Skip to main content

Quantitative Ultrasound and Fracture Risk Assessment

  • Chapter
Osteoporosis and Bone Densitometry Measurements

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 2169 Accesses

Abstract

Quantitative ultrasound (QUS) is a non-invasive technique for the investigation of bone tissue used in several pathologies and clinical conditions, especially for the identification of bone changes connected with menopause, osteoporosis and bone fragility. The versatility of the method, its low cost and lack of ionising radiation have led to a worldwide diffusion with an increasing interest among clinicians. In the last years several studies have been conducted to investigate the potential of QUS in various pathologies of bone metabolism, in secondary osteoporosis, paediatrics, neonatology, genetics and other fields. The results have confirmed the ability of the technique in the prediction of fracture risk; studies in paediatrics led to the establishment of reference curves for some QUS devices and other promising results have been reported in several conditions involving metabolic bone disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agenzia Italiana del Farmaco (2007) Note AIFA 2006–2007 per l’uso appropriato dei farmaci. Supplemento ordinario alla “Gazzetta Ufficiale” n. 7 del 10 gennaio 20-Serie generale, Nota 79

    Google Scholar 

  • Agostinelli D, de Terlizzi F (2007) QUS in monitoring raloxifene and estrogen-progestogens: a 4-year longitudinal study. Ultrasound Med Biol 33(8):1184–1190

    Article  PubMed  CAS  Google Scholar 

  • Azcona C, Burghard E, Ruza E et al (2003) Reduced bone mineralization in adolescent survivors of malignant bone tumors: comparison of quantitative ultrasound and dual-energy X-ray absorptiometry. J Pediatr Hematol Oncol 25(4):297–302

    Article  PubMed  Google Scholar 

  • Barkmann R, Heller M, Gluer CC (1996) The influence of soft tissue and waterbath temperature on quantitative ultrasound transmission parameters: an in vivo study. Osteoporos Int 6:181

    Article  Google Scholar 

  • Barkmann R, Gluer CC (1998) Factors influencing QUS parameters of the calcaneum: suggestions for an improved measurment procedure. J Clin Densitom 1:93–94

    Article  Google Scholar 

  • Barkmann R, Glüer CC (1999) Error sources in quantitative ultrasound measurement. In: Njeh CF, Hans D (eds) Quantitative ultrasound: assessment of osteoporosis and bone status. Martin Dunitz, London, pp 101–108

    Google Scholar 

  • Barkmann R, Kantorovich E, Singal C et al (2000a) A new method for quantitative ultrasound measurements at multiple skeletal sites. J Clin Densitom 3:1–7

    Article  PubMed  CAS  Google Scholar 

  • Barkmann R, Lüsse S, Stampa B et al (2000b) Assessment of the geometry of human finger phalanges using quantitative ultrasound in vivo. Osteoporos Int 11:745–755

    Article  PubMed  CAS  Google Scholar 

  • Barkmann R, Rohrschenider W, Vierling M et al (2002) German pediatric reference data for quantitative transverse transmission ultrasound of finger phalanges. Osteoporos Int 13:55–61

    Article  PubMed  CAS  Google Scholar 

  • Barkmann R, Laugier P, Moser U et al (2007) A method for the estimation of femoral bone mineral density from variables of ultrasound transmission through the human femur. Bone 40(1):37–44

    Article  PubMed  CAS  Google Scholar 

  • Baroncelli GI, Federico G, Bertelloni S et al (2003) Assessment of bone quality by quantitative ultrasound of proximal phalanges of the hand and fracture rate in children and adolescents with bone and mineral disorders. Pediatr Res 54:125–136

    Article  PubMed  Google Scholar 

  • Baroncelli GI, Federico G, Vignolo M et al (2006) The phalangeal quantitative ultrasound group. Cross-sectional reference data for phalangeal quantitative ultrasound from early childhood to young-adulthood according to gender, age, skeletal growth, and pubertal development. Bone 39:159–173

    Article  PubMed  Google Scholar 

  • Bauer DC, Gluer CC, Cauley JA et al (1997) Broadband ultrasound attenuation predict fractures strongly and independently of densitometry in older women: a prospective study. Arch Intern Med 157:629–634

    Article  PubMed  CAS  Google Scholar 

  • Boonen S, Nijs J, Borghs H, Peeters H, Vanderschueren D, Luyten FP (2005) Identifying postmenopausal women with osteoporosis by calcaneal ultrasound, metacarpal digital X-ray radiogrammetry and phalangeal radiographic absorptiometry: a comparative study. Osteoporos Int 16:93–100

    Article  PubMed  Google Scholar 

  • Boonen S, Pye SR, O’Neill TW et al (2011) Influence of bone remodelling rate on quantitative ultrasound parameters at the calcaneus and DXA BMDa of the hip and spine in middle-aged and elderly European men: the European Male Ageing Study (EMAS). Eur J Endocrinol 165(6):977–986

    Article  PubMed  CAS  Google Scholar 

  • Bosisio MR, Talmant M, Skalli W, Laugier P, Mitton D (2007) Apparent Young’s modulus of human radius using inverse finite-element method. J Biomech 40(9):2022–2028

    Article  PubMed  CAS  Google Scholar 

  • Bossy E, Talmant M, Peyrin F, Akrout L, Cloetens P, Laugier P (2004) An in vitro study of the ultrasonic axial transmission technique at the radius: 1-MHz velocity measurements are sensitive to both mineralization and intracortical porosity. J Bone Miner Res 19(9):1548–1556

    Article  PubMed  CAS  Google Scholar 

  • Bossy E, Laugier P, Peyrin F, Padilla F (2007) Attenuation in trabecular bone: a comparison between numerical simulation and experimental results in human femur. J Acoust Soc Am 122:2469–2475

    Article  PubMed  Google Scholar 

  • Cadossi R, Cané V (1996) Pathways of transmission of ultrasound energy through the distal metaphysis of the second phalanx of pigs: an in vitro study. Osteoporos Int 6:196–206

    Google Scholar 

  • Camozzi V, De Terlizzi F, Zangari M et al (2007) Quantitative bone ultrasound at phalanges and calcaneus in osteoporotic postmenopausal women: influence of age and measurement site. Ultrasound Med Biol 33(7):1039–1045

    Article  PubMed  Google Scholar 

  • Chappard C, Berger G, Roux C, Laugier P (1999) Ultrasound measurement on the calcaneus: influence of immersion time and rotation of the foot. Osteoporos Int 9:318–326

    Article  PubMed  CAS  Google Scholar 

  • Chappard C, Camus E, Lefebvre F et al (2000) Evaluation of error bounds on calcaneal speed of sound caused by surrounding soft tissue. J Clin Densitom 3:121–131

    Article  PubMed  CAS  Google Scholar 

  • Chen YY, Xu YB, Zhan LK, Ma ZC, Sun YN (2012) Reducing temperature influence on dry quantitative ultrasound bone assessment with constant temperature control. Ultrasonics 52(2):276–280

    Article  PubMed  Google Scholar 

  • Chobot AP, Haffke A, Polanska J et al (2012) Quantitative ultrasound bone measurements in pre-pubertal children with type 1 diabetes. Ultrasound Med Biol 38(7):1109–1115

    Article  PubMed  Google Scholar 

  • Cournil A, Eymard-Duvernay S, Diouf A et al (2012) Reduced quantitative ultrasound bone mineral density in HIV-infected patients on antiretroviral therapy in Senegal. PLoS ONE 7(2):e31726

    Article  PubMed  CAS  Google Scholar 

  • Cryer JR, Otter SJ, Bowen CJ (2007) Use of quantitative ultrasound scans of the calcaneus to diagnose osteoporosis in patients with rheumatoid arthritis. J Am Podiatr Med Assoc 97(2):108–114

    PubMed  Google Scholar 

  • Damilakis J, Perisinakis K, Gourtsoyiannis N (2000) Imaging ultrasonometry of the calcaneus: dependence on calcaneal area. Calcif Tissue Int 67:24–28

    Article  PubMed  CAS  Google Scholar 

  • De Terlizzi F, Battista S, Cavani F et al (2000) Influence of bone tissue density and elasticity on ultrasound propagation: an in vitro study. J Bone Miner Res 15:2458–2466

    Article  PubMed  Google Scholar 

  • Dencks S, Barkmann R, Padilla F et al (2007) Wavelet based signal processing of in vitro ultrasonic measurements at the proximal femur. Ultrasound Med Biol 33(6):970–980

    Article  PubMed  Google Scholar 

  • Evans JA, Tavakoli MB (1990) Ultrasonic attenuation and velocity in bone. Phys Med Biol 35:1387–1396

    Article  PubMed  CAS  Google Scholar 

  • Filosa A, de Terlizzi F (2002) Quantitative ultrasound (QUS): a new approach to evacuate bone status in thalassemic patients. Ital J Pediatr 28:310–318

    Google Scholar 

  • Frediani B, Falsetti P, Baldi F et al (2003) Effects of 4-year treatment with once-weekly clodronate on prevention of corticosteroid-induced bone loss and fractures in patients with arthritis: evaluation with dual-energy X-ray absorptiometry and quantitative ultrasound. Bone 33(4):575–581

    Article  PubMed  CAS  Google Scholar 

  • Gautier G, Kelders L, Groby JP, Dazel O, De Ryck L, Leclaire P (2011) Propagation of acoustic waves in a one-dimensional macroscopically inhomogeneous poroelastic material. J Acoust Soc Am 130(3):1390–1398

    Article  PubMed  CAS  Google Scholar 

  • Gimeno-Ballester J, Azcona San Julian C, Sierrasesumaga Ariznabarreta L (2001) Bone mineral density determination by osteosonography in healthy children and adolescents: normal values. An Esp Pediatr 54(6):540–546

    Article  PubMed  CAS  Google Scholar 

  • Giorgino R, Lorusso D, Paparella P (1996) Ultrasound bone densitometry and 2-year hormonal replacement therapy efficacy in the prevention of early postmenopausal bone loss. Osteoporos Int 6(Suppl 1):S341

    Google Scholar 

  • Gluer CC (1997) The international quantitative ultrasound consensus group. Quantitative ultrasound techniques for the assessment of osteoporosis: expert agreement on current status. J Bone Miner Res 12:1280–1288

    Article  PubMed  CAS  Google Scholar 

  • Gluer CC, Eastell R, Reid DM et al (2004) Association of five quantitative ultrasound devices and bone densitometry with osteoporotic vertebral fractures in a population-based sample: the OPUS study. J Bone Miner Res 19(5):782–793

    Article  PubMed  Google Scholar 

  • Gonnelli S, Cepollaro C, Pondrelli C (1996) Ultrasound parameters in osteoporotic patients treated with salmon calcitonin: a longitudinal study. Osteoporos Int 6:303–307

    Article  PubMed  CAS  Google Scholar 

  • Gonnelli S, Montagnani A, Cepollaro C et al (2000) Quantitative ultrasound and bone mineral density in patients with primary hyperparathyroidism before and after surgical treatment. Osteoporos Int 11:255–260

    Google Scholar 

  • Gonnelli S, Martini G, Caffarelli C et al (2006) Teriparatide’s effects on quantitative ultrasound parameters and bone density in women with established osteoporosis. Osteoporos Int 17(10):1524–1531

    Article  PubMed  CAS  Google Scholar 

  • Gonnelli S, Caffarelli C, Maggi S et al (2010) Effect of inhaled glucocorticoids and beta (2) agonists on vertebral fracture risk in COPD patients: the EOLO study. Calcif Tissue Int 87(2):137–143

    Article  PubMed  CAS  Google Scholar 

  • Granke M, Grimal Q, Saïed A, Nauleau P, Peyrin F, Laugier P (2011) Change in porosity is the major determinant of the variation of cortical bone elasticity at the millimeter scale in aged women. Bone 49(5):1020–1026

    Article  PubMed  Google Scholar 

  • Grimes M, Bouhadjera A, Haddad S, Benkedidah T (2012) In vitro estimation of fast and slow wave parameters of thin trabecular bone using space-alternating generalized expectation-maximization algorithm. Ultrasonics 52(5):614–621

    Article  PubMed  Google Scholar 

  • Grimm MJ, Williams JL (1997) Assessment of bone quantity and quality by ultrasound attenuation and velocity in the heel. Clin Biomech 12:281–285

    Article  Google Scholar 

  • Grondin J, Grimal Q, Engelke K, Laugier P (2010) Potential of first arriving signal to assess cortical bone geometry at the hip with QUS: a model based study. Ultrasound Med Biol 36:656–666

    Article  PubMed  Google Scholar 

  • Grondin J, Grimal Q, Yamamoto K et al (2012) Relative contributions of porosity and mineralized matrix properties to the bulk axial ultrasonic wave velocity in human cortical bone. Ultrasonics 52:467–471

    Article  PubMed  Google Scholar 

  • Guglielmi G, Njeh CF, de Terlizzi F et al (2003) Phalangeal quantitative ultrasound, phalangeal morphometric variables and vertebral fracture discrimination. Calcif Tissue Int 72:469–477

    Article  PubMed  CAS  Google Scholar 

  • Guglielmi G, de Terlizzi F, Aucella F et al (2006) Quantitative ultrasound technique at the phalanges in discriminating between uremic and osteoporotic patients. Eur J Radiol 60(1):108–114

    Article  PubMed  CAS  Google Scholar 

  • Haïat G, Padilla F, Peyrin F, Laugier P (2007) Variation of ultrasonic parameters with microstructure and material properties of trabecular bone: a 3D model simulation. J Bone Miner Res 22(5):665–674

    Article  PubMed  Google Scholar 

  • Haire TJ, Langton CM (1999) Biot theory: a review of its application to ultrasound propagation through cancellous bone. Bone 24(4):291–295

    Article  PubMed  CAS  Google Scholar 

  • Halaba Z, Pluskiewicz W (1997) The assessment of development of bone mass in children by quantitative ultrasound through the proximal phalanxes of the hand. Ultrasound Med Biol 23:1331–1335

    Article  PubMed  CAS  Google Scholar 

  • Halaba Z, Pyrkosz A, Adamczyk P et al (2006) Longitudinal changes in ultrasound measurements: a parallel study in subjects with genetic disorders and healthy controls. Ultrasound Med Biol 32:409–413

    Article  PubMed  Google Scholar 

  • Hans D, Dargent-Molina P, Schott AM et al (1996) Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet 348:511–514

    Article  PubMed  CAS  Google Scholar 

  • Hans D, Wu C, Njeh CF et al (1999) Ultrasound velocity of trabecular cubes reflects mainly bone density and elasticity. Calcif Tissue Int 64:18–23

    Google Scholar 

  • Hans D, Wacker W, Genton L et al (2002) Longitudinal quality control methodology for the quantitative ultrasound Achilles in clinical trial settings. Osteoporos Int 13(10):788–795

    Article  PubMed  CAS  Google Scholar 

  • Hans D, Alekxandrova I, Njeh C et al (2005) Appropriateness of internal digital phantoms for monitoring the stability of the UBIS 5000 quantitative ultrasound device in clinical trials. Osteoporos Int 16(4):435–445

    Article  PubMed  CAS  Google Scholar 

  • Hartl F, Tyndall A, Kraenzlin M et al (2002) Discriminatory ability of quantitative ultrasound parameters and bone mineral density in a population-based sample of postmenopausal women with vertebral fractures: result of the Basel Osteoporosis Study. J Bone Miner Res 17:321–330

    Article  PubMed  CAS  Google Scholar 

  • Hartman C, Shamir R, Eshach-Adiv O, Iosilevsky G, Brik R (2004) Assessment of osteoporosis by quantitative ultrasound versus dual energy X-ray absorptiometry in children with chronic rheumatic diseases. J Rheumatol 31:981–985

    PubMed  Google Scholar 

  • Hughes ER, Leighton TG, White PR, Petley GW (2007) Investigation of an anisotropic tortuosity in a biot model of ultrasonic propagation in cancellous bone. J Acoust Soc Am 121(1):568–574

    Article  PubMed  Google Scholar 

  • Ikeda Y, Iki M (2004) Precision control and seasonal variations in quantitative ultrasound measurement of the calcaneus. J Bone Miner Metab 22(6):588–593

    Article  PubMed  Google Scholar 

  • Ingle BM, Machado ABC, Pereda CA et al (2005) Monitoring alendronate and oestradiol therapy with quantitative ultrasound and bone mineral density. J Clin Densitom 8:278–286

    Article  PubMed  Google Scholar 

  • Johansen A, Stone MD (1997) The effect of ankle oedema on bone ultrasound assessment at the heel. Osteoporos Int 7:44–47

    Article  PubMed  CAS  Google Scholar 

  • Kanis JA, Johnell O, Oden A et al (2005) Ten-year probabilities of clinical vertebral fractures according to phalangeal quantitative ultrasonography. Osteoporos Int 16:1065–1070

    Article  PubMed  CAS  Google Scholar 

  • Kaptoge S, da Silva JA, Brixen K et al (2008) Geographical variation in DXA bone mineral density in young European men and women. Results from the Network in Europe on Male Osteoporosis (NEMO) study. Bone 43:332–339

    Article  PubMed  Google Scholar 

  • Katz J, Meunier A (1987) The elastic anisotropy of bone. J Biomech 20:1063–1070

    Article  CAS  Google Scholar 

  • Khaw KT, Reeve J, Luben R et al (2004) Prediction of total and hip fracture risk in men and women by quantitative ultrasound of the calcaneus: EPIC-Norfolk prospective population study. Lancet 363:197–202

    Article  PubMed  Google Scholar 

  • Krieg MA, Cornuz J, Hartl F et al (2002) Quality controls for two heel bone ultrasounds used in the swiss evaluation of the methods of measurement of Osteoporotic fracture risk study. J Clin Densitom 5(4):335–341

    Article  PubMed  CAS  Google Scholar 

  • Krieg MA, Cornuz J, Ruffieux C et al (2003) Comparison of three bone ultrasounds for the discrimination of subjects with and without osteoporotic fractures among 7,562 elderly women. J Bone Miner Res 18:1261–1266

    Google Scholar 

  • Krieg MA, Cornuz J, Ruffieux C et al (2006) Prediction of hip fracture risk by quantitative ultrasound in more than 7,000 Swiss women > or = 70 years of age: comparison of three technologically different bone ultrasound devices in the SEMOF study. J Bone Miner Res 21:1457–1463

    Article  PubMed  Google Scholar 

  • Krieg MA, Hans D, Gonnelli S et al (2008) Quantitative ultrasound in the management of osteoporosis: the 2007 ISCD official positions. J Clin Densitom 11:163–187

    Article  PubMed  Google Scholar 

  • Kutilek S, Bayer M (2010) Quantitative ultrasonometry of the calcaneus in children with osteogenesis imperfecta. J Paediatr Child Health 46(10):592–594

    Article  PubMed  Google Scholar 

  • Lang SB (1970) Ultrasonic method for measuring elastic coefficients of bone and results on fresh bovine bones. IEEE Trans Biomed Eng 17:101–105

    Article  PubMed  CAS  Google Scholar 

  • Langmann GA, Vujevich KT, Medich D (2012) Heel ultrasound can assess maintenance of bone mass in women with breast cancer. J Clin Densitom 15(3):290–294

    Google Scholar 

  • Langton CM, Palmer SB, Porter RW (1984) The measurement of broadband ultrasonic attenuation in cancellous bone. Eng Med 13:89–91

    Article  PubMed  CAS  Google Scholar 

  • Langton CM (1997) Development of an electronic phantom for calibration, cross-correlation, and quality assurance of BUA measurement in the calcaneus. Osteoporos Int 7:309

    Google Scholar 

  • Laugier P, Giat P, Berger G (1994) Broadband ultrasonic attenuation imaging: a new imaging technique of the os calcis. Calcif Tiss Int 54:83–86

    Article  CAS  Google Scholar 

  • Laugier P, Fournier B, Berger G (1996) Ultrasound parametric imaging of the calcaneus: in vivo results with a new device. Calcif Tissue Int 58:326–331

    PubMed  CAS  Google Scholar 

  • Laura Gabriela CB, Nalleli VM, Dalia Patricia AT et al (2012) Bone quality and nutritional status in children with congenital heart defects. J Clin Densitom 15(2):205–210

    Article  PubMed  Google Scholar 

  • Lawrence HL, Yu JG, Yuping L, Chan Z (2010) Probing long bones with ultrasonic body waves. Appl Phys Lett 96:14102–14103

    Google Scholar 

  • Leclaire P, Kelders L, Lauriks W, Glorieux C, Thoen J (1997) Ultrasonic wave propagation in porous media: determination of acoustic parameters and high frequency limit of the classical models. Stud Health Technol Inform 40:139–155

    PubMed  CAS  Google Scholar 

  • Lopez-Rodriguez MJ, Lavado-Garcia JM, Canal-Macias ML et al (2012) Quantitative ultrasound in Spanish children and young adults with cystic fibrosis. Biol Res Nurs 32(16):5553–5561

    Google Scholar 

  • Luisetto G, Camozzi V, De Terlizzi F (2000) Use of quantitative ultrasonography in differentiating osteomalacia from osteoporosis: preliminary study. J Ultrasound Med 19(4):251–256

    PubMed  CAS  Google Scholar 

  • Lunt M, Felsenberg D, Adams J et al (1997) Population-based geographic variations in DXA bone density in Europe: the EVOS study. Osteoporos Int 7:175–189

    Article  PubMed  CAS  Google Scholar 

  • Machado CB, Pereira WC, Granke M et al (2011) Experimental and simulation results on the effect of cortical bone mineralization in ultrasound axial transmission measurements: a model for fracture healing ultrasound monitoring. Bone 48(5):1202–1209

    Google Scholar 

  • Määttä M, Moilanen P, Nicholson P, Cheng S, Timonen J, Jämsä T (2009) Correlation of tibial low-frequency ultrasound velocity with femoral radiographic measurements and BMD in elderly women. Ultrasound Med Biol 35(6):903–911

    Article  PubMed  Google Scholar 

  • Mauloni M, Rovati LC, Cadossi R et al (2000) Monitoring bone effect of transdermal hormone replacement therapy by ultrasound investigation at the phalanx. A four year follow up study. Menopause 7:402–412

    Article  PubMed  CAS  Google Scholar 

  • Mainz JG, Kaiser WA, Beck JF, Mentzel HJ (2009) Substantially reduced calcaneal bone ultrasound parameters in severe untreated asthma. Respiration 78(2):230–233

    Article  PubMed  Google Scholar 

  • McDevitt H, Ahmed SF (2007) Quantitative ultrasound assessment of bone health in the neonate. Neonatology 91:2–11

    Article  PubMed  CAS  Google Scholar 

  • McKelvie ML, Palmer SB (1991) The interaction of ultrasound with cancellous bone. Phys Med Biol 36:1331–1340

    Article  PubMed  CAS  Google Scholar 

  • Meadow W, Lee G, Lin K, Lantos J (2004) Changes in mortality for extremely low birth weight infants in the 1990s: implications for treatment decisions and resource use. Pediatrics 113:1223–1229

    Article  PubMed  Google Scholar 

  • Mentzel HJ, Reusch R, Kaiser WA (2009) Seasonal dependence of the parameters of quantitative ultrasonic measurements on the peripheral skeleton. Rofo 181(8):760–766

    Article  PubMed  Google Scholar 

  • Montagnani A, Gonnelli S, Cepollaro C et al (2002) Graphic trace analysis of ultrasound at the phalanges may differentiate between subjects with primary hyperparathyroidism and with osteoporosis: a pilot study. Osteoporos Int 13:222–227

    Article  PubMed  CAS  Google Scholar 

  • Muller M, Moilanen P, Bossy E et al (2005) Comparison of three ultrasonic axial transmission methods for bone assessment. Ultrasound Med Biol 31(5):633–642

    Article  PubMed  CAS  Google Scholar 

  • Muller M, Mitton D, Moilanen P et al (2008) Prediction of bone mechanical properties using QUS and pQCT: study of the human distal radius. Med Eng Phys 30(6):761–767

    Article  PubMed  CAS  Google Scholar 

  • National Osteoporosis Society (2002) The use of quantitative ultrasound in the management of osteoporosis. Position statement of 31st January 2002

    Google Scholar 

  • Nauleau P, Cochard E, Minonzio JG et al (2012) Characterization of circumferential guided waves in a cylindrical cortical bone-mimicking phantom. J Acoust Soc Am 131(4):289–294

    Google Scholar 

  • Nelson AM, Hoffman JJ, Anderson CC et al (2011) Determining attenuation properties of interfering fast and slow ultrasonic waves in cancellous bone. J Acoust Soc Am 130(4):2233–2240

    Article  PubMed  Google Scholar 

  • Nicholson PH, Bouxsein ML (2000) Quantitative ultrasound does not refl ect mechanically induced damage in human cancellous bone. J Bone Miner Res 15:2467–2472

    Article  PubMed  CAS  Google Scholar 

  • Nicholson PH, Alkalay R (2007) Quantitative ultrasound predicts bone mineral density and failure load in human lumbar vertebrae. Clin Biomech 22(6):623–629

    Article  CAS  Google Scholar 

  • Njeh CF, Hans D, Fuerst T et al (1999a) Quantitative ultrasound: assessment of osteoporosis and bone status. Martin Dunitz, London

    Google Scholar 

  • Njeh CF, Hans D, Wu C et al (1999b) An in vitro investigation of the dependence on sample thickness of the speed of sound along the specimen. Med Eng Phys 21:651–659

    Article  PubMed  CAS  Google Scholar 

  • Padova G, Borzì G, Incorvaia L et al (2011) Prevalence of osteoporosis and vertebral fractures in acromegalic patients. Clin Cases Miner Bone Metab 8(3):37–43

    PubMed  Google Scholar 

  • Paggiosi MA, Blumsohn A, Barkmann R et al (2005) Effect of temperature on the longitudinal variability of quantitative ultrasound variables. J Clin Densitom 8(4):436–444

    Article  PubMed  Google Scholar 

  • Paggiosi MA, Glüer CC, Roux C et al (2011) International variation in proximal femur bone mineral density. Osteoporos Int 22:721–729

    Article  PubMed  CAS  Google Scholar 

  • Paggiosi MA, Barkmann R, Glüer CC et al. (2012) A European multicenter comparison of quantitative ultrasound measurement variables: The OPUS study. Osteoporos Int [Epub a head of print]

    Google Scholar 

  • Passeri G, Pini G, Troiano L et al (2003) Low vitamin D status, high bone turnover, and bone fractures in centenarians. J Clin Endocrinol Metab 88(11):5109–5115

    Article  PubMed  CAS  Google Scholar 

  • Peretz A, Penaloza A, Mesquita M et al (2000) Quantitative ultrasound and dual X-ray absorptiometry measurements of the calcaneus in patients on maintenance hemodialysis. Bone 27:287–292

    Article  PubMed  CAS  Google Scholar 

  • Pluskiewicz W, Nowakowska J (1997) Bone status after long-term anticonvulsant therapy in epileptic patients: evaluation using quantitative ultrasound of calcaneus and phalanges. Ultrasound Med Biol 23(4):553–558

    Article  PubMed  CAS  Google Scholar 

  • Pluskiewicz W, Adamczyk P, Drozdzowska B et al (2002) Skeletal status in children, adolescents and young adults with end-stage renal failure treated with hemo- or peritoneal dialysis. Osteoporos Int 13:353–357

    Article  PubMed  CAS  Google Scholar 

  • Prevrhal S, Fuerst T, Fan B et al (2001) Quantitative ultrasound of the tibia depends on both cortical density and thickness. Osteoporos Int 12:28–34

    Article  PubMed  CAS  Google Scholar 

  • Pye SR, Devakumar V, Boonen S et al (2010) Influence of lifestyle factors on quantitative heel ultrasound measurements in middle-aged and elderly men. Calcif Tissue Int 86:211–219

    Article  CAS  Google Scholar 

  • Raum K, Leguerney I, Chandelier F et al (2005) Bone microstructure and elastic tissue properties are reflected in QUS axial transmission measurements. Ultrasound Med Biol 31:1225–1235

    Article  PubMed  Google Scholar 

  • Ritschl E, Wehmeijer K, De Terlizzi F et al (2005) Assessment of skeletal development in preterm and term infants by quantitative ultrasound. Pediatr Res 58:341–346

    Article  PubMed  Google Scholar 

  • Roben P, Barkmann R, Ullrich S et al (2001) Assessment of phalangeal bone loss and erosions in patients with rheumatoid arthritis by quantitative ultrasound. Ann Rheum Dis 60:670–677

    Article  PubMed  CAS  Google Scholar 

  • Rossini M, Viapiana O, Del Marco A et al (2007) Quantitative ultrasound in adults with cystic fibrosis: correlation with bone mineral density and risk of vertebral fractures. Calcif Tissue Int 80(1):44–49

    Article  PubMed  CAS  Google Scholar 

  • Rosso R, Vignolo M, Parodi A et al (2005) Bone quality in perinatally HIV-infected children: role of age, sex, growth, HIV infection, and antiretroviral therapy. AIDS Res Hum Retroviruses 21(11):927–932

    Article  PubMed  CAS  Google Scholar 

  • Rubinacci A, Moro GE, Noehm G et al (2003) Quantitative ultrasound for the assessment of osteopenia in preterm infants. Eur J Endocrinol 149:307–315

    Article  PubMed  CAS  Google Scholar 

  • Sasso M, Haïat G, Yamato Y et al (2008) Dependence of ultrasonic attenuation on bone mass and microstructure in bovine cortical bone. J Biomech 41(2):347–355

    Article  PubMed  Google Scholar 

  • Serra-Hsu F, Cheng J, Lynch T, Qin YX (2011) Evaluation of a pulsed phase-locked loop system for noninvasive tracking of bone deformation under loading with finite element and strain analysis. Physiol Meas 32(8):1301–1313

    Article  PubMed  Google Scholar 

  • Schattauer GmbH (2006) Evidence-based DVO guidelines osteoporosis in Germany; prophylaxis, diagnosis and therapy in postmenopausal women and men over 60 years. Verlag fur medizin und naturwissenschaften Stuttgart

    Google Scholar 

  • Siegel IM, Anast GT, Fields T (1958) The determination of fracture healing by measurement of sound velocity across the fracture site. Surg Gynecol Obstet 107:327–332

    PubMed  CAS  Google Scholar 

  • Sievänen H, Cheng S, Ollikainen S et al (2001) Ultrasound velocity and cortical bone characteristics in vivo. Osteoporos Int 12:399–405

    Article  PubMed  Google Scholar 

  • Strelitzki R, Evans JA, Clarke AJ (1997) The influence of porosity and pore size on the ultrasonic properties of bone investigated using a phantom material. Osteoporos Int 7:370–375

    Google Scholar 

  • Sundberg M, Gardsell P, Johnell O et al (1998) Comparison of quantitative ultrasound measurements in calcaneus with DXA and SXA at other skeletal sites:a population-based study on 280 children aged 11–16 years. Osteoporos Int 8:410–427

    Article  PubMed  CAS  Google Scholar 

  • Tavakoli MB, Evans JA (1991) Dependence of the velocity and attenuation of ultrasound in bone on the mineral content. Phys Med Biol 36(11):1529–1537

    Article  PubMed  CAS  Google Scholar 

  • Tavakoli MB, Evans JA (1992) The effect of bone structure on ultrasonic attenuation and velocity. Ultrasonics 30(6):389–395

    Article  PubMed  CAS  Google Scholar 

  • Tatarinov A, Sarvazyan N, Sarvazyan A (2005) Use of multiple acoustic wave modes for assessment of long bones: model study. Ultrasonics 43(8):672–680

    Article  PubMed  Google Scholar 

  • Tatarinov A, Sarvazyan A, Beller G, Felsenberg D (2011) Comparative examination of human proximal tibiae in vitro by ultrasonic guided waves and pQCT. Ultrasound Med Biol 37(11):1791–1801

    Article  PubMed  Google Scholar 

  • Thijssen JM, Weijers G, de Korte CL (2007) Objective performance testing and quality assurance of medical ultrasound equipment. Ultrasound Med Biol 33(3):460–471

    Article  PubMed  Google Scholar 

  • Wear KA, Nagaraja S, Dreher ML, Gibson SL (2012) Relationships of quantitative ultrasound parameters with cancellous bone microstructure in human calcaneus in vitro. J Acoust Soc Am 131(2):1605–1612

    Article  PubMed  Google Scholar 

  • Williams JE, Wilson CM, Biassoni L, Suri R, Fewtrell MS (2012) Dual energy X-ray absorptiometry and quantitative ultrasound are not interchangeable in diagnosing abnormal bones. Arch Dis Child [Epub a head of print]

    Google Scholar 

  • Wuster C, Albanese C, de Aloysio D et al (2000) Phalangeal osteosonogrammetry study (PhOS): age related changes, diagnostic sensitivity and discrimination power. J Bone Miner Res 15(8):1603–1614

    Article  PubMed  CAS  Google Scholar 

  • Wuster C, de Terlizzi F, Becker S et al (2005) Usefulness of quantitative ultrasound in evaluating structural and mechanical properties of bone: comparison of ultrasound, dual-energy X-ray absorptiometry, microcomputed tomography, and mechanical testing of human phalanges in vitro. Technol Health Care 13:1–14

    Google Scholar 

  • Yamamoto K, Nakatsuji T, Yaoi Y et al (2012) Relationships between the anisotropy of longitudinal wave velocity and hydroxyapatite crystallite orientation in bovine cortical bone. Ultrasonics 52:377–386

    Google Scholar 

  • Zebaze RM, Ghasem-Zadeh A, Bohte A et al (2010) Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 375:1729–1736

    Article  PubMed  Google Scholar 

  • Zitzmann M, Brune M, Vieth V et al (2002) Monitoring bone density in hypogonadal men by quantitative phalangeal ultrasound. Bone 31:422–429

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Guglielmi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guglielmi, G., Nasuto, M. (2013). Quantitative Ultrasound and Fracture Risk Assessment. In: Guglielmi, G. (eds) Osteoporosis and Bone Densitometry Measurements. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2012_751

Download citation

  • DOI: https://doi.org/10.1007/174_2012_751

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27883-9

  • Online ISBN: 978-3-642-27884-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics