Advertisement

Magnetic Resonance Spectroscopy in Chronic Epilepsy

  • Friedrich G. Woermann
Part of the Medical Radiology book series (MEDRAD)

Abstract

The cornerstone of lesion detection in chronic epilepsy is structural imaging, mainly magnetic resonance imaging. Metabolic information from magnetic resonance spectroscopy (MRS) might serve as an additional or as a surrogate marker for the epileptogenic lesion. MRS might also help to differentiate similarly appearing lesions from one another; it might detect contralateral/remote dysfunction. However, the clinical role of MRS is unclear, albeit another non-invasive diagnostic tool.

Keywords

Magnetic Resonance Spectroscopy Hippocampal Sclerosis Focal Cortical Dysplasia Neuronal Ceroid Lipofuscinoses Juvenile Myoclonic Epilepsy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Achten E, Santens P, Boon P et al (1998) Single-voxel proton MR spectroscopy and positron emission tomography for lateralization of refractory temporal lobe epilepsy. Am J Neuroradiol 19:1–8PubMedGoogle Scholar
  2. Antel SB, Li LM, Cendes F et al (2002) Predicting surgical outcome in temporal lobe epilepsy patients using MRI and MRSI. Neurology 58:1505–1512PubMedCrossRefGoogle Scholar
  3. Burch J, Hinde S, Palmer S et al (2012) The clinical effectiveness and costeffectiveness of technologies used to visualise the seizure focus in people with refractory epilepsy being considered for surgery: a systematic review and decision-analytical model. Health Technol Assess 16(34):1–164PubMedGoogle Scholar
  4. Cendes F, Caramanos Z, Andermann F et al (1997) Proton MR spectroscopic imaging and MRI volumetry in the lateralization of temporal lobe epilepsy: a series of 100 patients. Ann Neurol 42:737–746PubMedCrossRefGoogle Scholar
  5. Cendes F, Knowlton RC, Novotny E et al (2002) Magnetic resonance spectroscopy in epilepsy: clinical issues. Epilepsia 43 (Suppl. 1):32–39CrossRefGoogle Scholar
  6. Cross JH, Connelly A, Jackson GD et al (1996) Proton magnetic resonance spectroscopy in children with temporal lobe epilepsy. Ann Neurol 39:107–113PubMedCrossRefGoogle Scholar
  7. Hollingworth W, Medina LS, Lenkinski RE et al (2006) A systematic literature review of magnetic resonance spectroscopy for the characterization of brain tumors. Am J Neuroradiol 27:1404–1411PubMedGoogle Scholar
  8. Knowlton RC, Laxer KD, Ende G et al (1997) Presurgical multimodality neuroimaging in electroencephalographic lateralized temporal lobe epilepsy. Ann Neurol 42:829–837PubMedCrossRefGoogle Scholar
  9. Kuzniecky R, Hugg JW, Hetherington H et al (1998) Relative utility of 1H spectroscopic imaging and hippocampal volumetry in the lateralization of mesial temporal lobe epilepsy. Neurology 51:66–71PubMedCrossRefGoogle Scholar
  10. Kuzniecky R, Palmer C, Hugg J et al (2001) Magnetic resonance spectroscopic imaging in temporal lobe epilepsy: neuronal dysfunction or cell loss? Arch Neurol 58:2048–2053PubMedCrossRefGoogle Scholar
  11. Lee SK, Kim DW, Kim KK et al (2005) Effect of seizure on hippocampus in mesial temporal lobe epilepsy and neocortical epilepsy: an MRS study. Neuroradiology 47:916–923PubMedCrossRefGoogle Scholar
  12. Li LM, Cendes F, Antel SB et al (2000) Prognostic value of proton magnetic resonance spectroscopic imaging for surgical outcome in patients with intractable temporal lobe epilepsy and bilateral hippocampal atrophy. Ann Neurol 47:195–200PubMedCrossRefGoogle Scholar
  13. Lin K, Carrete H Jr, Lin J et al (2009) Magnetic resonance spectroscopy reveals an epileptic network in juvenile myoclonic epilepsy. Epilepsia 50:1191–1200PubMedCrossRefGoogle Scholar
  14. McLean MA, Koepp M, Woermann FG (2008) Magnetic resonance spectroscopy in patients with epilepsy. In: Lüders H (ed) Textbook of epilepsy Surgery. Informa Healthcare, London Google Scholar
  15. Mueller SG, Suhy J, Laxer KD et al (2002) Reduced extrahippocampal NAA in mesial temporal lobe epilepsy. Epilepsia 43:1210–1216PubMedCrossRefGoogle Scholar
  16. Ng TC, Comair YG, Xue M et al (1994) Temporal lobe epilepsy: presurgical localization with proton chemical shift imaging. Radiology 193:465–472PubMedGoogle Scholar
  17. Vuori K, Kankaanranta L, Hakkinen AM et al (2004) Low-grade gliomas and focal cortical developmental malformations: differentiation with proton MR spectroscopy. Radiology 230:703–708PubMedCrossRefGoogle Scholar
  18. Whiting P, Gupta R, Burch J et al (2006) A systematic review of the effectiveness and cost-effectiveness of neuroimaging assessments used to visualise the seizure focus in people with refractory epilepsy being considered for surgery. Health Technol Assess 10(4):1–164PubMedGoogle Scholar
  19. Willmann O, Wennberg R, May T et al (2006) The role of 1H magnetic resonance spectroscopy in pre-operative evaluation for epilepsy surgery. A meta-analysis. Epilepsy Res 71:149–158PubMedCrossRefGoogle Scholar
  20. Woermann FG, Free SL, Koepp MJ et al (1999a) Abnormal cerebral structure in juvenile myoclonic epilepsy demonstrated with voxel-based analysis of MRI. Brain 122:2101–2108PubMedCrossRefGoogle Scholar
  21. Woermann FG, McLean MA, Bartlett PA et al (1999b) Short echo time single-voxel 1H magnetic resonance spectroscopy in magnetic resonance imaging-negative temporal lobe epilepsy: different biochemical profile compared with hippocampal sclerosis. Ann Neurol 45:369–376PubMedCrossRefGoogle Scholar
  22. Woermann FG, McLean MA, Bartlett PA et al (2001) Quantitative short echo time proton magnetic resonance spectroscopic imaging study of malformations of cortical development causing epilepsy. Brain 124:427–436PubMedCrossRefGoogle Scholar
  23. Yapici Z, Dincer A, Eraksoy M (2005) Proton spectroscopic findings in children with epilepsy owing to tuberous sclerosis complex. J Child Neurol 20:517–522PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.MRI Unit, Mara HospitalBethel Epilepsy CenterBielefeldGermany

Personalised recommendations