancer 115(3):616–623PubMedCrossRefGoogle Scholar
  19. Griswold MA et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47(6):1202–1210PubMedCrossRefGoogle Scholar
  20. James K et al (1999) Measuring response in solid tumors: unidimensional versus bidimensional measurement. J Natl Cancer Inst 91(6):523–528PubMedCrossRefGoogle Scholar
  21. Kamel IR, Bluemke DA (2002) Magnetic resonance imaging of the liver: assessing response to treatment. Top Magn Reson Imaging 13(3):191–200PubMedCrossRefGoogle Scholar
  22. Kapoor V, McCook BM, Torok FS (2004) An introduction to PET-CT imaging. Radiographics 24(2):523–543PubMedCrossRefGoogle Scholar
  23. Kinkel K et al (2002) Detection of hepatic metastases from cancers of the gastrointestinal tract by using noninvasive imaging methods (US, CT, MR imaging, PET): a meta-analysis. Radiology 224(3):748–756PubMedCrossRefGoogle Scholar
  24. Kramer H et al (2005) Cardiovascular screening with parallel imaging techniques and a whole-body MR imager. Radiology 236(1):300–310PubMedCrossRefGoogle Scholar
  25. Langenhoff BS et al (2002) Efficacy of fluorine-18-deoxyglucose positron emission tomography in detecting tumor recurrence after local ablative therapy for liver metastases: a prospective study. J Clin Oncol 20(22):4453–4458PubMedCrossRefGoogle Scholar
  26. Lardinois D et al (2003) Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography. N Engl J Med 348(25):2500–2507PubMedCrossRefGoogle Scholar
  27. Lauenstein TC et al (2002) Three-dimensional volumetric interpolated breath-hold MR imaging for whole-body tumor staging in less than 15 minutes: a feasibility study. AJR Am J Roentgenol 179(2):445–449PubMedCrossRefGoogle Scholar
  28. Lauenstein TC et al (2004) Whole-body MR imaging: evaluation of patients for metastases. Radiology 233(1):139–148PubMedCrossRefGoogle Scholar
  29. Lee VS et al (2000) Hepatic MR imaging with a dynamic contrast-enhanced isotropic volumetric interpolated breath-hold examination: feasibility, reproducibility, and technical quality. Radiology 215(2):365–372PubMedCrossRefGoogle Scholar
  30. Lencioni R, Llovet JM (2010) Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis 30(1):52–60PubMedCrossRefGoogle Scholar
  31. Llovet JM et al (2008) Design and endpoints of clinical trials in hepatocellular carcinoma. J Natl Cancer Inst 100(10):698–711PubMedCrossRefGoogle Scholar
  32. Low RN et al (2000) Extrahepatic abdominal imaging in patients with malignancy: comparison of MR imaging and helical CT in 164 patients. J Magn Reson Imaging 12(2):269–277PubMedCrossRefGoogle Scholar
  33. Mazumdar M, Smith A, Schwartz LH (2004) A statistical simulation study finds discordance between WHO criteria and RECIST guideline. J Clin Epidemiol 57(4):358–365PubMedCrossRefGoogle Scholar
  34. Meta J et al (2001) Impact of 18F-FDG PET on managing patients with colorectal cancer: the referring physician’s perspective. J Nucl Med 42(4):586–590PubMedGoogle Scholar
  35. Miller AB et al (1981) Reporting results of cancer treatment. Cancer 47(1):207–214PubMedCrossRefGoogle Scholar
  36. Nelson RC et al (1989) Hepatic tumors: comparison of CT during arterial portography, delayed CT, and MR imaging for preoperative evaluation. Radiology 172(1):27–34PubMedGoogle Scholar
  37. Ogunbiyi OA et al (1997) Detection of recurrent and metastatic colorectal cancer: comparison of positron emission tomography and computed tomography. Ann Surg Oncol 4(8):613–620PubMedCrossRefGoogle Scholar
  38. Park JO et al (2003) Measuring response in solid tumors: comparison of RECIST and WHO response criteria. Jpn J Clin Oncol 33(10):533–537PubMedCrossRefGoogle Scholar
  39. Pelosi E et al (2004) Value of integrated PET/CT for lesion localisation in cancer patients: a comparative study. Eur J Nucl Med Mol Imaging 31(7):932–939PubMedCrossRefGoogle Scholar
  40. Pfannenberg C et al (2007) Prospective comparison of (18)F-fluorodeoxyglucose positron emission tomography/computed tomography and whole-body magnetic resonance imaging in staging of advanced malignant melanoma. Eur J Cancer 43(3):557–564PubMedCrossRefGoogle Scholar
  41. Pruessmann KP et al (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42(5):952–962PubMedCrossRefGoogle Scholar
  42. Rhee TK et al (2008) Tumor response after yttrium-90 radioembolization for hepatocellular carcinoma: comparison of diffusion-weighted functional MR imaging with anatomic MR imaging. J Vasc Interv Radiol 19(8):1180–1186PubMedCrossRefGoogle Scholar
  43. Rofsky NM et al (1999) Abdominal MR imaging with a volumetric interpolated breath-hold examination. Radiology 212(3):876–884PubMedCrossRefGoogle Scholar
  44. Rohren EM et al (2002) The role of F-18 FDG positron emission tomography in preoperative assessment of the liver in patients being considered for curative resection of hepatic metastases from colorectal cancer. Clin Nucl Med 27(8):550–555PubMedCrossRefGoogle Scholar
  45. Ruers TJ et al (2002) Value of positron emission tomography with [F-18] fluorodeoxyglucose in patients with colorectal liver metastases: a prospective study. J Clin Oncol 20(2):388–395PubMedCrossRefGoogle Scholar
  46. Sahani DV et al (2005) Detection of liver metastases from adenocarcinoma of the colon and pancreas: comparison of mangafodipir trisodium-enhanced liver MRI and whole-body FDG PET. AJR Am J Roentgenol 185(1):239–246PubMedCrossRefGoogle Scholar
  47. Schlemmer HP et al (2005) Fast whole-body assessment of metastatic disease using a novel magnetic resonance imaging system: initial experiences. Invest Radiol 40(2):64–71PubMedCrossRefGoogle Scholar
  48. Schmidt GP et al (2005) High-resolution whole-body magnetic resonance image tumor staging with the use of parallel imaging versus dual-modality positron emission tomography-computed tomography: experience on a 32-channel system. Invest Radiol 40(12):743–753PubMedCrossRefGoogle Scholar
  49. Selzner M et al (2004) Does the novel PET/CT imaging modality impact on the treatment of patients with metastatic colorectal cancer of the liver? Ann Surg 240(6):1027–1034PubMedCentralPubMedCrossRefGoogle Scholar
  50. Semelka RC et al (2001) Focal liver lesions: comparison of dual-phase CT and multisequence multiplanar MR imaging including dynamic gadolinium enhancement. J Magn Reson Imaging 13(3):397–401PubMedCrossRefGoogle Scholar
  51. Shim JH et al (2012) Which response criteria best help predict survival of patients with hepatocellular carcinoma following chemoembolization? A validation study of old and new models. Radiology 262(2):708–718PubMedCrossRefGoogle Scholar
  52. Soyer P et al (1992) Detection of liver metastases from colorectal cancer: comparison of intraoperative US and CT during arterial portography. Radiology 183(2):541–544PubMedGoogle Scholar
  53. Steinborn MM et al (1999) Whole-body bone marrow MRI in patients with metastatic disease to the skeletal system. J Comput Assist Tomogr 23(1):123–129PubMedCrossRefGoogle Scholar
  54. Takahara T et al (2004) Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 22(4):275–282PubMedGoogle Scholar
  55. Therasse P et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European organization for research and treatment of cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92(3):205–216PubMedCrossRefGoogle Scholar
  56. Topal B et al (2001) Clinical value of whole-body emission tomography in potentially curable colorectal liver metastases. Eur J Surg Oncol 27(2):175–179PubMedCrossRefGoogle Scholar
  57. Torizuka T et al (1994) Value of fluorine-18-FDG-PET to monitor hepatocellular carcinoma after interventional therapy. J Nucl Med 35(12):1965–1969PubMedGoogle Scholar
  58. Tran LN et al (2004) Comparison of treatment response classifications between unidimensional, bidimensional, and volumetric measurements of metastatic lung lesions on chest computed tomography. Acad Radiol 11(12):1355–1360PubMedCrossRefGoogle Scholar
  59. Truant S et al (2005) Prospective evaluation of the impact of [18F] fluoro-2-deoxy-D-glucose positron emission tomography of resectable colorectal liver metastases. Br J Surg 92(3):362–369PubMedCrossRefGoogle Scholar
  60. Tutt AN et al (2004) The role of positron emission tomography in the management of colorectal cancer. Colorectal Dis 6(1):2–9PubMedCrossRefGoogle Scholar
  61. Valk PE et al (1999) Whole-body PET imaging with [18F] fluorodeoxyglucose in management of recurrent colorectal cancer. Arch Surg 134(5):503–511PubMedCrossRefGoogle Scholar
  62. Vitola JV et al (1996) Positron emission tomography with F-18-fluorodeoxyglucose to evaluate the results of hepatic chemoembolization. Cancer 78(10):2216–2222PubMedCrossRefGoogle Scholar
  63. Vogt FM et al (2004) HASTE MRI versus chest radiography in the detection of pulmonary nodules: comparison with MDCT. AJR Am J Roentgenol 183(1):71–78PubMedCrossRefGoogle Scholar
  64. Wong CY et al (2002) Evaluating 90Y-glass microsphere treatment response of unresectable colorectal liver metastases by [18F] FDG PET: a comparison with CT or MRI. Eur J Nucl Med Mol Imaging 29(6):815–820PubMedCrossRefGoogle Scholar
  65. Wong CY et al (2004) Metabolic response after intraarterial 90Y-glass microsphere treatment for colorectal liver metastases: comparison of quantitative and visual analyses by 18F-FDG PET. J Nucl Med 45(11):1892–1897PubMedGoogle Scholar
  66. Wong CY et al (2005) Reduction of metastatic load to liver after intraarterial hepatic yttrium-90 radioembolization as evaluated by [18F] fluorodeoxyglucose positron emission tomographic imaging. J Vasc Interv Radiol 16(8):1101–1106PubMedCrossRefGoogle Scholar
  67. Yang M et al (2003) Comparison of MR and PET imaging for the evaluation of liver metastases. J Magn Reson Imaging 17(3):343–349PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Diagnostic and Interventional RadiologyHospital Barmherzige BruederMunichGermany

Personalised recommendations