Redifferentiation Therapy in Thyroid Cancer

  • Markus Luster
  • Daria Handkiewicz-Junak
  • Johannes W. Smit
Part of the Medical Radiology book series (MEDRAD)


Thyroid cancer originates from epithelial and from parafollicular C-cells. Distant metastases occur in about 5–10 % of patients. RAI therapy and TSH suppressive therapy have an established role in the management of disseminated thyroid cancer, yet in most of these patients disease progress is only a matter of time. Disease progression is usually accompanied by dedifferentiation of cancer cells and standard therapies are no more effective. In this chapter new molecular backgrounds and clinical data on novel redifferentiating agents are discussed.


Thyroid Cancer Thyroid Carcinoma Differentiate Thyroid Carcinoma Follicular Thyroid Carcinoma BRAFV600E Mutation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ain KB, Egorin MJ, DeSimone PA (2000) Treatment of anaplastic thyroid carcinoma with paclitaxel: phase 2 trial using ninety-six-hour infusion. Collaborative anaplastic thyroid cancer health intervention trials (CATCHIT) group. Thyroid 10:587–594PubMedCrossRefGoogle Scholar
  2. Arturi F, Russo D, Schlumberger M, du Villard JA, Caillou B, Vigneri P, Wicker R, Chiefari E, Suarez HG, Filetti S (1998) Iodide symporter gene expression in human thyroid tumors. J Clin Endocrinol Metab 83:2493–2496PubMedGoogle Scholar
  3. Bassi V, Vitale M, Feliciello A, De RS, Rossi G, Fenzi G (1995) Retinoic acid Induces intercellular adhesion molecule-1 hyperexpression in human thyroid carcinoma cell lines. J Clin Endocrinol Metab 80:1129–1135PubMedGoogle Scholar
  4. Boerner AR, Petrich T, Weckesser E, Fricke H, Hofmann M, Otto D, Weckesser M, Langen KJ, Knapp WH (2002) Monitoring isotretinoin therapy in thyroid cancer using 18F-FDG PET. Eur J Nucl Med Mol Imaging 29:231–236PubMedCrossRefGoogle Scholar
  5. Caillou B, Troalen F, Baudin E, Talbot M, Filetti S, Schlumberger M, Bidart JM (1998) Na+/I− symporter distribution in human thyroid tissues: an immunohistochemical study. J Clin Endocrinol Metab 83:4102–4106PubMedGoogle Scholar
  6. Fernandez CA, Puig-Domingo M, Lomena F, Estorch M, Camacho M, V, Bittini A L, Marazuela M, Santamaria J, Castro J, Martinez d, I, Moraga I, Martin T, Megia A, Porta M, Mauricio D and Halperin I (2009) Effectiveness of retinoic acid treatment for redifferentiation of thyroid cancer in relation to recovery of radioiodine uptake. J Endocrinol Invest 32:228–233Google Scholar
  7. Castaigne S, Chomienne C, Daniel MT, Ballerini P, Berger R, Fenaux P, Degos L (1990) All-trans retinoic acid as a differentiation therapy for acute promyelocytic leukemia. I. Clin Results Blood 76:1704–1709Google Scholar
  8. Coelho SM, Corbo R, Buescu A, Carvalho DP, Vaisman M (2004) Retinoic acid in patients with radioiodine non-responsive thyroid carcinoma. J Endocrinol Invest 27:334–339PubMedCrossRefGoogle Scholar
  9. Coelho SM, Vaisman M, Carvalho DP (2005) Tumour re-differentiation effect of retinoic acid: a novel therapeutic approach for advanced thyroid cancer. Curr Pharm Des 11:2525–2531PubMedCrossRefGoogle Scholar
  10. Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ, Mazzaferri EL, McIver B, Sherman SI, Tuttle RM (2006) Management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 16:109–142PubMedCrossRefGoogle Scholar
  11. Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ, Mazzaferri EL, McIver B, Pacini F, Schlumberger M, Sherman SI, Steward DL, Tuttle RM (2009) Revised American Thyroid Association Management Guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 19:1167–1214PubMedCrossRefGoogle Scholar
  12. Courbon F, Zerdoud S, Bastie D, Archambaud F, Hoff M, Eche N, Berry I, Caron P (2006) Defective efficacy of retinoic acid treatment in patients with metastatic thyroid carcinoma. Thyroid 16:1025–1031PubMedCrossRefGoogle Scholar
  13. De Besi P, Busnardo B, Toso S, Girelli ME, Nacamulli D, Simioni N, Casara D, Zorat P, Fiorentino MV (1991) Combined chemotherapy with bleomycin, adriamycin, and platinum in advanced thyroid cancer. J Endocrinol Invest 14:475–480PubMedCrossRefGoogle Scholar
  14. Demierre MF, Higgins PD, Gruber SB, Hawk E, Lippman SM (2005) Statins and cancer prevention. Nat Rev Cancer 5:930–942PubMedCrossRefGoogle Scholar
  15. Dohan O, Baloch Z, Banrevi Z, Livolsi V, Carrasco N (2001) Rapid communication: predominant intracellular overexpression of the Na(+)/I(−) symporter (NIS) in a large sampling of thyroid cancer cases. J Clin Endocrinol Metab 86:2697–2700PubMedGoogle Scholar
  16. Durand S, Ferraro-Peyret C, Joufre M, Chave A, Borson-Chazot F, Selmi-Ruby S, Rousset B (2009) Molecular characteristics of papillary thyroid carcinomas without BRAF mutation or RET/PTC rearrangement: relationship with clinico-pathological features. Endocr Relat Cancer 16:467–481PubMedCrossRefGoogle Scholar
  17. Durante C, Puxeddu E, Ferretti E, Morisi R, Moretti S, Bruno R, Barbi F, Avenia N, Scipioni A, Verrienti A, Tosi E, Cavaliere A, Gulino A, Filetti S, Russo D (2007) BRAF mutations in papillary thyroid carcinomas inhibit genes involved in iodine metabolism. J Clin Endocrinol Metab 92:2840–2843PubMedCrossRefGoogle Scholar
  18. Elisei R, Vivaldi A, Agate L, Ciampi R, Molinaro E, Piampiani P, Romei C, Faviana P, Basolo F, Miccoli P, Capodanno A, Collecchi P, Pacini F, Pinchera A (2005) All-trans-retinoic acid treatment inhibits the growth of retinoic acid receptor beta messenger ribonucleic acid expressing thyroid cancer cell lines but does not reinduce the expression of thyroid-specific genes. J Clin Endocrinol Metab 90:2403–2411PubMedCrossRefGoogle Scholar
  19. Fagin JA (2004) How thyroid tumors start and why it matters: kinase mutants as targets for solid cancer pharmacotherapy. J Endocrinol 183:249–256PubMedCrossRefGoogle Scholar
  20. Farol LT, Hymes KB (2004) Bexarotene: a clinical review. Expert Rev Anticancer Ther 4:180–188PubMedCrossRefGoogle Scholar
  21. Frohlich E, Machicao F, Wahl R (2005) Action of thiazolidinediones on differentiation, proliferation and apoptosis of normal and transformed thyrocytes in culture. Endocr Relat Cancer 12:291–303PubMedCrossRefGoogle Scholar
  22. Giguere V (1994) Retinoic acid receptors and cellular retinoid binding proteins: complex interplay in retinoid signaling. Endocr Rev 15:61–79PubMedGoogle Scholar
  23. Gregory PJ, Wang X, Allard BL, Sahin M, Wang XL, Hay ID, Hiddinga HJ, Deshpande SS, Kroll TG, Grebe SK, Eberhardt NL, McIver B (2004) The PAX8/PPARgamma fusion oncoprotein transforms immortalized human thyrocytes through a mechanism probably involving wild-Type PPARgamma inhibition. Oncogene 23:3634–3641CrossRefGoogle Scholar
  24. Gruning T, Tiepolt C, Zophel K, Bredow J, Kropp J, Franke WG (2003) Retinoic acid for redifferentiation of thyroid cancer–does it hold its promise? Eur J Endocrinol 148:395–402PubMedCrossRefGoogle Scholar
  25. Grunwald F, Menzel C, Bender H, Palmedo H, Otte R, Fimmers R, Risse J, Biersack HJ (1998a) Redifferentiation therapy-induced radioiodine uptake in thyroid cancer. J Nucl Med 39:1903–1906PubMedGoogle Scholar
  26. Grunwald F, Pakos E, Bender H, Menzel C, Otte R, Palmedo H, Pfeifer U, Biersack HJ (1998b) Redifferentiation therapy with retinoic acid in follicular thyroid cancer. J Nucl Med 39:1555–1558PubMedGoogle Scholar
  27. Handkiewicz-Junak D, Roskosz J, Hasse-Lazar K, Szpak-Ulczok S, Puch Z, Kukulska A, Olczyk T, Piela A, Paliczka-Cieslik E, Jarzab B (2009) 13-Cis-Retinoic acid re-differentiation therapy and recombinant human thyrotropin-aided radioiodine treatment of non-functional metastatic thyroid cancer: a single-center, 53-patient phase 2 study. Thyroid Res 2:8PubMedCentralPubMedCrossRefGoogle Scholar
  28. Handkiewicz-Junak D, Czarniecka A, Jarzab B (2010) Molecular prognostic markers in papillary and follicular thyroid cancer: current status and future directions. Mol Cell Endocrinol 322:8–28PubMedCrossRefGoogle Scholar
  29. Haugen BR (1999) Management of the patient with progressive radioiodine non-responsive disease. Semin Surg Oncol 16:34–41PubMedCrossRefGoogle Scholar
  30. Haugen BR (2006) Does the metabolic activity of metastatic thyroid carcinoma correlate with prognosis? Nat Clin Pract Endocrinol Metab 2:488–489PubMedGoogle Scholar
  31. Haugen BR, Pacini F, Reiners C, Schlumberger M, Ladenson PW, Sherman SI, Cooper DS, Graham KE, Braverman LE, Skarulis MC, Davies TF, DeGroot LJ, Mazzaferri EL, Daniels GH, Ross DS, Luster M, Samuels MH, Becker DV, Maxon HR III, Cavalieri RR, Spencer CA, McEllin K, Weintraub BD, Ridgway EC (1999) A comparison of recombinant human thyrotropin and thyroid hormone withdrawal for the detection of thyroid remnant or cancer. J Clin Endocrinol Metab 84:3877–3885PubMedGoogle Scholar
  32. Haugen BR, Larson LL, Pugazhenthi U, Hays WR, Klopper JP, Kramer CA, Sharma V (2004) Retinoic acid and retinoid X receptors are differentially expressed in thyroid cancer and thyroid carcinoma cell lines and predict response to treatment with retinoids. J Clin Endocrinol Metab 89:272–280PubMedCrossRefGoogle Scholar
  33. Havekes B, Schroder van der Elst JP, van der PG, Goslings BM, Romijn JA, Smit JW (2000) Beneficial effects of retinoic acid on extracellular matrix degradation and attachment behaviour in follicular thyroid carcinoma cell lines. J Endocrinol 167:229–238Google Scholar
  34. Hoang-Vu C, Bull K, Schwarz I, Krause G, Schmutzler C, Aust G, Kohrle J, Dralle H (1999) Regulation of CD97 protein in thyroid carcinoma. J Clin Endocrinol Metab 84:1104–1109PubMedGoogle Scholar
  35. Hoftijzer H, Heemstra KA, Morreau H, Stokkel MP, Corssmit EP, Gelderblom H, Weijers K, Pereira AM, Huijberts M, Kapiteijn E, Romijn JA, Smit JW (2009) Beneficial effects of sorafenib on tumor progression, but not on radioiodine uptake, in patients with differentiated thyroid carcinoma. Eur J Endocrinol 161:923–931PubMedCrossRefGoogle Scholar
  36. Hundahl SA, Fleming ID, Fremgen AM, Menck HR (1998) A national cancer data base report on 53,856 cases of thyroid carcinoma treated in the U.S., 1985–1995 [See Commetns]. Cancer 83:2638–2648PubMedCrossRefGoogle Scholar
  37. Kebebew E, Lindsay S, Clark OH, Woeber KA, Hawkins R, Greenspan FS (2009) Results of rosiglitazone therapy in patients with thyroglobulin-positive and radioiodine-negative advanced differentiated thyroid cancer. Thyroid 19:953–956PubMedCrossRefGoogle Scholar
  38. Kim WG, Kim EY, Kim TY, Ryu JS, Hong SJ, Kim WB, Shong YK (2009) Redifferentiation therapy with 13-Cis retinoic acids in radioiodine-resistant thyroid cancer. Endocr J 56:105–112PubMedCrossRefGoogle Scholar
  39. Kitazono M, Robey R, Zhan Z, Sarlis NJ, Skarulis MC, Aikou T, Bates S, Fojo T (2001) Low concentrations of the histone deacetylase inhibitor, depsipeptide (FR901228), increase expression of the Na(+)/I(−) symporter and iodine accumulation in poorly differentiated thyroid carcinoma cells. J Clin Endocrinol Metab 86:3430–3435PubMedGoogle Scholar
  40. Kloos RT, Ringel MD, Knopp MV, Hall NC, King M, Stevens R, Liang J, Wakely PE Jr, Vasko VV, Saji M, Rittenberry J, Wei L, Arbogast D, Collamore M, Wright JJ, Grever M, Shah MH (2009) Phase II trial of sorafenib in metastatic thyroid cancer. J Clin Oncol 27:1675–1684PubMedCentralPubMedCrossRefGoogle Scholar
  41. Koh CS, Ku JL, Park SY, Kim KH, Choi JS, Kim IJ, Park JH, Oh SK, Chung JK, Lee JH, Kim WH, Kim CW, Cho BY, Park JG (2007) Establishment and characterization of cell lines from three human thyroid carcinomas: responses to all-trans-retinoic acid and mutations in the BRAF gene. Mol Cell Endocrinol 264:118–127PubMedCrossRefGoogle Scholar
  42. Kroll TG, Sarraf P, Pecciarini L, Chen CJ, Mueller E, Spiegelman BM, Fletcher JA (2000) PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma [Corrected]. Science 289:1357–1360PubMedCrossRefGoogle Scholar
  43. Lazar V, Bidart JM, Caillou B, Mahe C, Lacroix L, Filetti S, Schlumberger M (1999) Expression of the Na+/I− symporter gene in human thyroid tumors: a comparison study with other thyroid-specific genes. J Clin Endocrinol Metab 84:3228–3234PubMedGoogle Scholar
  44. Liu YY, Stokkel MP, Pereira AM, Corssmit EP, Morreau HA, Romijn JA, Smit JW (2006) Bexarotene increases uptake of radioiodide in metastases of differentiated thyroid carcinoma. Eur J Endocrinol 154:525–531PubMedCrossRefGoogle Scholar
  45. Lotan R (1991) Retinoids as modulators of tumor cells invasion and metastasis. Semin Cancer Biol 2:197–208PubMedGoogle Scholar
  46. Luong QT, O’Kelly J, Braunstein GD, Hershman JM, Koeffler HP (2006) Antitumor activity of suberoylanilide hydroxamic acid against thyroid cancer cell lines in vitro and in vivo. Clin Cancer Res 12:5570–5577PubMedCrossRefGoogle Scholar
  47. McBurney MW, Costa S, Pratt MA (1993) Retinoids and cancer: a basis for differentiation therapy. Cancer Invest 11:590–598PubMedCrossRefGoogle Scholar
  48. Oyen WJ, Bodei L, Giammarile F, Maecke HR, Tennvall J, Luster M, Brans B (2007) Targeted therapy in nuclear medicine–current status and future prospects. Ann Oncol 18:1782–1792PubMedCrossRefGoogle Scholar
  49. Pacini F, Agate L, Elisei R, Capezzone M, Ceccarelli C, Lippi F, Molinaro E, Pinchera A (2001) Outcome of differentiated thyroid cancer with detectable serum Tg and negative diagnostic (131)I whole body scan: comparison of patients treated with high (131)I activities versus untreated patients. J Clin Endocrinol Metab 86:4092–4097PubMedCrossRefGoogle Scholar
  50. Pacini F, Schlumberger M, Dralle H, Elisei R, Smit JW, Wiersinga W (2006) European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur J Endocrinol 154:787–803PubMedCrossRefGoogle Scholar
  51. Peyssonnaux C, Eychene A (2001) The Raf/MEK/ERK pathway: new concepts of activation. Biol Cell 93:53–62PubMedCrossRefGoogle Scholar
  52. Riesco-Eizaguirre G, Santisteban P (2007) Molecular biology of thyroid cancer initiation. Clin Transl Oncol 9:686–693PubMedCrossRefGoogle Scholar
  53. Rigas JR, Dragnev KH (2005) Emerging role of rexinoids in non-small cell lung cancer: focus on bexarotene. Oncologist 10:22–33PubMedCrossRefGoogle Scholar
  54. Ringel MD (2006) Phase II study of histone deacetylase inhibitor SAHA in patients with metastatic thyroid cancer. Thyroid 14:928–929Google Scholar
  55. Rochaix P, Monteil-Onteniente S, Rochette-Egly C, Caratero C, Voigt JJ, Jozan S (1998) Reduced expression of retinoic acid receptor beta protein (RAR Beta) in human papillary thyroid carcinoma: immunohistochemical and western blot study. Histopathology 33:337–343PubMedCrossRefGoogle Scholar
  56. Ruegemer JJ, Hay ID, Bergstralh EJ, Ryan JJ, Offord KP, Gorman CA (1988) Distant metastases in differentiated thyroid carcinoma: a multivariate analysis of prognostic variables. J Clin Endocrinol Metab 67:501–508PubMedCrossRefGoogle Scholar
  57. Saito T, Endo T, Kawaguchi A, Ikeda M, Katoh R, Kawaoi A, Muramatsu A, Onaya T (1998) Increased expression of the sodium/iodide symporter in papillary thyroid carcinomas. J Clin Invest 101:1296–1300PubMedCentralPubMedCrossRefGoogle Scholar
  58. Santoro M, Melillo RM, Fusco A (2006) RET/PTC activation in papillary thyroid carcinoma: European journal of endocrinology prize lecture. Eur J Endocrinol 155:645–653PubMedCrossRefGoogle Scholar
  59. Sanz MA, Grimwade D, Tallman MS, Lowenberg B, Fenaux P, Estey EH, Naoe T, Lengfelder E, Buchner T, Dohner H, Burnett AK, Lo-Coco F (2009) Management of acute promyelocytic Leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood 113:1875–1891PubMedCrossRefGoogle Scholar
  60. Schlumberger M, Challeton C, De VF, Travagli JP, Gardet P, Lumbroso JD, Francese C, Fontaine F, Ricard M, Parmentier C (1996) Radioactive iodine treatment and external radiotherapy for lung and bone metastases from thyroid carcinoma. J Nucl Med 37:598–605PubMedGoogle Scholar
  61. Schmutzler C, Winzer R, Meissner-Weigl J, Kohrle J (1997) Retinoic acid increases sodium/iodide symporter MRNA levels in human thyroid cancer cell lines and suppresses expression of functional symporter in nontransformed FRTL-5 rat thyroid cells. Biochem Biophys Res Commun 240:832–838PubMedCrossRefGoogle Scholar
  62. Schmutzler C, Brtko J, Winzer R, Jakobs TC, Meissner-Weigl J, Simon D, Goretzki PE, Kohrle J (1998) Functional retinoid and thyroid hormone receptors in human thyroid-carcinoma cell lines and tissues. Int J Cancer 76:368–376PubMedCrossRefGoogle Scholar
  63. Schmutzler C, Schmitt TL, Glaser F, Loos U, Kohrle J (2002) The promoter of the human sodium/iodide-symporter gene responds to retinoic acid. Mol Cell Endocrinol 189:145–155PubMedCrossRefGoogle Scholar
  64. Schmutzler C, Hoang-Vu C, Ruger B, Kohrle J (2004) Human thyroid carcinoma cell lines show different retinoic acid receptor repertoires and retinoid responses. Eur J Endocrinol 150:547–556PubMedCrossRefGoogle Scholar
  65. Schreck R, Schnieders F, Schmutzler C, Kohrle J (1994) Retinoids stimulate type I iodothyronine 5′-deiodinase activity in human follicular thyroid carcinoma cell lines. J Clin Endocrinol Metab 79:791–798PubMedGoogle Scholar
  66. Sherman SI, Wirth LJ, Droz JP, Hofmann M, Bastholt L, Martins RG, Licitra L, Eschenberg MJ, Sun YN, Juan T, Stepan DE, Schlumberger MJ (2008) Motesanib diphosphate in progressive differentiated thyroid cancer. N Engl J Med 359:31–42PubMedCrossRefGoogle Scholar
  67. Short SC, Suovuori A, Cook G, Vivian G, Harmer C (2004) A phase II study using retinoids as redifferentiation agents to increase iodine uptake in metastatic thyroid cancer. Clin Oncol (R Coll Radiol) 16:569–574CrossRefGoogle Scholar
  68. Simon D, Koehrle J, Reiners C, Boerner AR, Schmutzler C, Mainz K, Goretzki PE, Roeher HD (1998) Redifferentiation therapy with retinoids: therapeutic option for advanced follicular and papillary thyroid carcinoma. World J Surg 22:569–574PubMedCrossRefGoogle Scholar
  69. Simon D, Korber C, Krausch M, Segering J, Groth P, Gorges R, Grunwald F, Muller-Gartner HW, Schmutzler C, Kohrle J, Roher HD, Reiners C (2002) Clinical impact of retinoids in redifferentiation therapy of advanced thyroid cancer: final results of a pilot study. Eur J Nucl Med Mol Imaging 29:775–782PubMedCrossRefGoogle Scholar
  70. Soares P, Sobrinho-Simoes M (1995) Recent advances in cytometry, cytogenetics and molecular genetics of thyroid tumours and tumour-like lesions. Pathol Res Pract 191:304–317PubMedCrossRefGoogle Scholar
  71. Sobrinho-Simoes M, Preto A, Rocha AS, Castro P, Maximo V, Fonseca E, Soares P (2005) Molecular pathology of well-differentiated thyroid carcinomas. Virchows Arch 447:787–793PubMedCrossRefGoogle Scholar
  72. Takiyama Y, Miyokawa N, Sugawara A, Kato S, Ito K, Sato K, Oikawa K, Kobayashi H, Kimura S, Tateno M (2004) Decreased expression of retinoid X receptor isoforms in human thyroid carcinomas. J Clin Endocrinol Metab 89:5851–5861PubMedCrossRefGoogle Scholar
  73. Tallini G (2002) Molecular pathobiology of thyroid neoplasms. Endocr Pathol 13:271–288PubMedCrossRefGoogle Scholar
  74. Tepmongkol S, Keelawat S, Honsawek S, Ruangvejvorachai P (2008) Rosiglitazone effect on radioiodine uptake in thyroid carcinoma patients with high thyroglobulin but negative total body scan: a correlation with the expression of peroxisome proliferator-activated receptor-gamma. Thyroid 18:697–704PubMedCrossRefGoogle Scholar
  75. Van Herle AJ, Agatep ML, Padua DN III, Totanes TL, Canlapan DV, Van Herle HM, Juillard GJ (1990) Effects of 13 cis-retinoic acid on growth and differentiation of human follicular carcinoma cells (UCLA R0 82W-1) in vitro. J Clin Endocrinol Metab 71:755–763PubMedCrossRefGoogle Scholar
  76. Vecchio G, Santoro M (2000) Oncogenes and thyroid cancer. Clin Chem Lab Med 38:113–116PubMedGoogle Scholar
  77. Venkataraman GM, Yatin M, Marcinek R, Ain KB (1999) Restoration of iodide uptake in dedifferentiated thyroid carcinoma: relationship to human Na+/I− symporter gene methylation status. J Clin Endocrinol Metab 84:2449–2457PubMedGoogle Scholar
  78. Wang CY, Zhong WB, Chang TC, Lai SM, Tsai YF (2003) Lovastatin, a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor, induces apoptosis and differentiation in human anaplastic thyroid carcinoma cells. J Clin Endocrinol Metab 88:3021–3026PubMedCrossRefGoogle Scholar
  79. Wong WW, Dimitroulakos J, Minden MD, Penn LZ (2002) HMG-CoA reductase inhibitors and the malignant cell: the statin family of drugs as triggers of tumor-specific apoptosis. Leukemia 16:508–519PubMedCrossRefGoogle Scholar
  80. Woyach JA, Kloos RT, Ringel MD, Arbogast D, Collamore M, Zwiebel JA, Grever M, Villalona-Calero M, Shah MH (2009) Lack of therapeutic effect of the histone deacetylase inhibitor vorinostat in patients with metastatic radioiodine-refractory thyroid carcinoma. J Clin Endocrinol Metab 94:164–170PubMedCentralPubMedCrossRefGoogle Scholar
  81. Ying H, Suzuki H, Zhao L, Willingham MC, Meltzer P, Cheng SY (2003) Mutant thyroid hormone receptor beta represses the expression and transcriptional activity of peroxisome proliferator-activated receptor gamma during thyroid carcinogenesis. Cancer Res 63:5274–5280PubMedGoogle Scholar
  82. Zettinig G, Fueger BJ, Passler C, Kaserer K, Pirich C, Dudczak R, Niederle B (2002) Long-term follow-up of patients with bone metastases from differentiated thyroid carcinoma—surgery or conventional therapy? Clin Endocrinol (Oxf) 56:377–382CrossRefGoogle Scholar
  83. Zhong WB, Liang YC, Wang CY, Chang TC, Lee WS (2005) Lovastatin suppresses invasiveness of anaplastic thyroid cancer cells by inhibiting Rho geranylgeranylation and RhoA/ROCK signaling. Endocr Relat Cancer 12:615–629PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Markus Luster
    • 1
  • Daria Handkiewicz-Junak
    • 2
  • Johannes W. Smit
    • 3
  1. 1.Department of Nuclear MedicineUniversity of UlmUlmGermany
  2. 2.Department of Nuclear Medicine and Endocrine OncologyMaria Sklodowska-Curie Memorial InstituteGliwicePoland
  3. 3.Department of Endocrinology and MetabolismLeiden University Medical CenterLeidenThe Netherlands

Personalised recommendations