Maximal Safe Dose Method of I-131 in the Management of Recurrent/Metastatic Differentiated Thyroid Carcinoma

Part of the Medical Radiology book series (MEDRAD)


 There are several methods of determining I-131 doses for the treatment of recurrent or metastatic differentiated thyroid cancer, including empirical and dosimetric approaches. The most common and simplest method involves the administration of a fixed empirical dose. Doses are determined by disease extent. The merits of using empirical fixed doses are convenience, a long usage history, a reasonably acceptable rate, and a low severe complication rate. However, some investigators found that patients with metastases that persisted after I-131 therapy received significantly lower radiation doses per millicurie of administered I-131. Thus, dosimetric approaches are needed to ensure the proper management of metastatic DTC. To determine the dose in a given case, we need to know how much activity is contained in a lesion. Lesion mass is another parameter that must be determined for calculation. Dose–response relationships differ, which are due to the difficulty in exact measurement of parameters and due to heterogeneity of radioiodine distribution within metastatic lesions. Another approach is to measure maximal safe dose (MSD), which defined the dose delivering 2 Gy (200 rad) to blood (surrogate of bone marrow). MSD is usually higher than the empirical fixed dose, and this therapy is safe in the treatment of residual DTC. This approach provides a better response rate in metastatic DTC than the conventional fixed dose method. Our data suggest that MSD provides an alternative approach when metastases are refractory to conventional fixed dose therapy. A randomized controlled trial is needed to determine the real efficacy of MSD, and comparative studies are required to evaluate treatment regimens and tumor enhancers, such as retinoic acids.


Fixed Dose Differentiate Thyroid Cancer Bone Marrow Suppression Radiation Pneumonitis Differentiate Thyroid Cancer Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Beierwaltes WH (1978) The treatment of thyroid carcinoma with radioactive iodine. Semin Nucl Med 8:79–94PubMedCrossRefGoogle Scholar
  2. Beierwaltes WH, Nishiyama RH, Thompson NW, Copp JE, Kubo A (1982) Survival time and cure in papillary and follicular thyroid carcinoma with distant metastases: statistics following University of Michigan therapy. J Nucl Med 23:561–568PubMedGoogle Scholar
  3. Benua RS, Leeper RD (1986) A method and rationale for treating metastatic thyroid carcinoma with the largest safe dose of I-131. In: Medeiros-Neto G and Gaitan E (eds), Frontiers in Thyroidology, vol 2. Plenum Medical Book Co, New York, pp 1317–1321Google Scholar
  4. Benua RS, Cicale NR, Sonenberg M, Rawson RW (1962) The relation of radioiodine dosimetry to results and complications in the treatment of metastatic thyroid cancer. AJR 87:171–182Google Scholar
  5. de Keizer B, Hoekstra A, Konijnenberg MW et al (2004) Bone marrow dosimetry and safety of high I-131 activities given after recombinant human thyroid-stimulating hormone to treat metastatic differentiated thyroid cancer. J Nucl Med 45:1549–1554PubMedGoogle Scholar
  6. Dorn R, Kopp J, Vogt H, Heidenreich P, Carroll RG, Gulec SA (2003) Dosimetry-guided radioactive iodine treatment in patients with metastatic differentiated thyroid cancer: largest safe dose using a risk-adapted approach. J Nucl Med 44:451–456PubMedGoogle Scholar
  7. Edmonds CJ (1979) Treatment of thyroid cancer. Clin Endocrinol Metab 8:223–243PubMedCrossRefGoogle Scholar
  8. Eschmann SM, Reischl G, Bilger K et al (2002) Evaluation of dosimetry of radioiodine therapy in benign and malignant thyroid disorders by means of iodine-124 and PET. Eur J Nucl Med Mol Imaging. 29:760–767PubMedCrossRefGoogle Scholar
  9. Flower MA, Schlesinger T, Hinton PJ et al (1989) Radiation dose assessment in radioiodine therapy. 2. Practical implementation using quantitative scanning and PET, with initial results on thyroid carcinoma. Radiother Oncol 15:345–357PubMedCrossRefGoogle Scholar
  10. Freitas JE, Gross MD, Ripley S, Shapiro B (1985) Radionuclide diagnosis and therapy of thyroid cancer: current status report. Semin Nucl Med 15:106–131PubMedCrossRefGoogle Scholar
  11. Furhang EE, Larson SM, Buranapong P, Humm JL (1999) Thyroid cancer dosimetry using clearance fitting. J Nucl Med 40:131–136PubMedGoogle Scholar
  12. Guenter H–H, Schober O, Schwarzrock R, Hundeshagen H (1987) Hematologic longtime modifications after radioiodine therapy of the carcinoma of the thyroid gland. II. Modifications of the bone marrow including leukemia [in German]. Strahlenther Onkol 163:475–485Google Scholar
  13. Hermanska J, Karny M, Zimak J, Jirsa L, Samal M, Vicek P (2001) Improved prediction of therapeutic absorbed doses of radioiodine in the treatment of thyroid carcinoma. J Nucl Med 42:1084–1090PubMedGoogle Scholar
  14. Kim JC, Yoon JH, Bom HS et al (2003) Development and assessment of individual maximum permissible dose method of I-131 therapy in high risk patients with differentiated papillary thyroid cancer. Nucl Med Mol Imaging 37:110–119Google Scholar
  15. Krishnamurthy GT, Blahd W (1977) Radioiodine I-131 therapy in the management of thyroid cancer. Cancer 40:195–202PubMedCrossRefGoogle Scholar
  16. Lee JJ, Chung JK, Kim SE et al (2008) Maximal safe dose of I-131 after failure of standard fixed dose therapy in patients with differentiated thyroid carcinoma. Ann Nucl Med 22:727–734PubMedCrossRefGoogle Scholar
  17. Leeper RD (1985) Thyroid cancer. Med Clin North Am 69:1079–1096PubMedGoogle Scholar
  18. Luster M, Lassmann M, Haenscheid H, Michalowski U, Incerti C, Reiners C (2000) Use of recombinant human thyrotropin before radioiodine therapy in patients with advanced differentiated thyroid carcinoma. J Clin Endocrinol Metab 85:3640–3645PubMedCrossRefGoogle Scholar
  19. Maxon HR (1999) Quantitative radioiodine therapy in the treatment of differentiated thyroid cancer. Q J Nucl Med 43:313–323PubMedGoogle Scholar
  20. Maxon HR, Thomas SR, Hertzberg VS et al (1983) Relation between effective radiation dose and outcome of radioiodine therapy for thyroid cancer. N Engl J Med 309:937–941PubMedCrossRefGoogle Scholar
  21. Menzel C, Grunwald F, Schomburg A et al (1996) High-dose radioiodine therapy in advanced differentiated thyroid carcinoma. J Nucl Med 37:1496–1503PubMedGoogle Scholar
  22. Menzel C, Kranert WT, Dobert N et al (2003) RhTSH stimulation before radioiodine therapy in thyroid cancer reduces the effective half-life of I-131. J Nucl Med 44:1065–1068PubMedGoogle Scholar
  23. Moheshwari YK, Hill CS Jr, Haynie TP III, Hickey RC, Samaan NA (1981) I-131 therapy in differentiated thyroid carcinoma. Cancer 47:664–671CrossRefGoogle Scholar
  24. Montenegro J, Gonzalez O, Saracho R, Aguirre R, Gonzalez O, Martinez I (1996) Changes in renal function in primary hypothyroidism. Am J Kidney Dis 27:195–198PubMedCrossRefGoogle Scholar
  25. Robbins J (1981) The role of TRH and lithium in the management of thyroid cancer. In: Andreoli M, Monaco F, Robbins J (eds) Advances in thyroid neoplasia. Field Educational Italia, Rome, pp 233–244Google Scholar
  26. Robeson WR, Ellwood JE, Margulies P, Margouleff D (2002) Outcome and toxicity associated with maximum safe dose radioiodine treatment of metastatic thyroid cancer. Clin Nucl Med 27:556–566PubMedCrossRefGoogle Scholar
  27. Schlumberger M, Challeton C, De Vathaire F et al (1996) Radioactive iodine treatment and external radiotherapy for lung and bone metastases from thyroid carcinoma. J Nucl Med 37:598–605PubMedGoogle Scholar
  28. Seidlin SM, Marinelli LD, Oshry E (1946) Radioactive iodine therapy: effect on functioning metastases of adenocarcinoma of thyroid. JAMA 132:838–847CrossRefGoogle Scholar
  29. Thomas SR, Maxon HR, Kereiakes JG (1976) In vivo quantitation of lesion radioactivity using external counting methods. Med Phys l3:253–255Google Scholar
  30. Tubiana M (1982) Thyroid cancer. In: Beckers C (ed) Thyroid disease. Pergamon, France, pp 187–227Google Scholar
  31. Van Nostrand D, Neutze J, Atkins F (1986) Side effects of rational dose iodine-131 therapy for metastatic well-differentiated thyroid carcinoma. J Nucl Med 27:1519–1527PubMedGoogle Scholar
  32. Van Nostrand D, Atkins F, Yeganeh F, Acio E, Bursaw R, Wartofsky L (2002) Dosimetrically determined doses of radioiodine for the treatment of metastatic thyroid carcinoma. Thyroid. 12:121–134PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Nuclear MedicineSeoul National University College of MedicineSeoulKorea

Personalised recommendations