CT Evaluation of the Myocardial Supply-Fast kV-Switching Dual-Energy CT

  • Donya A. Al-Hassan
  • Amr M. Ajlan
  • Jonathon Leipsic
Part of the Medical Radiology book series (MEDRAD)


Cardiovascular computed tomography (CT) has undergone significant technical developments over the past decade. The introduction of multi-detector row computed tomography (MDCT) with wider detector coverage, faster gantry rotation speed, multiple X-ray sources, electrocardiographic (ECG)-based tube current modulation, and integration of new iterative reconstruction algorithms has allowed for tangible improvements in diagnostic accuracy. Utilizing these technical advancements, recent attempts have been made to develop CT myocardial perfusion (CTP) imaging strategies. Moreover, the evaluation of myocardial perfusion defects on routine coronary CT angiography (cCTA) has been shown to be of additional value above that of assessing coronary anatomy alone, particularly in the acute chest pain setting. Unfortunately, there are many limitations that currently hinder CT perfusion with single-energy CT imaging, including artifacts. This chapter provides an overview of the role of single-source dual-energy CT in the evaluation of the myocardial perfusion and the current state of Rapid-kVp switching dual-energy CT.


Myocardial Perfusion Coronary Compute Tomography Angiography Fractional Flow Reserve Invasive Coronary Angiography Obstructive Coronary Artery Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Beckmann EC (2006) CT scanning the early days. Br J Radiol 79(937):5–8PubMedCrossRefGoogle Scholar
  2. Brian SK et al (2011) CT stress myocardial perfusion imaging using multidetector CT—a review. J Cardiovasc Comput Tomogr 5(6):345–356CrossRefGoogle Scholar
  3. Chandra N, Langan DA (2011) Gemstone Detector: dual energy imaging via fast kVp switching. In: Johnson T, Fink C, Schönberg SO, Reiser MF (eds) Dual energy CT in clinical practice, Medical Radiology, Springer, Heidelberg, pp 35–41, ISBN 978-3-642-01739-1. doi:10.1007/174_2010_35, url:http://dx.doi.org/10.1007/174_2010_35
  4. Entrikin DW, Leipsic JA, Carr JJ (2011) Optimization of radiation dose reduction in cardiac computed tomographic angiography. Cardiol Rev 19(4):163–176PubMedCrossRefGoogle Scholar
  5. Gaemperli O et al (2008) Functionally relevant coronary artery disease: comparison of 64-section CT angiography with myocardial perfusion SPECT. Radiology 248(2):414–423PubMedCrossRefGoogle Scholar
  6. Goldman LW (2008) Principles of CT: multislice CT. J Nucl Med Technol 36(2):57–68 quiz 75–76PubMedCrossRefGoogle Scholar
  7. Harvey SH (2009) Is coronary computed tomographic angiography the “gold standard” for coronary artery disease? J Cardiovasc Comput Tomogr 3(5):334–339CrossRefGoogle Scholar
  8. Hsiao EM, Rybicki FJ, Steigner M (2010) CT coronary angiography: 256-slice and 320-detector row scanners. Curr Cardiol Rep 12(1):68–75PubMedCrossRefGoogle Scholar
  9. Johnson TRC et al (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17(6):1510–1517CrossRefGoogle Scholar
  10. Karcaaltincaba M, Aykut A (2010) Dual-energy CT revisited by multidetector CT: review of principles and clinical applications. Diagn Interv Radiol 17(3):181–194. doi: 10.4261/1305-3825.DIR.3860-10.0
  11. Kitagawa K et al (2010) Characterization and correction of beam-hardening artifacts during dynamic volume CT assessment of myocardial perfusion. Radiology 256(1):111–118PubMedCrossRefGoogle Scholar
  12. Ko JP et al (2012) Dual-energy computed tomography: concepts, performance, and thoracic applications. J Thorac Imaging 27(1):7–22PubMedCrossRefGoogle Scholar
  13. Matsumoto K et al (2011) Virtual monochromatic spectral imaging with fast kilovoltage switching: improved image quality as compared with that obtained with conventional 120-kVp CT. Radiology 259(1):257–262PubMedCrossRefGoogle Scholar
  14. Meijboom WB, Van Mieghem CAG et al (2008a) Comprehensive assessment of coronary artery stenoses. J Am Coll Cardiol 52(8):636–643PubMedCrossRefGoogle Scholar
  15. Meijboom WB, Meijs MFL et al (2008b) Diagnostic accuracy of 64-slice computed tomography coronary angiography. J Antimicrob Chemother 52(25):2135–2144Google Scholar
  16. Melikian N et al (2010) Fractional flow reserve and myocardial perfusion imaging in patients with angiographic multivessel coronary artery disease. JCIN 3(3):307–314Google Scholar
  17. Pijls NH, Fearon WF, Tonino PA, Siebert U, Ikeno F, Bornschein B, van't Veer M, Klauss V, Manoharan G, Engstrøm T, Oldroyd KG, Ver Lee PN, MacCarthy PA, De Bruyne B (2010) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) study investigators. J Am Coll Cardiol 56(3):177–84. doi: 10.1016/j.jacc.2010.04.012 Google Scholar
  18. Rodríguez-Granillo GA, Rosales MA, Degrossi E, Rodriguez AE (2010a) Signal density of left ventricular myocardial segments and impact of beam hardening artifact: implications for myocardial perfusion assessment by multidetector CT coronary angiography. Int J Cardiovasc Imaging 26(3):345–354PubMedCrossRefGoogle Scholar
  19. Rodríguez-Granillo GA, Ingino CA, Lylyk P (2010b) Myocardial perfusion imaging and infarct characterization using multidetector cardiac computed tomography. World J Cardiol 2(7):198–204PubMedCrossRefGoogle Scholar
  20. Schuijf JD et al (2011) Current applications and limitations of coronary computed tomography angiography in stable coronary artery disease. Heart 97(4):330–337PubMedCrossRefGoogle Scholar
  21. Shaw LJ et al (2008) Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the clinical outcomes utilizing revascularization and aggressive drug evaluation (COURAGE) trial nuclear substudy. Circulation 117(10):1283–1291PubMedCrossRefGoogle Scholar
  22. Silva AC et al (2011) Dual-energy (spectral) CT: applications in abdominal imaging. Radiographics 31(4):1031–1046 discussion 1047–1050PubMedCrossRefGoogle Scholar
  23. So A, Lee T-Y (2011) Quantitative myocardial CT perfusion: a pictorial review and the current state of technology development. J Cardiovasc Comput Tomogr 5(6):467–481PubMedCrossRefGoogle Scholar
  24. So A et al (2009) Beam hardening correction in CT myocardial perfusion measurement. Phys Med Biol 54(10):3031–3050PubMedCrossRefGoogle Scholar
  25. So A et al (2011) Quantitative myocardial perfusion imaging using rapid kVp switching dual energy CT: preliminary experience. J Cardiovasc Comput Tomogr 5(6):430–442PubMedCrossRefGoogle Scholar
  26. So A et al (2012) Prospectively ECG triggered rapid kV-switching dual energy CT for quantitative imaging of myocardial perfusion. JACC Cardiovasc Imaging 5(8):829–836. doi: 10.1016/j.jcmg.2011.12.026 PubMedCrossRefGoogle Scholar
  27. Tonino PAL et al (2010) Angiographic versus functional severity of coronary artery stenoses in the FAME study. JAC 55(25):2816–2821Google Scholar
  28. Tops LF et al (2008) Noncoronary applications of cardiac multidetector row computed tomography. JACC Cardiovasc Imaging 1(1):94–106PubMedCrossRefGoogle Scholar
  29. Weininger M et al (2010) Adenosine-stress dynamic real-time myocardial perfusion CT and adenosine-stress first-pass dual-energy myocardial perfusion CT for the assessment of acute chest pain: initial results. Eur J Radiol 81(12):3703-3710. doi: 10.1016/j.ejrad.2010.11.022
  30. Wu X, Langan DA, Xu D et al (2009) Monochromatic CT image representation via fast switching dual kVp. Proc SPIE 7258:725845CrossRefGoogle Scholar
  31. Zatz LM, Alvarez RE (1977) An inaccuracy incomputed tomography: the energy dependence dependence of CT values. Radiology 124(1):91–97PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Donya A. Al-Hassan
    • 1
  • Amr M. Ajlan
    • 2
  • Jonathon Leipsic
    • 1
    • 3
  1. 1.Department of RadiologySt Paul’s HospitalVancouverCanada
  2. 2.Department of RadiologyKing Abdulaziz University HospitalJeddahSaudi Arabia
  3. 3.The Division of Nuclear Medicine, Department of RadiologyProvidence Health Care, University of BritishVancouverCanada

Personalised recommendations