Imaging of Tissue Elasticity in Gastrointestinal Disorders

Part of the Medical Radiology book series (MEDRAD)


Elastography or strain imaging are ultrasonographic methods which detect the elasticity or stiffness of a tissue providing a visual display. The basis of every strain imaging technique is to measure tissue deformation caused by an external stimulus. The derivative of the tissue displacement is called strain, and can be calculated by cross-correlating the radio-frequency data before and after compression. The strain value in each point is color-coded and displayed in an elastogram. This elastogram can then be combined with the B-mode image to display the elastic properties of the tissue to the examiner through color information. Equipment using a quasi-static method of producing strain in the tissue through external compression with the US probe is now commercially available for clinical application. The quasi-static application of elastography of the small intestine represents special difficulties, as the pressure from the US transducer can cause several changes. When adding pressure, one not only deforms the GI wall, but also displaces the luminal content and the intestine itself. With refined technology and adapted transducers, sonoelastography may become an important imaging modality to supplement B-mode ultrasonography for the assessment of gastrointestinal diseases.


Strain Ratio Transient Elastography Strain Imaging Shear Wave Speed Elasticity Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Dr. Jo Erling R. Waage for allowing us to include the images of Endorectal utrasound scanning with real-Time Elastography.


  1. Ahmed AB, Gilja OH, Gregersen H, Odegaard S, Matre K (2006) In vitro strain measurement in the porcine antrum using ultrasound doppler strain rate imaging. Ultrasound Med Biol 32:513–522PubMedCrossRefGoogle Scholar
  2. Ahmed AB, Gilja OH, Hausken T, Gregersen H, Matre K (2009) Strain measurement during antral contractions by ultrasound strain rate imaging: influence of erythromycin. Neurogastroenterol Motil 21:170–179PubMedCrossRefGoogle Scholar
  3. Ahmed AB, Matre K, Hausken T, Gregersen H, Gilja OH (2012) Rome III subgroups of functional dyspepsia exhibit different characteristics of antral contractions measured by strain rate imaging. Ultraschall Med 134:A531Google Scholar
  4. Baatrup G, Elbrond H, Hesselfeldt P, Wille-Jorgensen P, Moller P, Breum B, Qvist N (2007) Rectal adenocarcinoma and transanal endoscopic microsurgery. Diagnostic challenges, indications and short term results in 142 consecutive patients. Int J Colorectal Dis 22:1347–1352PubMedCrossRefGoogle Scholar
  5. Bavu E, Gennisson JL, Couade M, Bercoff J, Mallet V, Fink M, Badel A, Vallet-Pichard A, Nalpas B, Tanter M, Pol S (2011) Noninvasive in vivo liver fibrosis evaluation using supersonic shear imaging: a clinical study on 113 hepatitis C virus patients. Ultrasound Med Biol 37:1361–1373PubMedCrossRefGoogle Scholar
  6. Bercoff J, Tanter M, Fink M (2004) Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control 51:396–409PubMedCrossRefGoogle Scholar
  7. Bipat S, Glas AS, Slors FJ, Zwinderman AH, Bossuyt PM, Stoker J (2004) Rectal cancer: local staging and assessment of lymph node involvement with endoluminal US, CT, and MR imaging–a meta-analysis. Radiology 232:773–783PubMedCrossRefGoogle Scholar
  8. Castera L, Vergniol J, Foucher J, Le Bail B, Chanteloup E, Haaser M, Darriet M, Couzigou P, De Ledinghen V (2005) Prospective comparison of transient elastography, Fibrotest, APRI, and liver biopsy for the assessment of fibrosis in chronic hepatitis C. Gastroenterology 128:343–350PubMedCrossRefGoogle Scholar
  9. D’Onofrio M, Gallotti A, Salvia R, Capelli P, Mucelli RP (2011) Acoustic radiation force impulse (ARFI) ultrasound imaging of pancreatic cystic lesions. Eur J Radiol 80:241–244PubMedCrossRefGoogle Scholar
  10. Fraquelli M, Rigamonti C, Casazza G, Conte D, Donato MF, Ronchi G, Colombo M (2007) Reproducibility of transient elastography in the evaluation of liver fibrosis in patients with chronic liver disease. Gut 56:968–973PubMedCrossRefGoogle Scholar
  11. Friedrich-Rust M, Ong MF, Martens S, Sarrazin C, Bojunga J, Zeuzem S, Herrmann E (2008) Performance of transient elastography for the staging of liver fibrosis: a meta-analysis. Gastroenterology 134:960–974PubMedCrossRefGoogle Scholar
  12. Friedrich-Rust M, Wunder K, Kriener S, Sotoudeh F, Richter S, Bojunga J, Herrmann E, Poynard T, Dietrich CF, Vermehren J, Zeuzem S, Sarrazin C (2009) Liver fibrosis in viral hepatitis: noninvasive assessment with acoustic radiation force impulse imaging versus transient elastography. Radiology 252:595–604PubMedCrossRefGoogle Scholar
  13. Gennisson JL, Muller M, Deffieux T, Tanter M, Fink M (2009) Quantitative viscoelasticity mapping of human liver using supersonic shear imaging: preliminary in vivo feasability study. Ultrasound Med Biol 35:219–229PubMedCrossRefGoogle Scholar
  14. Gilja OH, Heimdal A, Hausken T, Gregersen H, Matre K, Berstad A, Odegaard S (2002) Strain during gastric contractions can be measured using Doppler ultrasonography. Ultrasound Med Biol 28:1457–1465PubMedCrossRefGoogle Scholar
  15. Giovannini M, Thomas B, Erwan B, Christian P, Fabrice C, Benjamin E, Genevieve M, Paolo A, Pierre D, Robert Y, Walter S, Hanz S, Carl S, Christoph D, Pierre E, Jean-Luc VL, Jacques D, Peter V, Andrian S (2009) Endoscopic ultrasound elastography for evaluation of lymph nodes and pancreatic masses: a multicenter study. World J Gastroenterol 15:1587–1593PubMedCrossRefGoogle Scholar
  16. Grubb NR, Fleming A, Sutherland GR, Fox KA (1995) Skeletal muscle contraction in healthy volunteers: assessment with Doppler tissue imaging. Radiology 194:837–842PubMedGoogle Scholar
  17. Havre R, Waage JE, Leh S, Gilja OH, Ødegaard S, Baatrup G, Nesje LB (2012) Strain assessment in surgically resected inflammatory and neoplastic bowel lesions. Ultraschall in Med [Epub ahead of print:17, Nov]Google Scholar
  18. Heimdal A (2005) Strain rate imaging—a new tool for studying the GI tract. In: Odegaard S, Gregersen H (eds) Basic and new aspects of gastrointestinal ultrasonography. World Scientific, Singapore, pp 243–263CrossRefGoogle Scholar
  19. Hirche TO, Ignee A, Barreiros AP, Schreiber-Dietrich D, Jungblut S, Ott M, Hirche H, Dietrich CF (2008) Indications and limitations of endoscopic ultrasound elastography for evaluation of focal pancreatic lesions. Endoscopy 40:910–917PubMedCrossRefGoogle Scholar
  20. Ishikawa D, Ando T, Watanabe O, Ishiguro K, Maeda O, Miyake N, Nakamura M, Miyahara R, Ohmiya N, Hirooka Y, El-Omar EM, Goto H (2011) Images of colonic real-time tissue sonoelastography correlate with those of colonoscopy and may predict response to therapy in patients with ulcerative colitis. BMC Gastroenterol 11:29PubMedCrossRefGoogle Scholar
  21. Janssen J, Schlorer E, Greiner L (2007) EUS elastography of the pancreas: feasibility and pattern description of the normal pancreas, chronic pancreatitis, and focal pancreatic lesions. Gastrointest Endosc 65:971–978PubMedCrossRefGoogle Scholar
  22. Kim K, Johnson LA, Jia C, Joyce JC, Rangwalla S, Higgins PD, Rubin JM (2008) Noninvasive ultrasound elasticity imaging (UEI) of Crohn’s disease: animal model. Ultrasound Med Biol 34:902–912PubMedCrossRefGoogle Scholar
  23. Matre K, Ahmed AB, Gregersen H, Heimdal A, Hausken T, Odegaard S, Gilja OH (2003) In vitro evaluation of ultrasound doppler strain rate imaging: modification for measurement in a slowly moving tissue phantom. Ultrasound Med Biol 29:1725–1734PubMedCrossRefGoogle Scholar
  24. Moessner BK, Jorgensen TR, Skamling M, Vyberg M, Junker P, Pedersen C, Christensen PB (2011) Outreach screening of drug users for cirrhosis with transient elastography. Addiction 106:970–976PubMedCrossRefGoogle Scholar
  25. Muller M, Gennisson JL, Deffieux T, Tanter M, Fink M (2009) Quantitative viscoelasticity mapping of human liver using supersonic shear imaging: preliminary in vivo feasibility study. Ultrasound Med Biol 35:219–229PubMedCrossRefGoogle Scholar
  26. Ophir J, Alam SK, Garra B, Kallel F, Konofagou E, Krouskop T, Varghese T (1999) Elastography: ultrasonic estimation and imaging of the elastic properties of tissues. Proc Inst Mech Eng H 213:203–233PubMedGoogle Scholar
  27. Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X (1991) Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 13:111–134PubMedGoogle Scholar
  28. Palmeri ML, Frinkley KD, Zhai L, Gottfried M, Bentley RC, Ludwig K, Nightingale KR (2005) Acoustic radiation force impulse (ARFI) imaging of the gastrointestinal tract. Ultrason Imaging 27:75–88PubMedCrossRefGoogle Scholar
  29. Rockey DC (2008) Noninvasive assessment of liver fibrosis and portal hypertension with transient elastography. Gastroenterology 134:8–14PubMedCrossRefGoogle Scholar
  30. Roulot D, Costes JL, Buyck JF, Warzocha U, Gambier N, Czernichow S, Le Clesiau H, Beaugrand M (2011) Transient elastography as a screening tool for liver fibrosis and cirrhosis in a community-based population aged over 45 years. Gut 60:977–984PubMedCrossRefGoogle Scholar
  31. Saftoiu A, Vilmann P, Gorunescu F, Janssen J, Hocke M, Larsen M, Iglesias-Garcia J, Arcidiacono P, Will U, Giovannini M, Dietrich C, Havre R, Gheorghe C, McKay C, Gheonea DI, Ciurea T (2011) Accuracy of endoscopic ultrasound elastography used for differential diagnosis of focal pancreatic masses: a multicenter study. Endoscopy 43:596–603PubMedCrossRefGoogle Scholar
  32. Sporea I, Sirli RL, Deleanu A, Popescu A, Focsa M, Danila M, Tudora A (2011) Acoustic radiation force impulse elastography as compared to transient elastography and liver biopsy in patients with chronic hepatopathies. Ultraschall Med 32(Suppl 1):S46–S52PubMedCrossRefGoogle Scholar
  33. Talwalkar JA, Kurtz DM, Schoenleber SJ, West CP, Montori VM (2007) Ultrasound-based transient elastography for the detection of hepatic fibrosis: systematic review and meta-analysis. Clin Gastroenterol Hepatol 5:1214–1220PubMedCrossRefGoogle Scholar
  34. Tytherleigh MG, Ng VV, Pittathankal AA, Wilson MJ, Farouk R (2008) Preoperative staging of rectal cancer by magnetic resonance imaging remains an imprecise tool. ANZ J Surg 78:194–198PubMedCrossRefGoogle Scholar
  35. Waage JE, Havre RF, Odegaard S, Leh S, Eide GE, Baatrup G (2011) Endorectal elastography in the evaluation of rectal tumours. Colorectal Dis 13:1130–1137PubMedCrossRefGoogle Scholar
  36. Wells PN, Liang HD (2011) Medical ultrasound: imaging of soft tissue strain and elasticity. J R Soc Interface 8:1521–1549PubMedCrossRefGoogle Scholar
  37. Worrell S, Horvath K, Blakemore T, Flum D (2004) Endorectal ultrasound detection of focal carcinoma within rectal adenomas. Am J Surg 187:625–629PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Medicine, University of Bergen and National Centre for Ultrasound in Gastroenterology, Department of MedicineHaukeland University HospitalBergenNorway

Personalised recommendations