I-131 Meta Iodobenzylguanidine Therapy

  • Val Lewington
Part of the Medical Radiology book series (MEDRAD)


Radiolabelled meta-iodobenzylguanidine (mIBG) has been used to treat neuroectodermal tumours since 1983 (Sisson et al. 1983). mIBG therapy has evolved slowly reflecting both the rarity of neuroectodermal tumours and the limited number of specialist facilities equipped to deliver treatment safely. Published series demonstrate considerable experience using this approach but, to date, few randomised controlled trials have been undertaken. As most centres developed treatment protocols tailored to local practice and expertise, direct comparison of results between institutions is difficult. Reports of treatment efficacy are, therefore, often based upon retrospective review of single centre experience.

This review will summarise the rationale for mIBG therapy, treatment indications, patient selection criteria, toxicity and prospects for future development.

Treatment Rationale

Cellular mIBG uptake occurs by two distinct mechanisms (Smets et al. 1989). The dominant pathway is...


Medullary Thyroid Cancer mIBG Uptake 131I mIBG Symptom Palliation Bone Marrow Reserve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Altman A, Kissel M, Zitzmann K et al (2003) Increased MIBG uptake after transfer of the human norepinephrine transporter gene in rat hepatoma. J Nucl Med 44:973–980Google Scholar
  2. Barrett JA, Joyal JL, Hillier SM et al (2010) Comparison of high-specific-activity ultratrace 123/131I-MIBG and carrier added 123/131I-MIBG on efficacy, pharmacokinetics, and tissue distribution. Cancer Biother Radiopharma 25:299–308CrossRefGoogle Scholar
  3. Bayer M, Kuci Z, Schomig E et al (2009) Uptake of mIBG and catecholamines in noradrenaline- and organic cation transporter-expressing cells: potential use of corticosterone for a preferred uptake in neuroblastoma- and pheochromocytoma cells. Nucl Med Biol 36:287–294PubMedCrossRefGoogle Scholar
  4. Beierwaltes WH (1987) Treatment of neuroblastoma with 131I-mIBG—dosimetric problems and perspectives. Med Pediatr Oncol 15:188–191PubMedCrossRefGoogle Scholar
  5. Bestagno M, Guerra P, Puricelli GP et al (1987) Treatment of neuroblastoma with 131-I-meta-iodobenzylguanidine: the experience of an Italian study group. Med Pediatr Oncol 15:203–204PubMedCrossRefGoogle Scholar
  6. Bombardieri E, Giammarile F, Aktolun C et al (2010) I-131/I-123 metaiodobenzylguanidine (mIBG) scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging 37:2436–2446PubMedCrossRefGoogle Scholar
  7. Buckley SE, Chittenden SJ, Saran FH et al (2009) Whole-body dosimetry for individualized treatment planning of 131I-mIBG radionuclide therapy for neuroblastoma. J Nucl Med 50:1518–1524PubMedCrossRefGoogle Scholar
  8. Buscombe JR, Cwikla JB, Caplin ME et al (2005) Long-term efficacy of low-activity meta-[131I]iodobenzylguanidine therapy in patients with disseminated neuroendocrine tumours depends on initial response. Nucl Med Commun 26:969–976PubMedCrossRefGoogle Scholar
  9. Castellani MR, Di Bartolomeo M, Maffioli I et al (1991) [131I]Metaiodobenzylguanidine therapy in carcinoid tumours. J Nucl Biol Med 35:349–351PubMedGoogle Scholar
  10. Castellani MR, Seghezzi A, Chiesa C et al (2010) I-131 MIBG treatment of phaeochromocytoma: low versus intermediate activity regimens of therapy. Q J Nucl Med Mol Imaging 54(1):100–113PubMedGoogle Scholar
  11. Coleman RE, Stubbs JB, Barrett JA et al (2009) Radiation dosimetry, pharmacokinetics, and safety of ultratrace-iobenguane I-131 in patients with malignant pheochromocytoma/paraganglioma or metastatic carcinoid. Cancer Biother Radiopharma 24:469–475CrossRefGoogle Scholar
  12. Cottino F, Mussa GC, Madon E et al (1987) 131I-meta-iodobenzylguanidine treatment in neuroblastoma: report of two cases. Med Pediatr Oncol 15:216–219PubMedCrossRefGoogle Scholar
  13. Cunningham SH, Mairs RJ, Wheldon TE et al (1998) Toxicity to neuroblastoma cells and spheroids of benzylguanidine conjugated to radionuclides with short-range emissions. Br J Cancer 77:2061–2068PubMedCentralPubMedCrossRefGoogle Scholar
  14. de Groot JW, Zonnenberg BA, van Ufford-Mannesse PQ et al (2007) A phase II trial of imatinib therapy for metastatic medullary thyroid carcinoma. J Clin Endocrinol Metab 92:3466–3469PubMedCrossRefGoogle Scholar
  15. De Souza JA, Busaidy N, Zimrin A et al. (2010) Phase II trial of sunitinib in medullary thyroid cancer. J Clin Oncol 28:15 s (suppl; abstr 5504)Google Scholar
  16. Dubois SG, Chesler L, Groshen S (2012) Phase I study of Vincristine, Irinotecan, and 131I-Metaiodobenzylguanidine (131I-MIBG) for patients with relapsed or refractory neuroblastoma. Clin Cancer Res. Mar 16 EPub ahead of printGoogle Scholar
  17. Fischer M, Wehinger H, Kraus C et al (1987) Treatment of neuroblastoma with 131I-meta-iodobenzylguanidine: experience of the Munster/Kassel group. Med Pediatr Oncol 15:196–198PubMedCrossRefGoogle Scholar
  18. Gaze MN, Huxham IM, Mairs RJ et al (1991) Intracellular localization of metaiodobenzyl guanidine in human neuroblastoma cells by electron spectroscopic imaging. Int J Cancer 47:875–880PubMedCrossRefGoogle Scholar
  19. Gaze MN, Mairs RJ, Boyack SM et al (1992) 131I-meta-iodobenzylguanidine therapy in neuroblastoma spheroids of different sizes. Br J Cancer 66:1048–1052PubMedCentralPubMedCrossRefGoogle Scholar
  20. Gaze MN, Chang YC, Flux GD et al (2005) I-131 metaiodobenzylguanidine with topotecan asa radiosensitiser in children with metastatic neuroblastoma. Cancer Biother Radiopharm 20:195–199PubMedCrossRefGoogle Scholar
  21. Gaze MN, Alspach A, Biassoni L et al. (2012) 131I-meta iodobenzylguanidine and topotecan in neuroblastoma (MATIN): audit of an innovative treatment schedule in five international society of paediatric oncology –Europe neuroblastoma (SIOPEN) centres. Eur J Cancer (in press)Google Scholar
  22. Goldberg SS, DeSantes K, Huberty JP et al (1998) Engraftment after myeloablative doses of I-131 metaiodobenzylguanidine followed by autologous bone marrow transplantation for treatment of refractory neuroblastoma. Med Paediatr Oncol 30:339–346CrossRefGoogle Scholar
  23. Gonias S, Goldsby R, Mathay KK et al (2009) Phase II study of I-131 metaiodobenzylguanidine therapy for patients with metastatic phaeochromocytoma and paraganglioma. J Clin Oncol 27:4162–4168PubMedCentralPubMedCrossRefGoogle Scholar
  24. Grunwald F, Ezziddin S (2010) I-131 metaiodobenzylguanidine therapy of neuroblastoma and other neuroendocrine tumours. Semin Nucl Med 40:153–163PubMedCrossRefGoogle Scholar
  25. Hartmann O, Lumbruso J, Lemerle J et al (1987) Therapeutic use of 131I-meta-iodobenzylguanidine (mIBG) in neuroblastoma: a phase II study in nine patients. Med Pediatr Oncol 15:205–211PubMedCrossRefGoogle Scholar
  26. Hickeson MP, Charron M, Maris JM et al (2004) Paediatr Blood Cancer 42:268–274CrossRefGoogle Scholar
  27. Hoefnagel CA (1999) Nuclear medicine therapy of neuroblastoma. Q J Nucl Med 43:336–343PubMedGoogle Scholar
  28. Hoefnagel CA, Lewington VJ (2004) mIBG therapy. In: Ell PJ, Gambhir SS (eds) Nuclear medicine in clinical diagnosis and treatment, 3rd edn). Churchill Livingstone, pp 445–457Google Scholar
  29. Hoefnagel CA, de Kraker J, Voute PA et al (1991) Preoperative 131I metaiodobenzylguanidine therapy of neuroblastoma at diagnosis (“MIBG de novo”). J Nucl Biol Med 35:248–251PubMedGoogle Scholar
  30. Hoefnagel A, de Kraker J, Voute PA et al (1994) 131I mIBG as first line treatment in high risk neuroblastoma patients. Nucl Med Commun 15:712–717PubMedCrossRefGoogle Scholar
  31. Howard JP, Maris JM, Kersun LS et al. (2005) Tumor response and toxicity with multiple infusions of high dose (131)I-MIBG for refractory neuroblastoma. Pediatr Blood Cancer 44:232–239Google Scholar
  32. Huang H, Abraham J, Hung E et al (2008) Treatment of malignant phaeochromocytoma/paraganglioma with cyclophosphamide, vincristine and dacarbazine: recommendation from a 22 year follow up of 18 patients. Cancer 113(8):2020–2028PubMedCrossRefGoogle Scholar
  33. Khan MU, Morse M, Coleman RE (2008) Radioiodinated metaiodobenzylguanidine in the diagnosis and therapy of neuroendocrine tumours. Q J Nucl Med Mol Imaging 52(4):441–454PubMedGoogle Scholar
  34. Knickmeier M (2001) Two years experience using no carrier added I-123 metaiodobenzylguanidine in clinical studies II. Eur J Nucl Med 28:941PubMedCrossRefGoogle Scholar
  35. Ladenstein R, Philip T, Lasset C et al (1998) Multivariate analysis of risk factors in stage IV neuroblastoma patients over the age of 1 year treated with megatherapy and stem cell transplantation: a report from the European bone marrow transplantation solid tumour registry. J Clin Oncol 16:953–965PubMedGoogle Scholar
  36. Lam ET, Ringel MD, Kloos RT et al (2010) Phase II clinical trial of sorafenib in metastatic medullary thyroid cancer. J Clin Oncol 28:2323–2330PubMedCentralPubMedCrossRefGoogle Scholar
  37. Lashford LS, Lewis IJ, Fielding SL et al (1992) Phase I/II study of Iodine 131 metaiodobenzylguanidine in chemoresistant neuroblastoma: a United Kingdom children’s cancer study group investigation. J Clin Oncol 10:1889–1896PubMedGoogle Scholar
  38. Leung A, Shapiro B, Hattner R et al (1997) Specificity of radioiodinated metaiodobenzylguanidine for neural crest tumours in childhood. J Nucl Med 38:1352–1357PubMedGoogle Scholar
  39. Loh KC, Fitzgerald PA, Matthay KK et al (1997) The treatment of malignant phaeochromocytomas with iodine-131 metaiodobenzylguanidine (I-131 MIBG). a comprehensive review of 116 reported patients. J Endocrinol Investig 20:648–681CrossRefGoogle Scholar
  40. Mairs RJ, Boyd M (2008) Optimising MIBG therapy of neuroendocrine tumours: preclinical evidence of dose maximisation and synergy. Nucl Med Biol 35: SI:9–SI:20Google Scholar
  41. Mairs RJ, Livingstone AL, Gaze MN et al (1994) Prediction of accumulation of I-131 metaiodobenzylguanidine in neuroblastoma cell lines by means of reverse transcription and polymerase chain reaction. Brit J Cancer 70:97–101PubMedCentralPubMedCrossRefGoogle Scholar
  42. Mastrangelo R, Tomesello A, Lasorella A et al (1997) Optimal use of the I-131 metaiodobenzylguanidine and cisplatin combination in advanced neuroblastoma. J Neuro Oncol 31:153–158CrossRefGoogle Scholar
  43. Mastrangelo S, Tomesello A, Diociaiuti L et al (2001) Treatment of advanced neuroblastoma: feasibility and therapeutic potential of a novel approach combining I-131 mIBG and multiple drug therapy. Br J Cancer 84(4):460–464PubMedCentralPubMedCrossRefGoogle Scholar
  44. Matthay KK, DeSantes K, Hasegawa B et al (1998) Phase I dose escalation of 131I-metaiodobenzylguanidine with autologous bone marrow support in refractory neuroblastoma. J Clin Oncol 16:229–236PubMedGoogle Scholar
  45. Matthay KK, Villablanca JG, Seeger R et al (1999) Children’s cancer group: treatment of high risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation and 13 cis retinoic acid. N Engl J Med 341:1165–1173PubMedCrossRefGoogle Scholar
  46. Matthay KK, Tan JC, Villablanca JG et al (2006) Phase I dose escalation of iodine-131-metaiodobenzylguanidine with myeloablative chemotherapy and autologous stem-cell transplantation in refractory neuroblastoma: a new approaches to neuroblastoma therapy consortium study. J Clin Oncol 24:500–506PubMedCrossRefGoogle Scholar
  47. Matthay KK, Yanik G, Messina J et al (2007) Phase II study on the effect of disease sites, age, and prior therapy on response to iodine-131-metaiodobenzylguanidine therapy in refractory neuroblastoma. J Clin Oncol 25:1054–1060PubMedCrossRefGoogle Scholar
  48. Matthay KK, Quach A, Huberty J et al (2009) Iodine-131—metaiodobenzylguanidine double infusion with autologous stem-cell rescue for neuroblastoma: a new approaches to neuroblastoma therapy Phase I study. J Clin Oncol 27:1020–1025PubMedCentralPubMedCrossRefGoogle Scholar
  49. McCluskey AG, Boyd M, Gaze MN et al (2005a) I-131 mIBG with topotecan: a rationale for combination therapy for neuroblastoma. Cancer Lett 228:221–227PubMedCrossRefGoogle Scholar
  50. McCluskey AG, Boyd M, Ross SC et al (2005b) I-131 metaiodobenzylguanidine and topotecan combination treatment of tumours expressing the noradrenaline transporter. Clin Cancer Res 11:7929–7937PubMedCrossRefGoogle Scholar
  51. Mukherjee JJ, Kaltsas GA, Islam N et al. (2001) Treatment of metastatic carcinoid tumours, phaeochromocytoma, paraganglionoma,and medullary carcinoma of the thyroid with 131-I-meta-iodobenzylguanidine. Clin Endocrinol. 55:47–60Google Scholar
  52. Navalkissoor S, Alhashimi DM, Quigley AM et al (2010) Efficacy of using a standard activity of (131)I-MIBG therapy in patients with disseminated neuroendocrine tumours. Eur J Nucl Med Mol Imaging 37:904–912PubMedCrossRefGoogle Scholar
  53. Nguyen C, Faraggi M, Giraudet AL et al (2004) Long-term efficacy of radionuclide therapy in patients with disseminated neuroendocrine tumors uncontrolled by conventional therapy. J Nucl Med 45:1660–1668PubMedGoogle Scholar
  54. O’Donoghue JA, Wheldon TE (1988) Predicted allowable doses to normal organs for biologically targeted radiotherapy. Br J Radiol 61:264–266PubMedCrossRefGoogle Scholar
  55. O’Donoghue JA, Bardies M, Wheldon TE (1995) Relationships between tumour size and curability for uniformly targeted therapy with beta emitting radionuclides. J Nucl Med 36:1902–1909PubMedGoogle Scholar
  56. O’Donoghue JA, Sgouros G, Dvigi CR et al (2000) Single dose versus fractionated radioimmunotherapy; model comparisons for uniform dosimetry. J Nucl Med 41(3):538–547PubMedGoogle Scholar
  57. Owens J, Bolster AA, Prosser J et al (2000) No carrier added I-123 mIBG: an initial clinical study in patients with phaeochromocytoma. Nucl Med Commun 21:437–440PubMedCrossRefGoogle Scholar
  58. Prymer DA, Barrett JA, Coleman RE et al. (2011). Preliminary data from an ongoing phase IIb study of no carrier added 131I-iobenguane (nca-MIBG) in patients with malignant pheochromocytoma (Pheo) J Clin Oncol 29: (suppl; abstr e21122)Google Scholar
  59. Rutgers M, Buitenhuis CK, van der Valk MA, Hoefnagel CA, Voute PA, Smets LA (2000) [(131)I] and [(125)I] metaiodobenzylguanidine therapy in macroscopic and microscopic tumors: a comparative study in SK-N-SH human neuroblastoma and PC12 rat pheochromocytoma xenografts. Int J Cancer 90:312–325PubMedCrossRefGoogle Scholar
  60. Safford SD, Coleman RE, Gockerman JP et al (2003) Iodine-131 metaiodobenzylguanidine is an effective treatment for malignant phaeochromocytoma and paraganglioma. Surgery 134:956–962PubMedCrossRefGoogle Scholar
  61. Safford SD, Coleman RE, Gockerman JP et al (2004) Iodine-131 metaiodobenzylguanidine treatment for metastatic carcinoid results in 98 patients. Cancer 101(9):1987–1993PubMedCrossRefGoogle Scholar
  62. Sanguinetti M (1987) Considerations on 131I-meta-iodobenzylguanidine therapy of six children with neuroblastoma. Med Pediatr Oncol 15:212–215CrossRefGoogle Scholar
  63. Sarnaan NA, Hickey RC, Shutts PE (1988) Diagnosis, localisation and management of phaeochromocytoma. pitfalls and follow up in 41 patients. Cancer 62:2451–2460CrossRefGoogle Scholar
  64. Sisson J, Shapiro B, Beierwaltes WH et al (1983) Treatment of malignant phaeochromocytoma with a new radiopharmaceutical. Trans Assoc Am Phys 96:209–217PubMedGoogle Scholar
  65. Sisson JC, Shapiro B, Hutchinson RJ et al (1996) Survival of patients with neuroblastoma treated with 125-I MIBG. Am J Clin Oncol 19(2):144–148PubMedCrossRefGoogle Scholar
  66. Smets LA, Loesberg C, Janssen M et al (1989) Active uptake and extravesicular storage of metaiodobenzylguanidine in human neuroblastoma SK-N-SH cells. Cancer Res 49:2941–2944PubMedGoogle Scholar
  67. Szalat A, Fraenkel M, Doviner V et al (2011) Malignant pheochromocytoma: predictive factors of malignancy and clinical course in 16 patients at a single tertiary medical center. Endocrine 39:160–166PubMedCrossRefGoogle Scholar
  68. Treuner J, Klingebiel T, Bruchelt G et al (1987) Treatment of neuroblastoma with metaiodobenzylguanidine: results and side effects. Med Pediatr Oncol 15:199–202PubMedCrossRefGoogle Scholar
  69. Troncone L, Riccardi R, Montemaggi P et al (1987) Treatment of neuroblastoma with 131I-meta-iodobenzylguanidine. Med Pediatr Oncol 15:220–223PubMedCrossRefGoogle Scholar
  70. Vaidyanathan G, Zhao XG, Larsen RH et al (1997) 3-[211At]astato-4-fluorobenzylguanidine: a potential therapeutic agent with prolonged retention by neuroblastoma cells. Br J Cancer 76(2):226–233PubMedCentralPubMedCrossRefGoogle Scholar
  71. Vaidyanathan G, Affleck DJ, Alston KL et al (2007) A kit method for the high level synthesis of [211At]MABG. Bioorg Med Chem 15(10):3430–3436PubMedCentralPubMedCrossRefGoogle Scholar
  72. van santen HM, de Kraker J, Vulsmer T et al. (2005) Endocrine late effects from multi-modality treatment of neuroblastoma. Eur J Cancer 1767–1774Google Scholar
  73. Voûte PA, Hoefnagel CA, de Kraker J et al (1987) Radionuclide therapy of neural crest tumours. Med Pediatr Oncol 15:192–195PubMedCrossRefGoogle Scholar
  74. Weber W, Weber J, Senekowitsch-Schmidtke R (1996) Therapeutic effect of m-[131I]-and m-[125I]iodobenzylguanidine on neuroblastoma multicellular tumor spheroids of different sizes. Cancer Res 56:5428–5434PubMedGoogle Scholar
  75. Wells SA, Robinson BG, Gagel RF (2012) Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol 30(2):134–141PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.LondonUK

Personalised recommendations