Quantitative Ultrasound and Fracture Risk Assessment

  • Giuseppe Guglielmi
  • Michelangelo Nasuto
Part of the Medical Radiology book series (MEDRAD)


Quantitative ultrasound (QUS) is a non-invasive technique for the investigation of bone tissue used in several pathologies and clinical conditions, especially for the identification of bone changes connected with menopause, osteoporosis and bone fragility. The versatility of the method, its low cost and lack of ionising radiation have led to a worldwide diffusion with an increasing interest among clinicians. In the last years several studies have been conducted to investigate the potential of QUS in various pathologies of bone metabolism, in secondary osteoporosis, paediatrics, neonatology, genetics and other fields. The results have confirmed the ability of the technique in the prediction of fracture risk; studies in paediatrics led to the establishment of reference curves for some QUS devices and other promising results have been reported in several conditions involving metabolic bone disorders.


Fracture Risk Ultrasound Wave Broadband Ultrasound Attenuation Quantitative Ultrasound Index Bone Transmission Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Agenzia Italiana del Farmaco (2007) Note AIFA 2006–2007 per l’uso appropriato dei farmaci. Supplemento ordinario alla “Gazzetta Ufficiale” n. 7 del 10 gennaio 20-Serie generale, Nota 79Google Scholar
  2. Agostinelli D, de Terlizzi F (2007) QUS in monitoring raloxifene and estrogen-progestogens: a 4-year longitudinal study. Ultrasound Med Biol 33(8):1184–1190PubMedCrossRefGoogle Scholar
  3. Azcona C, Burghard E, Ruza E et al (2003) Reduced bone mineralization in adolescent survivors of malignant bone tumors: comparison of quantitative ultrasound and dual-energy X-ray absorptiometry. J Pediatr Hematol Oncol 25(4):297–302PubMedCrossRefGoogle Scholar
  4. Barkmann R, Heller M, Gluer CC (1996) The influence of soft tissue and waterbath temperature on quantitative ultrasound transmission parameters: an in vivo study. Osteoporos Int 6:181CrossRefGoogle Scholar
  5. Barkmann R, Gluer CC (1998) Factors influencing QUS parameters of the calcaneum: suggestions for an improved measurment procedure. J Clin Densitom 1:93–94CrossRefGoogle Scholar
  6. Barkmann R, Glüer CC (1999) Error sources in quantitative ultrasound measurement. In: Njeh CF, Hans D (eds) Quantitative ultrasound: assessment of osteoporosis and bone status. Martin Dunitz, London, pp 101–108Google Scholar
  7. Barkmann R, Kantorovich E, Singal C et al (2000a) A new method for quantitative ultrasound measurements at multiple skeletal sites. J Clin Densitom 3:1–7PubMedCrossRefGoogle Scholar
  8. Barkmann R, Lüsse S, Stampa B et al (2000b) Assessment of the geometry of human finger phalanges using quantitative ultrasound in vivo. Osteoporos Int 11:745–755PubMedCrossRefGoogle Scholar
  9. Barkmann R, Rohrschenider W, Vierling M et al (2002) German pediatric reference data for quantitative transverse transmission ultrasound of finger phalanges. Osteoporos Int 13:55–61PubMedCrossRefGoogle Scholar
  10. Barkmann R, Laugier P, Moser U et al (2007) A method for the estimation of femoral bone mineral density from variables of ultrasound transmission through the human femur. Bone 40(1):37–44PubMedCrossRefGoogle Scholar
  11. Baroncelli GI, Federico G, Bertelloni S et al (2003) Assessment of bone quality by quantitative ultrasound of proximal phalanges of the hand and fracture rate in children and adolescents with bone and mineral disorders. Pediatr Res 54:125–136PubMedCrossRefGoogle Scholar
  12. Baroncelli GI, Federico G, Vignolo M et al (2006) The phalangeal quantitative ultrasound group. Cross-sectional reference data for phalangeal quantitative ultrasound from early childhood to young-adulthood according to gender, age, skeletal growth, and pubertal development. Bone 39:159–173PubMedCrossRefGoogle Scholar
  13. Bauer DC, Gluer CC, Cauley JA et al (1997) Broadband ultrasound attenuation predict fractures strongly and independently of densitometry in older women: a prospective study. Arch Intern Med 157:629–634PubMedCrossRefGoogle Scholar
  14. Boonen S, Nijs J, Borghs H, Peeters H, Vanderschueren D, Luyten FP (2005) Identifying postmenopausal women with osteoporosis by calcaneal ultrasound, metacarpal digital X-ray radiogrammetry and phalangeal radiographic absorptiometry: a comparative study. Osteoporos Int 16:93–100PubMedCrossRefGoogle Scholar
  15. Boonen S, Pye SR, O’Neill TW et al (2011) Influence of bone remodelling rate on quantitative ultrasound parameters at the calcaneus and DXA BMDa of the hip and spine in middle-aged and elderly European men: the European Male Ageing Study (EMAS). Eur J Endocrinol 165(6):977–986PubMedCrossRefGoogle Scholar
  16. Bosisio MR, Talmant M, Skalli W, Laugier P, Mitton D (2007) Apparent Young’s modulus of human radius using inverse finite-element method. J Biomech 40(9):2022–2028PubMedCrossRefGoogle Scholar
  17. Bossy E, Talmant M, Peyrin F, Akrout L, Cloetens P, Laugier P (2004) An in vitro study of the ultrasonic axial transmission technique at the radius: 1-MHz velocity measurements are sensitive to both mineralization and intracortical porosity. J Bone Miner Res 19(9):1548–1556PubMedCrossRefGoogle Scholar
  18. Bossy E, Laugier P, Peyrin F, Padilla F (2007) Attenuation in trabecular bone: a comparison between numerical simulation and experimental results in human femur. J Acoust Soc Am 122:2469–2475PubMedCrossRefGoogle Scholar
  19. Cadossi R, Cané V (1996) Pathways of transmission of ultrasound energy through the distal metaphysis of the second phalanx of pigs: an in vitro study. Osteoporos Int 6:196–206Google Scholar
  20. Camozzi V, De Terlizzi F, Zangari M et al (2007) Quantitative bone ultrasound at phalanges and calcaneus in osteoporotic postmenopausal women: influence of age and measurement site. Ultrasound Med Biol 33(7):1039–1045PubMedCrossRefGoogle Scholar
  21. Chappard C, Berger G, Roux C, Laugier P (1999) Ultrasound measurement on the calcaneus: influence of immersion time and rotation of the foot. Osteoporos Int 9:318–326PubMedCrossRefGoogle Scholar
  22. Chappard C, Camus E, Lefebvre F et al (2000) Evaluation of error bounds on calcaneal speed of sound caused by surrounding soft tissue. J Clin Densitom 3:121–131PubMedCrossRefGoogle Scholar
  23. Chen YY, Xu YB, Zhan LK, Ma ZC, Sun YN (2012) Reducing temperature influence on dry quantitative ultrasound bone assessment with constant temperature control. Ultrasonics 52(2):276–280PubMedCrossRefGoogle Scholar
  24. Chobot AP, Haffke A, Polanska J et al (2012) Quantitative ultrasound bone measurements in pre-pubertal children with type 1 diabetes. Ultrasound Med Biol 38(7):1109–1115PubMedCrossRefGoogle Scholar
  25. Cournil A, Eymard-Duvernay S, Diouf A et al (2012) Reduced quantitative ultrasound bone mineral density in HIV-infected patients on antiretroviral therapy in Senegal. PLoS ONE 7(2):e31726PubMedCrossRefGoogle Scholar
  26. Cryer JR, Otter SJ, Bowen CJ (2007) Use of quantitative ultrasound scans of the calcaneus to diagnose osteoporosis in patients with rheumatoid arthritis. J Am Podiatr Med Assoc 97(2):108–114PubMedGoogle Scholar
  27. Damilakis J, Perisinakis K, Gourtsoyiannis N (2000) Imaging ultrasonometry of the calcaneus: dependence on calcaneal area. Calcif Tissue Int 67:24–28PubMedCrossRefGoogle Scholar
  28. De Terlizzi F, Battista S, Cavani F et al (2000) Influence of bone tissue density and elasticity on ultrasound propagation: an in vitro study. J Bone Miner Res 15:2458–2466PubMedCrossRefGoogle Scholar
  29. Dencks S, Barkmann R, Padilla F et al (2007) Wavelet based signal processing of in vitro ultrasonic measurements at the proximal femur. Ultrasound Med Biol 33(6):970–980PubMedCrossRefGoogle Scholar
  30. Evans JA, Tavakoli MB (1990) Ultrasonic attenuation and velocity in bone. Phys Med Biol 35:1387–1396PubMedCrossRefGoogle Scholar
  31. Filosa A, de Terlizzi F (2002) Quantitative ultrasound (QUS): a new approach to evacuate bone status in thalassemic patients. Ital J Pediatr 28:310–318Google Scholar
  32. Frediani B, Falsetti P, Baldi F et al (2003) Effects of 4-year treatment with once-weekly clodronate on prevention of corticosteroid-induced bone loss and fractures in patients with arthritis: evaluation with dual-energy X-ray absorptiometry and quantitative ultrasound. Bone 33(4):575–581PubMedCrossRefGoogle Scholar
  33. Gautier G, Kelders L, Groby JP, Dazel O, De Ryck L, Leclaire P (2011) Propagation of acoustic waves in a one-dimensional macroscopically inhomogeneous poroelastic material. J Acoust Soc Am 130(3):1390–1398PubMedCrossRefGoogle Scholar
  34. Gimeno-Ballester J, Azcona San Julian C, Sierrasesumaga Ariznabarreta L (2001) Bone mineral density determination by osteosonography in healthy children and adolescents: normal values. An Esp Pediatr 54(6):540–546PubMedCrossRefGoogle Scholar
  35. Giorgino R, Lorusso D, Paparella P (1996) Ultrasound bone densitometry and 2-year hormonal replacement therapy efficacy in the prevention of early postmenopausal bone loss. Osteoporos Int 6(Suppl 1):S341Google Scholar
  36. Gluer CC (1997) The international quantitative ultrasound consensus group. Quantitative ultrasound techniques for the assessment of osteoporosis: expert agreement on current status. J Bone Miner Res 12:1280–1288PubMedCrossRefGoogle Scholar
  37. Gluer CC, Eastell R, Reid DM et al (2004) Association of five quantitative ultrasound devices and bone densitometry with osteoporotic vertebral fractures in a population-based sample: the OPUS study. J Bone Miner Res 19(5):782–793PubMedCrossRefGoogle Scholar
  38. Gonnelli S, Cepollaro C, Pondrelli C (1996) Ultrasound parameters in osteoporotic patients treated with salmon calcitonin: a longitudinal study. Osteoporos Int 6:303–307PubMedCrossRefGoogle Scholar
  39. Gonnelli S, Montagnani A, Cepollaro C et al (2000) Quantitative ultrasound and bone mineral density in patients with primary hyperparathyroidism before and after surgical treatment. Osteoporos Int 11:255–260Google Scholar
  40. Gonnelli S, Martini G, Caffarelli C et al (2006) Teriparatide’s effects on quantitative ultrasound parameters and bone density in women with established osteoporosis. Osteoporos Int 17(10):1524–1531PubMedCrossRefGoogle Scholar
  41. Gonnelli S, Caffarelli C, Maggi S et al (2010) Effect of inhaled glucocorticoids and beta (2) agonists on vertebral fracture risk in COPD patients: the EOLO study. Calcif Tissue Int 87(2):137–143PubMedCrossRefGoogle Scholar
  42. Granke M, Grimal Q, Saïed A, Nauleau P, Peyrin F, Laugier P (2011) Change in porosity is the major determinant of the variation of cortical bone elasticity at the millimeter scale in aged women. Bone 49(5):1020–1026PubMedCrossRefGoogle Scholar
  43. Grimes M, Bouhadjera A, Haddad S, Benkedidah T (2012) In vitro estimation of fast and slow wave parameters of thin trabecular bone using space-alternating generalized expectation-maximization algorithm. Ultrasonics 52(5):614–621PubMedCrossRefGoogle Scholar
  44. Grimm MJ, Williams JL (1997) Assessment of bone quantity and quality by ultrasound attenuation and velocity in the heel. Clin Biomech 12:281–285CrossRefGoogle Scholar
  45. Grondin J, Grimal Q, Engelke K, Laugier P (2010) Potential of first arriving signal to assess cortical bone geometry at the hip with QUS: a model based study. Ultrasound Med Biol 36:656–666PubMedCrossRefGoogle Scholar
  46. Grondin J, Grimal Q, Yamamoto K et al (2012) Relative contributions of porosity and mineralized matrix properties to the bulk axial ultrasonic wave velocity in human cortical bone. Ultrasonics 52:467–471PubMedCrossRefGoogle Scholar
  47. Guglielmi G, Njeh CF, de Terlizzi F et al (2003) Phalangeal quantitative ultrasound, phalangeal morphometric variables and vertebral fracture discrimination. Calcif Tissue Int 72:469–477PubMedCrossRefGoogle Scholar
  48. Guglielmi G, de Terlizzi F, Aucella F et al (2006) Quantitative ultrasound technique at the phalanges in discriminating between uremic and osteoporotic patients. Eur J Radiol 60(1):108–114PubMedCrossRefGoogle Scholar
  49. Haïat G, Padilla F, Peyrin F, Laugier P (2007) Variation of ultrasonic parameters with microstructure and material properties of trabecular bone: a 3D model simulation. J Bone Miner Res 22(5):665–674PubMedCrossRefGoogle Scholar
  50. Haire TJ, Langton CM (1999) Biot theory: a review of its application to ultrasound propagation through cancellous bone. Bone 24(4):291–295PubMedCrossRefGoogle Scholar
  51. Halaba Z, Pluskiewicz W (1997) The assessment of development of bone mass in children by quantitative ultrasound through the proximal phalanxes of the hand. Ultrasound Med Biol 23:1331–1335PubMedCrossRefGoogle Scholar
  52. Halaba Z, Pyrkosz A, Adamczyk P et al (2006) Longitudinal changes in ultrasound measurements: a parallel study in subjects with genetic disorders and healthy controls. Ultrasound Med Biol 32:409–413PubMedCrossRefGoogle Scholar
  53. Hans D, Dargent-Molina P, Schott AM et al (1996) Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet 348:511–514PubMedCrossRefGoogle Scholar
  54. Hans D, Wu C, Njeh CF et al (1999) Ultrasound velocity of trabecular cubes reflects mainly bone density and elasticity. Calcif Tissue Int 64:18–23Google Scholar
  55. Hans D, Wacker W, Genton L et al (2002) Longitudinal quality control methodology for the quantitative ultrasound Achilles in clinical trial settings. Osteoporos Int 13(10):788–795PubMedCrossRefGoogle Scholar
  56. Hans D, Alekxandrova I, Njeh C et al (2005) Appropriateness of internal digital phantoms for monitoring the stability of the UBIS 5000 quantitative ultrasound device in clinical trials. Osteoporos Int 16(4):435–445PubMedCrossRefGoogle Scholar
  57. Hartl F, Tyndall A, Kraenzlin M et al (2002) Discriminatory ability of quantitative ultrasound parameters and bone mineral density in a population-based sample of postmenopausal women with vertebral fractures: result of the Basel Osteoporosis Study. J Bone Miner Res 17:321–330PubMedCrossRefGoogle Scholar
  58. Hartman C, Shamir R, Eshach-Adiv O, Iosilevsky G, Brik R (2004) Assessment of osteoporosis by quantitative ultrasound versus dual energy X-ray absorptiometry in children with chronic rheumatic diseases. J Rheumatol 31:981–985PubMedGoogle Scholar
  59. Hughes ER, Leighton TG, White PR, Petley GW (2007) Investigation of an anisotropic tortuosity in a biot model of ultrasonic propagation in cancellous bone. J Acoust Soc Am 121(1):568–574PubMedCrossRefGoogle Scholar
  60. Ikeda Y, Iki M (2004) Precision control and seasonal variations in quantitative ultrasound measurement of the calcaneus. J Bone Miner Metab 22(6):588–593PubMedCrossRefGoogle Scholar
  61. Ingle BM, Machado ABC, Pereda CA et al (2005) Monitoring alendronate and oestradiol therapy with quantitative ultrasound and bone mineral density. J Clin Densitom 8:278–286PubMedCrossRefGoogle Scholar
  62. Johansen A, Stone MD (1997) The effect of ankle oedema on bone ultrasound assessment at the heel. Osteoporos Int 7:44–47PubMedCrossRefGoogle Scholar
  63. Kanis JA, Johnell O, Oden A et al (2005) Ten-year probabilities of clinical vertebral fractures according to phalangeal quantitative ultrasonography. Osteoporos Int 16:1065–1070PubMedCrossRefGoogle Scholar
  64. Kaptoge S, da Silva JA, Brixen K et al (2008) Geographical variation in DXA bone mineral density in young European men and women. Results from the Network in Europe on Male Osteoporosis (NEMO) study. Bone 43:332–339PubMedCrossRefGoogle Scholar
  65. Katz J, Meunier A (1987) The elastic anisotropy of bone. J Biomech 20:1063–1070CrossRefGoogle Scholar
  66. Khaw KT, Reeve J, Luben R et al (2004) Prediction of total and hip fracture risk in men and women by quantitative ultrasound of the calcaneus: EPIC-Norfolk prospective population study. Lancet 363:197–202PubMedCrossRefGoogle Scholar
  67. Krieg MA, Cornuz J, Hartl F et al (2002) Quality controls for two heel bone ultrasounds used in the swiss evaluation of the methods of measurement of Osteoporotic fracture risk study. J Clin Densitom 5(4):335–341PubMedCrossRefGoogle Scholar
  68. Krieg MA, Cornuz J, Ruffieux C et al (2003) Comparison of three bone ultrasounds for the discrimination of subjects with and without osteoporotic fractures among 7,562 elderly women. J Bone Miner Res 18:1261–1266Google Scholar
  69. Krieg MA, Cornuz J, Ruffieux C et al (2006) Prediction of hip fracture risk by quantitative ultrasound in more than 7,000 Swiss women > or = 70 years of age: comparison of three technologically different bone ultrasound devices in the SEMOF study. J Bone Miner Res 21:1457–1463PubMedCrossRefGoogle Scholar
  70. Krieg MA, Hans D, Gonnelli S et al (2008) Quantitative ultrasound in the management of osteoporosis: the 2007 ISCD official positions. J Clin Densitom 11:163–187PubMedCrossRefGoogle Scholar
  71. Kutilek S, Bayer M (2010) Quantitative ultrasonometry of the calcaneus in children with osteogenesis imperfecta. J Paediatr Child Health 46(10):592–594PubMedCrossRefGoogle Scholar
  72. Lang SB (1970) Ultrasonic method for measuring elastic coefficients of bone and results on fresh bovine bones. IEEE Trans Biomed Eng 17:101–105PubMedCrossRefGoogle Scholar
  73. Langmann GA, Vujevich KT, Medich D (2012) Heel ultrasound can assess maintenance of bone mass in women with breast cancer. J Clin Densitom 15(3):290–294Google Scholar
  74. Langton CM, Palmer SB, Porter RW (1984) The measurement of broadband ultrasonic attenuation in cancellous bone. Eng Med 13:89–91PubMedCrossRefGoogle Scholar
  75. Langton CM (1997) Development of an electronic phantom for calibration, cross-correlation, and quality assurance of BUA measurement in the calcaneus. Osteoporos Int 7:309Google Scholar
  76. Laugier P, Giat P, Berger G (1994) Broadband ultrasonic attenuation imaging: a new imaging technique of the os calcis. Calcif Tiss Int 54:83–86CrossRefGoogle Scholar
  77. Laugier P, Fournier B, Berger G (1996) Ultrasound parametric imaging of the calcaneus: in vivo results with a new device. Calcif Tissue Int 58:326–331PubMedGoogle Scholar
  78. Laura Gabriela CB, Nalleli VM, Dalia Patricia AT et al (2012) Bone quality and nutritional status in children with congenital heart defects. J Clin Densitom 15(2):205–210PubMedCrossRefGoogle Scholar
  79. Lawrence HL, Yu JG, Yuping L, Chan Z (2010) Probing long bones with ultrasonic body waves. Appl Phys Lett 96:14102–14103Google Scholar
  80. Leclaire P, Kelders L, Lauriks W, Glorieux C, Thoen J (1997) Ultrasonic wave propagation in porous media: determination of acoustic parameters and high frequency limit of the classical models. Stud Health Technol Inform 40:139–155PubMedGoogle Scholar
  81. Lopez-Rodriguez MJ, Lavado-Garcia JM, Canal-Macias ML et al (2012) Quantitative ultrasound in Spanish children and young adults with cystic fibrosis. Biol Res Nurs 32(16):5553–5561Google Scholar
  82. Luisetto G, Camozzi V, De Terlizzi F (2000) Use of quantitative ultrasonography in differentiating osteomalacia from osteoporosis: preliminary study. J Ultrasound Med 19(4):251–256PubMedGoogle Scholar
  83. Lunt M, Felsenberg D, Adams J et al (1997) Population-based geographic variations in DXA bone density in Europe: the EVOS study. Osteoporos Int 7:175–189PubMedCrossRefGoogle Scholar
  84. Machado CB, Pereira WC, Granke M et al (2011) Experimental and simulation results on the effect of cortical bone mineralization in ultrasound axial transmission measurements: a model for fracture healing ultrasound monitoring. Bone 48(5):1202–1209Google Scholar
  85. Määttä M, Moilanen P, Nicholson P, Cheng S, Timonen J, Jämsä T (2009) Correlation of tibial low-frequency ultrasound velocity with femoral radiographic measurements and BMD in elderly women. Ultrasound Med Biol 35(6):903–911PubMedCrossRefGoogle Scholar
  86. Mauloni M, Rovati LC, Cadossi R et al (2000) Monitoring bone effect of transdermal hormone replacement therapy by ultrasound investigation at the phalanx. A four year follow up study. Menopause 7:402–412PubMedCrossRefGoogle Scholar
  87. Mainz JG, Kaiser WA, Beck JF, Mentzel HJ (2009) Substantially reduced calcaneal bone ultrasound parameters in severe untreated asthma. Respiration 78(2):230–233PubMedCrossRefGoogle Scholar
  88. McDevitt H, Ahmed SF (2007) Quantitative ultrasound assessment of bone health in the neonate. Neonatology 91:2–11PubMedCrossRefGoogle Scholar
  89. McKelvie ML, Palmer SB (1991) The interaction of ultrasound with cancellous bone. Phys Med Biol 36:1331–1340PubMedCrossRefGoogle Scholar
  90. Meadow W, Lee G, Lin K, Lantos J (2004) Changes in mortality for extremely low birth weight infants in the 1990s: implications for treatment decisions and resource use. Pediatrics 113:1223–1229PubMedCrossRefGoogle Scholar
  91. Mentzel HJ, Reusch R, Kaiser WA (2009) Seasonal dependence of the parameters of quantitative ultrasonic measurements on the peripheral skeleton. Rofo 181(8):760–766PubMedCrossRefGoogle Scholar
  92. Montagnani A, Gonnelli S, Cepollaro C et al (2002) Graphic trace analysis of ultrasound at the phalanges may differentiate between subjects with primary hyperparathyroidism and with osteoporosis: a pilot study. Osteoporos Int 13:222–227PubMedCrossRefGoogle Scholar
  93. Muller M, Moilanen P, Bossy E et al (2005) Comparison of three ultrasonic axial transmission methods for bone assessment. Ultrasound Med Biol 31(5):633–642PubMedCrossRefGoogle Scholar
  94. Muller M, Mitton D, Moilanen P et al (2008) Prediction of bone mechanical properties using QUS and pQCT: study of the human distal radius. Med Eng Phys 30(6):761–767PubMedCrossRefGoogle Scholar
  95. National Osteoporosis Society (2002) The use of quantitative ultrasound in the management of osteoporosis. Position statement of 31st January 2002Google Scholar
  96. Nauleau P, Cochard E, Minonzio JG et al (2012) Characterization of circumferential guided waves in a cylindrical cortical bone-mimicking phantom. J Acoust Soc Am 131(4):289–294Google Scholar
  97. Nelson AM, Hoffman JJ, Anderson CC et al (2011) Determining attenuation properties of interfering fast and slow ultrasonic waves in cancellous bone. J Acoust Soc Am 130(4):2233–2240PubMedCrossRefGoogle Scholar
  98. Nicholson PH, Bouxsein ML (2000) Quantitative ultrasound does not refl ect mechanically induced damage in human cancellous bone. J Bone Miner Res 15:2467–2472PubMedCrossRefGoogle Scholar
  99. Nicholson PH, Alkalay R (2007) Quantitative ultrasound predicts bone mineral density and failure load in human lumbar vertebrae. Clin Biomech 22(6):623–629CrossRefGoogle Scholar
  100. Njeh CF, Hans D, Fuerst T et al (1999a) Quantitative ultrasound: assessment of osteoporosis and bone status. Martin Dunitz, LondonGoogle Scholar
  101. Njeh CF, Hans D, Wu C et al (1999b) An in vitro investigation of the dependence on sample thickness of the speed of sound along the specimen. Med Eng Phys 21:651–659PubMedCrossRefGoogle Scholar
  102. Padova G, Borzì G, Incorvaia L et al (2011) Prevalence of osteoporosis and vertebral fractures in acromegalic patients. Clin Cases Miner Bone Metab 8(3):37–43PubMedGoogle Scholar
  103. Paggiosi MA, Blumsohn A, Barkmann R et al (2005) Effect of temperature on the longitudinal variability of quantitative ultrasound variables. J Clin Densitom 8(4):436–444PubMedCrossRefGoogle Scholar
  104. Paggiosi MA, Glüer CC, Roux C et al (2011) International variation in proximal femur bone mineral density. Osteoporos Int 22:721–729PubMedCrossRefGoogle Scholar
  105. Paggiosi MA, Barkmann R, Glüer CC et al. (2012) A European multicenter comparison of quantitative ultrasound measurement variables: The OPUS study. Osteoporos Int [Epub a head of print]Google Scholar
  106. Passeri G, Pini G, Troiano L et al (2003) Low vitamin D status, high bone turnover, and bone fractures in centenarians. J Clin Endocrinol Metab 88(11):5109–5115PubMedCrossRefGoogle Scholar
  107. Peretz A, Penaloza A, Mesquita M et al (2000) Quantitative ultrasound and dual X-ray absorptiometry measurements of the calcaneus in patients on maintenance hemodialysis. Bone 27:287–292PubMedCrossRefGoogle Scholar
  108. Pluskiewicz W, Nowakowska J (1997) Bone status after long-term anticonvulsant therapy in epileptic patients: evaluation using quantitative ultrasound of calcaneus and phalanges. Ultrasound Med Biol 23(4):553–558PubMedCrossRefGoogle Scholar
  109. Pluskiewicz W, Adamczyk P, Drozdzowska B et al (2002) Skeletal status in children, adolescents and young adults with end-stage renal failure treated with hemo- or peritoneal dialysis. Osteoporos Int 13:353–357PubMedCrossRefGoogle Scholar
  110. Prevrhal S, Fuerst T, Fan B et al (2001) Quantitative ultrasound of the tibia depends on both cortical density and thickness. Osteoporos Int 12:28–34PubMedCrossRefGoogle Scholar
  111. Pye SR, Devakumar V, Boonen S et al (2010) Influence of lifestyle factors on quantitative heel ultrasound measurements in middle-aged and elderly men. Calcif Tissue Int 86:211–219CrossRefGoogle Scholar
  112. Raum K, Leguerney I, Chandelier F et al (2005) Bone microstructure and elastic tissue properties are reflected in QUS axial transmission measurements. Ultrasound Med Biol 31:1225–1235PubMedCrossRefGoogle Scholar
  113. Ritschl E, Wehmeijer K, De Terlizzi F et al (2005) Assessment of skeletal development in preterm and term infants by quantitative ultrasound. Pediatr Res 58:341–346PubMedCrossRefGoogle Scholar
  114. Roben P, Barkmann R, Ullrich S et al (2001) Assessment of phalangeal bone loss and erosions in patients with rheumatoid arthritis by quantitative ultrasound. Ann Rheum Dis 60:670–677PubMedCrossRefGoogle Scholar
  115. Rossini M, Viapiana O, Del Marco A et al (2007) Quantitative ultrasound in adults with cystic fibrosis: correlation with bone mineral density and risk of vertebral fractures. Calcif Tissue Int 80(1):44–49PubMedCrossRefGoogle Scholar
  116. Rosso R, Vignolo M, Parodi A et al (2005) Bone quality in perinatally HIV-infected children: role of age, sex, growth, HIV infection, and antiretroviral therapy. AIDS Res Hum Retroviruses 21(11):927–932PubMedCrossRefGoogle Scholar
  117. Rubinacci A, Moro GE, Noehm G et al (2003) Quantitative ultrasound for the assessment of osteopenia in preterm infants. Eur J Endocrinol 149:307–315PubMedCrossRefGoogle Scholar
  118. Sasso M, Haïat G, Yamato Y et al (2008) Dependence of ultrasonic attenuation on bone mass and microstructure in bovine cortical bone. J Biomech 41(2):347–355PubMedCrossRefGoogle Scholar
  119. Serra-Hsu F, Cheng J, Lynch T, Qin YX (2011) Evaluation of a pulsed phase-locked loop system for noninvasive tracking of bone deformation under loading with finite element and strain analysis. Physiol Meas 32(8):1301–1313PubMedCrossRefGoogle Scholar
  120. Schattauer GmbH (2006) Evidence-based DVO guidelines osteoporosis in Germany; prophylaxis, diagnosis and therapy in postmenopausal women and men over 60 years. Verlag fur medizin und naturwissenschaften StuttgartGoogle Scholar
  121. Siegel IM, Anast GT, Fields T (1958) The determination of fracture healing by measurement of sound velocity across the fracture site. Surg Gynecol Obstet 107:327–332PubMedGoogle Scholar
  122. Sievänen H, Cheng S, Ollikainen S et al (2001) Ultrasound velocity and cortical bone characteristics in vivo. Osteoporos Int 12:399–405PubMedCrossRefGoogle Scholar
  123. Strelitzki R, Evans JA, Clarke AJ (1997) The influence of porosity and pore size on the ultrasonic properties of bone investigated using a phantom material. Osteoporos Int 7:370–375Google Scholar
  124. Sundberg M, Gardsell P, Johnell O et al (1998) Comparison of quantitative ultrasound measurements in calcaneus with DXA and SXA at other skeletal sites:a population-based study on 280 children aged 11–16 years. Osteoporos Int 8:410–427PubMedCrossRefGoogle Scholar
  125. Tavakoli MB, Evans JA (1991) Dependence of the velocity and attenuation of ultrasound in bone on the mineral content. Phys Med Biol 36(11):1529–1537PubMedCrossRefGoogle Scholar
  126. Tavakoli MB, Evans JA (1992) The effect of bone structure on ultrasonic attenuation and velocity. Ultrasonics 30(6):389–395PubMedCrossRefGoogle Scholar
  127. Tatarinov A, Sarvazyan N, Sarvazyan A (2005) Use of multiple acoustic wave modes for assessment of long bones: model study. Ultrasonics 43(8):672–680PubMedCrossRefGoogle Scholar
  128. Tatarinov A, Sarvazyan A, Beller G, Felsenberg D (2011) Comparative examination of human proximal tibiae in vitro by ultrasonic guided waves and pQCT. Ultrasound Med Biol 37(11):1791–1801PubMedCrossRefGoogle Scholar
  129. Thijssen JM, Weijers G, de Korte CL (2007) Objective performance testing and quality assurance of medical ultrasound equipment. Ultrasound Med Biol 33(3):460–471PubMedCrossRefGoogle Scholar
  130. Wear KA, Nagaraja S, Dreher ML, Gibson SL (2012) Relationships of quantitative ultrasound parameters with cancellous bone microstructure in human calcaneus in vitro. J Acoust Soc Am 131(2):1605–1612PubMedCrossRefGoogle Scholar
  131. Williams JE, Wilson CM, Biassoni L, Suri R, Fewtrell MS (2012) Dual energy X-ray absorptiometry and quantitative ultrasound are not interchangeable in diagnosing abnormal bones. Arch Dis Child [Epub a head of print]Google Scholar
  132. Wuster C, Albanese C, de Aloysio D et al (2000) Phalangeal osteosonogrammetry study (PhOS): age related changes, diagnostic sensitivity and discrimination power. J Bone Miner Res 15(8):1603–1614PubMedCrossRefGoogle Scholar
  133. Wuster C, de Terlizzi F, Becker S et al (2005) Usefulness of quantitative ultrasound in evaluating structural and mechanical properties of bone: comparison of ultrasound, dual-energy X-ray absorptiometry, microcomputed tomography, and mechanical testing of human phalanges in vitro. Technol Health Care 13:1–14Google Scholar
  134. Yamamoto K, Nakatsuji T, Yaoi Y et al (2012) Relationships between the anisotropy of longitudinal wave velocity and hydroxyapatite crystallite orientation in bovine cortical bone. Ultrasonics 52:377–386Google Scholar
  135. Zebaze RM, Ghasem-Zadeh A, Bohte A et al (2010) Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 375:1729–1736PubMedCrossRefGoogle Scholar
  136. Zitzmann M, Brune M, Vieth V et al (2002) Monitoring bone density in hypogonadal men by quantitative phalangeal ultrasound. Bone 31:422–429PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of RadiologyUniversity of FoggiaFoggiaItaly
  2. 2.Department of RadiologyScientific Institute “Casa Sollievo della Sofferenza” HospitalFoggiaItaly

Personalised recommendations