CT Assessment of Myocardial Viability: Quantitive Imaging

  • Balazs RuzsicsEmail author
Part of the Medical Radiology book series (MEDRAD)


Accurate quantification of myocardial-infarct size is critical for clinical decision making. Transmural extent of myocardial infarct predicts whether or not a patient will benefit substantially from revascularization therapy. To date, delayed-enhancement cardiac magnetic resonance (DE-CMR) imaging is the clinical standard for quantification of myocardial viability. Multidetector CT is reported by numerous authors to be a useful tool for characterizing and, more importantly, quantifying myocardial-infarct size. Thus, cardiac CT is a promising future tool for a complete coronary artery disease diagnostic workup. This chapter reviews the role of different CT-based imaging methods in precisely quantifying myocardial-infarct size.


Myocardial Infarction Percutaneous Coronary Intervention Infarct Size Myocardial Viability Microvascular Obstruction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams DF, Hessel SJ, Judy PF, Stein JA, Abrams HL (1976) Differing attenuation coefficients of normal and infarcted myocardium. Science 192:467–469PubMedCrossRefGoogle Scholar
  2. Baks T, Cademartiri F, Moelker AD et al (2006) Multislice Computed Tomography and Magnetic Resonance Imaging for the Assessment of Reperfused Acute Myocardial Infarction. J Am Coll Cardiol 48:144–152PubMedCrossRefGoogle Scholar
  3. Baks T, Cademartiri F, Moelker AD, van der Giessen WJ, Krestin GP, Duncker DJ, de Feyter PJ (2007) Assessment of acute reperfused myocardial infarction with delayed enhancement 64-MDCT. Am J Roentgenol 188(2):135–137CrossRefGoogle Scholar
  4. Blankstein R, Rogers IS, Cury RC (2009) Practical tips and tricks in cardiovascular computed tomography: diagnosis of myocardial infarction. J Cardiovasc Comput Tomogr 3:104–111PubMedCrossRefGoogle Scholar
  5. Boussel L, Ribagnac M, Bonnefoy E et al (2008) Assessment of acute myocardial infarction using MDCT after percutaneous coronary intervention: comparison with MRI. AJR 191:441–447PubMedCrossRefGoogle Scholar
  6. Brodoefel H, Klumpp B, Reimann A et al (2007a) Late myocardial enhancement assessed by 64-MSCT in reperfused porcine myocardial infarction: diagnostic accuracy of low-dose CT protocols in comparison with magnetic resonance imaging. Eur Radiol 17:475–483PubMedCrossRefGoogle Scholar
  7. Brodoefel H, Reimann A, Klumpp B et al (2007b) Assessment of myocardial viability in a reperfused porcine model: evaluation of different MSCT contrast protocols in acute and subacute infarct stages in comparison with MRI. J Comput Assist Tomogr 31:290–298PubMedCrossRefGoogle Scholar
  8. Brody WR, Cassel DM, Sommer FG et al (1981) Dual-energy projection radiography: initial clinical experience. Am J Roentgenol 137:201–205CrossRefGoogle Scholar
  9. Buecker A, Katoh M, Krombach GA, Spuentrup E, Bruners P, Gunther RW, Niendorf T, Mahnken AH (2005) A feasibility study of contrast enhancement of acute myocardial infarction in multislice computed tomography: comparison with magnetic resonance imaging and gross morphology in pigs. Invest Radiol 40:700–704PubMedCrossRefGoogle Scholar
  10. Chang HJ, George RT, Schuleri KH et al (2009) Prospective electrocardiogram-gated delayed enhancement multidetector computed tomography accurately quantifies infarct size and reduces radiation exposure. JACC Cardiovasc Imaging 2:412–420PubMedCrossRefGoogle Scholar
  11. Chiro GD, Brooks RA, Kessler RM et al (1979) Tissue signatures with dual-energy computedtomography. Radiology 131:521–523PubMedGoogle Scholar
  12. Choe YH, Choo KS, Jeon E-S, Gwon H-C, Choi J-H, Park J-E (2008) Comparison of MDCT and MRI in the detection and sizing of acute and chronic myocardial infarcts. Eur J Radiol 66:292–299PubMedCrossRefGoogle Scholar
  13. Choi KM, Kim RJ, Gubernikoff G, Vargas JD, Parker M, Judd RM (2001) Transmural extent of acute myocardial infarction predicts long-term improvement in contractile function. Circulation 104:1101–1107PubMedCrossRefGoogle Scholar
  14. Dendale P, Franken PR, Holman E, Avenarius J, van der Wall EE, de Roos A (1998) Validation of low-dose dobutamine magnetic resonance imaging for assessment of myocardial viability after infarction by serial imaging. Am J Cardiol 82:375–377PubMedCrossRefGoogle Scholar
  15. Deseive S, Bauer RW, Lehmann R, Kettner M, Kaiser C, Korkusuz H, Tandi C, Theisen A, Schächinger V, Schoepf UJ, Vogl TJ, Kerl JM (2011) Dual-energy computed tomography for the detection of late enhancement in reperfused chronic infarction: a comparison to magnetic resonance imaging and histopathology in a porcine model. Invest Radiol 46(7):450–456PubMedCrossRefGoogle Scholar
  16. Doherty PW, Lipton MJ, Berninger WH, Skioldebrand CG, Carlsson E, Redington RW (1981) Detection and quantitation of myocardial infarction in vivo using transmission computed tomography. Circulation 63:597–606PubMedCrossRefGoogle Scholar
  17. Fieno DS, Kim RJ, Chen EL, Lomasney JW, Klocke FJ, Judd RM (2000) Contrast-enhanced magnetic resonance imaging of myocardium at risk: distinction between reversible and irreversible injury throughout infarct healing. J Am Coll Cardiol 36:1985–1991PubMedCrossRefGoogle Scholar
  18. Genant HK, Boyd D (1977) Quantitative bone mineral analysis using dual energy computed tomography. Invest Radiol 12:545–551PubMedCrossRefGoogle Scholar
  19. Georgiou D, Bleiweis M, Brundage BH (1992) Conventional and ultrafast computed tomography in the detection of viable versus infarcted myocardium. Am J Card Imaging 6:228–236PubMedGoogle Scholar
  20. Gerber BL, Belge B, Legros GJ et al (2006) Characterization of acute and chronic myocardial infarcts by multidetector computed tomography: comparison with contrast-enhanced magnetic resonance. Circulation 113:823–833PubMedCrossRefGoogle Scholar
  21. Goetti R, Feuchtner G, Stolzmann P, Donati OF, Wieser M, Plass A, Frauenfelder T, Leschka S, Alkadhi H (2011) Delayed enhancement imaging of myocardial viability: low-dose high-pitch CT versus MRI. Eur Radiol 21(10):2091–2099PubMedCrossRefGoogle Scholar
  22. Gray WR, Buja LM, Hagler HK, Parkey RW, Willerson JT (1978) Computed tomography for localization and sizing of experimental acute myocardial infarcts. Circulation 58:497–504PubMedCrossRefGoogle Scholar
  23. Habis M, Capderou A, Sigal-Cinqualbre A et al (2009) Comparison of delayed enhancement patterns on multislice computed tomography immediately after coronary angiography and cardiac magnetic resonance imaging in acute myocardial infarction. Heart 95:624–629PubMedCrossRefGoogle Scholar
  24. Higgins CB, Sovak M, Schmidt W, Siemers PT (1978) Uptake of contrast materials by experimental acute myocardial infarctions: a preliminary report. Invest Radiol 23(Suppl):S271–S274Google Scholar
  25. Hoffmann U, Millea R, Enzweiler C, Ferencik M, Gulick S, Titus J, Achenbach S, Kwait D, Sosnovik D, Brady TJ (2004) Acute myocardial infarction: contrast-enhanced multi-detector row CT in a porcine model. Radiology 231(3):697–701PubMedCrossRefGoogle Scholar
  26. Jacquier A, Boussel L, Amabile N et al (2008) Multidetector computed tomography in reperfused acute myocardial infarction: assessment of infarct size and noreflow in comparison with cardiac magnetic resonance imaging. Invest Radiol 43:773–781PubMedCrossRefGoogle Scholar
  27. Jennings RB, Schaper J, Hill ML, Steenbergen CJ, Reimer KA (1985) Effect of reperfusion late in the phase of reversible ischemic injury. Changes in cell volume, electrolytes, metabolites, and ultrastructure. Circ Res 56:262–278PubMedCrossRefGoogle Scholar
  28. Jennings RB, Murry CE, Steenbergen CJ, Reimer KA (1990) Development of cell injury in sustained acute ischemia. Circulation 82 (3 Suppl):II2–12Google Scholar
  29. Judd RM, Lugo-Olivieri CH, Arai M, Kondo T, Croisille P, Lima JA, Mohan V, Becker LC, Zerhouni EA (1995) Physiological basis of myocardial contrast enhancement in fast magnetic resonance images of 2-day-old reperfused canine infarcts. Circulation 92:1902–1910PubMedCrossRefGoogle Scholar
  30. Kalender WA, Perman WH, Vetter JR, Klotz E (1986) Evaluation of a proto-type dual-energy computed tomographic apparatus. I. Phantom studies. Med Phys 13:334–339CrossRefGoogle Scholar
  31. Kang DK, Schoepf UJ, Bastarrika G, Nance JW Jr, Abro JA, Ruzsics B (2010) Dual-energy computed tomography for integrative imaging of coronary artery disease: principles and clinical applications. Semin Ultrasound CT MR 31(4):276–291PubMedCrossRefGoogle Scholar
  32. Kim RJ, Fieno DS, Parrish TB, Harris K, Chen EL, Simonetti O, Bundy J, Finn JP, Klocke FJ, Judd RM (1999) Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100:1992–2002PubMedCrossRefGoogle Scholar
  33. Kim RJ, Wu E, Rafael A et al (2000) The use of contrast enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343:1445–1453PubMedCrossRefGoogle Scholar
  34. Kramer PH, Goldstein JA, Herkens RJ, Lipton MJ, Brundage BH (1984) Imaging of acute myocardial infarction in man with contrast-enhanced computed transmission tomography. Am Heart J 108:1514–1523PubMedCrossRefGoogle Scholar
  35. Lardo AC, Cordeiro MA, Silva C et al (2006) Contrast-enhanced multidetector computed tomography viability imaging after myocardial infarction: Characterization of myocyte death, microvascular obstruction, and chronic scar. Circulation 113:394–404PubMedCrossRefGoogle Scholar
  36. Mahnken AH, Koos R, Katoh M et al (2005) Assessment of myocardial viability in reperfused acute myocardial infarction using 16-slice computed tomography in comparison to magnetic resonance imaging. J Am Coll Cardiol 45:2042–2047PubMedCrossRefGoogle Scholar
  37. Mahnken AH, Bruners P, Mühlenbruch G et al (2007a) Low tube voltage improves computed tomography imaging of delayed myocardial contrast enhancement in an experimental acute myocardial infarction model. Invest Radiol 42:123–129PubMedCrossRefGoogle Scholar
  38. Mahnken AH, Bruners P, Kinzel S et al (2007b) Latephase MSCT in the different stages of myocardial infarction: animal experiments. Eur Radiol 17:2310–2317PubMedCrossRefGoogle Scholar
  39. Mahnken AH, Bruners P, Bornikoel CM, Guenther RW, Krämer N (2009) Assessment of myocardial edema by computed tomography in myocardial infarction. JACC Cardiovasc Imaging 2:1167–1174PubMedCrossRefGoogle Scholar
  40. Millner MR, McDavid WD, Waggener RG, Dennis MJ, Payne WH, Sank VJ (1979) Extraction of information from CT scans at different energies. Med Phys 6:70–71PubMedCrossRefGoogle Scholar
  41. Nieman K, Shapiro MD, Ferencik M et al (2008) Reperfused myocardial infarction: contrast-enhanced sixty-four-section CT in comparison to MR imaging. Radiology 247:49–56PubMedCrossRefGoogle Scholar
  42. Nikolaou K, Knez A, Sagmeister S et al (2004) Assessment of myocardial infarctions using multidetector- row computed tomography. J Comput Assist Tomogr 28:286–292PubMedCrossRefGoogle Scholar
  43. Nikolaou K, Sanz J, Poon M et al (2005) Assessment of myocardial perfusion and viability from routine contrast-enhanced 16-detector-row computed tomography of the heart: preliminary results. Eur Radiol 15:864–871PubMedCrossRefGoogle Scholar
  44. Ordovas KG, Higgins CB (2011) Delayed contrast enhancement on MR images of myocardium: past, present, future. Radiology 261(2):358–374PubMedCrossRefGoogle Scholar
  45. Paul J-F, Wartski M, Caussin C et al (2005) Late defect on delayed contrast-enhanced multi-detector row CT scans in the prediction of SPECT infarct size after reperfused acute myocardial infarction: initial experience. Radiology 236:485–489PubMedCrossRefGoogle Scholar
  46. Perazzolo Marra M, Lima JAC, Illiceto S (2011) MRI in acute myocardial infarction. Eur Heart J 32:284–293PubMedCrossRefGoogle Scholar
  47. Riederer SJ, Mistretta CA (1977) Selective iodine imaging using K-edge energies in computerized x-ray tomography. Med Phys 4:474–481PubMedCrossRefGoogle Scholar
  48. Rubinshtein R, Miller TD, Williamson EE et al (2009) Detection of myocardial infarction by dual-source coronary computed tomography angiography using quantitated myocardial scintigraphy as the reference standard. Heart 95:1419–1422PubMedCrossRefGoogle Scholar
  49. Ruzsics B, Surányi P, Kiss P, Brott BC, Singh SS, Litovsky S, Aban I, Lloyd SG, Simor T, Elgavish GA, Gupta H (2008) Automated multidetector computed tomography evaluation of subacutely infarcted myocardium. J Cardiovasc Comput Tomogr 2(1):26–32PubMedCrossRefGoogle Scholar
  50. Sandstede JJW, Bertsch G, Beer M, Kenn W, Werner E, Pabst T, Lipke C, Kretschmer S, Neubauer S, Hahn D (1999) Detection of myocardial viability by low-dose dobutamine cine MR imaging. Magn Reson Imaging 17:1437–1443PubMedCrossRefGoogle Scholar
  51. Sanz J, Weeks D, Nikolaou K, Sirol M, Rius T, Rajagopalan S, Dellegrottaglie S, Strobeck J, Fuster V, Poon M (2006) Detection of healed myocardial infarction with multidetector-row computed tomography and comparison with cardiac magnetic resonance delayed hyperenhancement. Am J Cardiol 98:149–155PubMedCrossRefGoogle Scholar
  52. Sato A, Nozato T, Hikita H, Akiyama D, Nishina H, Hoshi T, Aihara H, Kakefuda Y, Watabe H, Hiroe M, Aonuma K (2012) Prognostic value of myocardial contrast delayed enhancement with 64-slice multidetector computed tomography after acute myocardial infarction. J Am Coll Cardiol 59(8):730–738PubMedCrossRefGoogle Scholar
  53. Shapiro MD, Sarwar A, Nieman K, Nasir K, Brady TJ, Cury RC (2010) Cardiac computed tomography for prediction of myocardial viability after reperfused acute myocardial infarction. J Cardiovasc Comput Tomogr 4:267–273PubMedCrossRefGoogle Scholar
  54. Varga-Szemes A, Ruzsics B, Kirschner R, Singh SP, Kiss P, Brott BC, Simor T, Elgavish A, Elgavish GA (2012) Determination of infarct size in ex vivo swine hearts by multidetector computed tomography using gadolinium as contrast medium. Invest Radiol 47(5):277–283PubMedCrossRefGoogle Scholar
  55. Wellnhofer E, Olariu A, Klein C, Grafe M, Wahl A, Fleck E, Nagel E (2004) Magnetic resonance low-dose dobutamine test is superior to scar quantification for the prediction of functional recovery. Circulation 109:2172–2174PubMedCrossRefGoogle Scholar
  56. Wesbey GE, Higgins CB, McNamara MT et al (1984) Effect of gadolinium-DTPA on the magnetic relaxation times of normal and infarcted myocardium. Radiology 153:165–169PubMedGoogle Scholar
  57. Wu KC, Zerhouni EA, Judd RM, Lugo-Olivieri CH, Barouch LA, Schulman SP, Blumenthal RS, Lima JA (1998) Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 97:765–772PubMedCrossRefGoogle Scholar
  58. Zhang LJ, Peng J, Wu SY, Yeh BM, Zhou CS, Lu GM (2010) Dual source dual-energy computed tomography of acute myocardial infarction: correlation with histopathologic findings in a canine model. Invest Radiol 45(6):290–297PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Royal Liverpool and Broadgreen University HospitalLiverpoolUK

Personalised recommendations