Skip to main content

Redifferentiation Therapy in Thyroid Cancer

  • Chapter
  • First Online:
  • 2650 Accesses

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

Thyroid cancer originates from epithelial and from parafollicular C-cells. Distant metastases occur in about 5–10 % of patients. RAI therapy and TSH suppressive therapy have an established role in the management of disseminated thyroid cancer, yet in most of these patients disease progress is only a matter of time. Disease progression is usually accompanied by dedifferentiation of cancer cells and standard therapies are no more effective. In this chapter new molecular backgrounds and clinical data on novel redifferentiating agents are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ain KB, Egorin MJ, DeSimone PA (2000) Treatment of anaplastic thyroid carcinoma with paclitaxel: phase 2 trial using ninety-six-hour infusion. Collaborative anaplastic thyroid cancer health intervention trials (CATCHIT) group. Thyroid 10:587–594

    Article  CAS  PubMed  Google Scholar 

  • Arturi F, Russo D, Schlumberger M, du Villard JA, Caillou B, Vigneri P, Wicker R, Chiefari E, Suarez HG, Filetti S (1998) Iodide symporter gene expression in human thyroid tumors. J Clin Endocrinol Metab 83:2493–2496

    CAS  PubMed  Google Scholar 

  • Bassi V, Vitale M, Feliciello A, De RS, Rossi G, Fenzi G (1995) Retinoic acid Induces intercellular adhesion molecule-1 hyperexpression in human thyroid carcinoma cell lines. J Clin Endocrinol Metab 80:1129–1135

    CAS  PubMed  Google Scholar 

  • Boerner AR, Petrich T, Weckesser E, Fricke H, Hofmann M, Otto D, Weckesser M, Langen KJ, Knapp WH (2002) Monitoring isotretinoin therapy in thyroid cancer using 18F-FDG PET. Eur J Nucl Med Mol Imaging 29:231–236

    Article  CAS  PubMed  Google Scholar 

  • Caillou B, Troalen F, Baudin E, Talbot M, Filetti S, Schlumberger M, Bidart JM (1998) Na+/I− symporter distribution in human thyroid tissues: an immunohistochemical study. J Clin Endocrinol Metab 83:4102–4106

    CAS  PubMed  Google Scholar 

  • Fernandez CA, Puig-Domingo M, Lomena F, Estorch M, Camacho M, V, Bittini A L, Marazuela M, Santamaria J, Castro J, Martinez d, I, Moraga I, Martin T, Megia A, Porta M, Mauricio D and Halperin I (2009) Effectiveness of retinoic acid treatment for redifferentiation of thyroid cancer in relation to recovery of radioiodine uptake. J Endocrinol Invest 32:228–233

    Google Scholar 

  • Castaigne S, Chomienne C, Daniel MT, Ballerini P, Berger R, Fenaux P, Degos L (1990) All-trans retinoic acid as a differentiation therapy for acute promyelocytic leukemia. I. Clin Results Blood 76:1704–1709

    CAS  Google Scholar 

  • Coelho SM, Corbo R, Buescu A, Carvalho DP, Vaisman M (2004) Retinoic acid in patients with radioiodine non-responsive thyroid carcinoma. J Endocrinol Invest 27:334–339

    Article  CAS  PubMed  Google Scholar 

  • Coelho SM, Vaisman M, Carvalho DP (2005) Tumour re-differentiation effect of retinoic acid: a novel therapeutic approach for advanced thyroid cancer. Curr Pharm Des 11:2525–2531

    Article  CAS  PubMed  Google Scholar 

  • Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ, Mazzaferri EL, McIver B, Sherman SI, Tuttle RM (2006) Management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 16:109–142

    Article  PubMed  Google Scholar 

  • Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ, Mazzaferri EL, McIver B, Pacini F, Schlumberger M, Sherman SI, Steward DL, Tuttle RM (2009) Revised American Thyroid Association Management Guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 19:1167–1214

    Article  PubMed  Google Scholar 

  • Courbon F, Zerdoud S, Bastie D, Archambaud F, Hoff M, Eche N, Berry I, Caron P (2006) Defective efficacy of retinoic acid treatment in patients with metastatic thyroid carcinoma. Thyroid 16:1025–1031

    Article  CAS  PubMed  Google Scholar 

  • De Besi P, Busnardo B, Toso S, Girelli ME, Nacamulli D, Simioni N, Casara D, Zorat P, Fiorentino MV (1991) Combined chemotherapy with bleomycin, adriamycin, and platinum in advanced thyroid cancer. J Endocrinol Invest 14:475–480

    Article  PubMed  Google Scholar 

  • Demierre MF, Higgins PD, Gruber SB, Hawk E, Lippman SM (2005) Statins and cancer prevention. Nat Rev Cancer 5:930–942

    Article  CAS  PubMed  Google Scholar 

  • Dohan O, Baloch Z, Banrevi Z, Livolsi V, Carrasco N (2001) Rapid communication: predominant intracellular overexpression of the Na(+)/I(−) symporter (NIS) in a large sampling of thyroid cancer cases. J Clin Endocrinol Metab 86:2697–2700

    CAS  PubMed  Google Scholar 

  • Durand S, Ferraro-Peyret C, Joufre M, Chave A, Borson-Chazot F, Selmi-Ruby S, Rousset B (2009) Molecular characteristics of papillary thyroid carcinomas without BRAF mutation or RET/PTC rearrangement: relationship with clinico-pathological features. Endocr Relat Cancer 16:467–481

    Article  CAS  PubMed  Google Scholar 

  • Durante C, Puxeddu E, Ferretti E, Morisi R, Moretti S, Bruno R, Barbi F, Avenia N, Scipioni A, Verrienti A, Tosi E, Cavaliere A, Gulino A, Filetti S, Russo D (2007) BRAF mutations in papillary thyroid carcinomas inhibit genes involved in iodine metabolism. J Clin Endocrinol Metab 92:2840–2843

    Article  CAS  PubMed  Google Scholar 

  • Elisei R, Vivaldi A, Agate L, Ciampi R, Molinaro E, Piampiani P, Romei C, Faviana P, Basolo F, Miccoli P, Capodanno A, Collecchi P, Pacini F, Pinchera A (2005) All-trans-retinoic acid treatment inhibits the growth of retinoic acid receptor beta messenger ribonucleic acid expressing thyroid cancer cell lines but does not reinduce the expression of thyroid-specific genes. J Clin Endocrinol Metab 90:2403–2411

    Article  CAS  PubMed  Google Scholar 

  • Fagin JA (2004) How thyroid tumors start and why it matters: kinase mutants as targets for solid cancer pharmacotherapy. J Endocrinol 183:249–256

    Article  CAS  PubMed  Google Scholar 

  • Farol LT, Hymes KB (2004) Bexarotene: a clinical review. Expert Rev Anticancer Ther 4:180–188

    Article  CAS  PubMed  Google Scholar 

  • Frohlich E, Machicao F, Wahl R (2005) Action of thiazolidinediones on differentiation, proliferation and apoptosis of normal and transformed thyrocytes in culture. Endocr Relat Cancer 12:291–303

    Article  PubMed  Google Scholar 

  • Giguere V (1994) Retinoic acid receptors and cellular retinoid binding proteins: complex interplay in retinoid signaling. Endocr Rev 15:61–79

    CAS  PubMed  Google Scholar 

  • Gregory PJ, Wang X, Allard BL, Sahin M, Wang XL, Hay ID, Hiddinga HJ, Deshpande SS, Kroll TG, Grebe SK, Eberhardt NL, McIver B (2004) The PAX8/PPARgamma fusion oncoprotein transforms immortalized human thyrocytes through a mechanism probably involving wild-Type PPARgamma inhibition. Oncogene 23:3634–3641

    Article  Google Scholar 

  • Gruning T, Tiepolt C, Zophel K, Bredow J, Kropp J, Franke WG (2003) Retinoic acid for redifferentiation of thyroid cancer–does it hold its promise? Eur J Endocrinol 148:395–402

    Article  CAS  PubMed  Google Scholar 

  • Grunwald F, Menzel C, Bender H, Palmedo H, Otte R, Fimmers R, Risse J, Biersack HJ (1998a) Redifferentiation therapy-induced radioiodine uptake in thyroid cancer. J Nucl Med 39:1903–1906

    CAS  PubMed  Google Scholar 

  • Grunwald F, Pakos E, Bender H, Menzel C, Otte R, Palmedo H, Pfeifer U, Biersack HJ (1998b) Redifferentiation therapy with retinoic acid in follicular thyroid cancer. J Nucl Med 39:1555–1558

    CAS  PubMed  Google Scholar 

  • Handkiewicz-Junak D, Roskosz J, Hasse-Lazar K, Szpak-Ulczok S, Puch Z, Kukulska A, Olczyk T, Piela A, Paliczka-Cieslik E, Jarzab B (2009) 13-Cis-Retinoic acid re-differentiation therapy and recombinant human thyrotropin-aided radioiodine treatment of non-functional metastatic thyroid cancer: a single-center, 53-patient phase 2 study. Thyroid Res 2:8

    Article  PubMed Central  PubMed  Google Scholar 

  • Handkiewicz-Junak D, Czarniecka A, Jarzab B (2010) Molecular prognostic markers in papillary and follicular thyroid cancer: current status and future directions. Mol Cell Endocrinol 322:8–28

    Article  CAS  PubMed  Google Scholar 

  • Haugen BR (1999) Management of the patient with progressive radioiodine non-responsive disease. Semin Surg Oncol 16:34–41

    Article  CAS  PubMed  Google Scholar 

  • Haugen BR (2006) Does the metabolic activity of metastatic thyroid carcinoma correlate with prognosis? Nat Clin Pract Endocrinol Metab 2:488–489

    CAS  PubMed  Google Scholar 

  • Haugen BR, Pacini F, Reiners C, Schlumberger M, Ladenson PW, Sherman SI, Cooper DS, Graham KE, Braverman LE, Skarulis MC, Davies TF, DeGroot LJ, Mazzaferri EL, Daniels GH, Ross DS, Luster M, Samuels MH, Becker DV, Maxon HR III, Cavalieri RR, Spencer CA, McEllin K, Weintraub BD, Ridgway EC (1999) A comparison of recombinant human thyrotropin and thyroid hormone withdrawal for the detection of thyroid remnant or cancer. J Clin Endocrinol Metab 84:3877–3885

    CAS  PubMed  Google Scholar 

  • Haugen BR, Larson LL, Pugazhenthi U, Hays WR, Klopper JP, Kramer CA, Sharma V (2004) Retinoic acid and retinoid X receptors are differentially expressed in thyroid cancer and thyroid carcinoma cell lines and predict response to treatment with retinoids. J Clin Endocrinol Metab 89:272–280

    Article  CAS  PubMed  Google Scholar 

  • Havekes B, Schroder van der Elst JP, van der PG, Goslings BM, Romijn JA, Smit JW (2000) Beneficial effects of retinoic acid on extracellular matrix degradation and attachment behaviour in follicular thyroid carcinoma cell lines. J Endocrinol 167:229–238

    Google Scholar 

  • Hoang-Vu C, Bull K, Schwarz I, Krause G, Schmutzler C, Aust G, Kohrle J, Dralle H (1999) Regulation of CD97 protein in thyroid carcinoma. J Clin Endocrinol Metab 84:1104–1109

    CAS  PubMed  Google Scholar 

  • Hoftijzer H, Heemstra KA, Morreau H, Stokkel MP, Corssmit EP, Gelderblom H, Weijers K, Pereira AM, Huijberts M, Kapiteijn E, Romijn JA, Smit JW (2009) Beneficial effects of sorafenib on tumor progression, but not on radioiodine uptake, in patients with differentiated thyroid carcinoma. Eur J Endocrinol 161:923–931

    Article  CAS  PubMed  Google Scholar 

  • Hundahl SA, Fleming ID, Fremgen AM, Menck HR (1998) A national cancer data base report on 53,856 cases of thyroid carcinoma treated in the U.S., 1985–1995 [See Commetns]. Cancer 83:2638–2648

    Article  CAS  PubMed  Google Scholar 

  • Kebebew E, Lindsay S, Clark OH, Woeber KA, Hawkins R, Greenspan FS (2009) Results of rosiglitazone therapy in patients with thyroglobulin-positive and radioiodine-negative advanced differentiated thyroid cancer. Thyroid 19:953–956

    Article  CAS  PubMed  Google Scholar 

  • Kim WG, Kim EY, Kim TY, Ryu JS, Hong SJ, Kim WB, Shong YK (2009) Redifferentiation therapy with 13-Cis retinoic acids in radioiodine-resistant thyroid cancer. Endocr J 56:105–112

    Article  CAS  PubMed  Google Scholar 

  • Kitazono M, Robey R, Zhan Z, Sarlis NJ, Skarulis MC, Aikou T, Bates S, Fojo T (2001) Low concentrations of the histone deacetylase inhibitor, depsipeptide (FR901228), increase expression of the Na(+)/I(−) symporter and iodine accumulation in poorly differentiated thyroid carcinoma cells. J Clin Endocrinol Metab 86:3430–3435

    CAS  PubMed  Google Scholar 

  • Kloos RT, Ringel MD, Knopp MV, Hall NC, King M, Stevens R, Liang J, Wakely PE Jr, Vasko VV, Saji M, Rittenberry J, Wei L, Arbogast D, Collamore M, Wright JJ, Grever M, Shah MH (2009) Phase II trial of sorafenib in metastatic thyroid cancer. J Clin Oncol 27:1675–1684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koh CS, Ku JL, Park SY, Kim KH, Choi JS, Kim IJ, Park JH, Oh SK, Chung JK, Lee JH, Kim WH, Kim CW, Cho BY, Park JG (2007) Establishment and characterization of cell lines from three human thyroid carcinomas: responses to all-trans-retinoic acid and mutations in the BRAF gene. Mol Cell Endocrinol 264:118–127

    Article  CAS  PubMed  Google Scholar 

  • Kroll TG, Sarraf P, Pecciarini L, Chen CJ, Mueller E, Spiegelman BM, Fletcher JA (2000) PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma [Corrected]. Science 289:1357–1360

    Article  CAS  PubMed  Google Scholar 

  • Lazar V, Bidart JM, Caillou B, Mahe C, Lacroix L, Filetti S, Schlumberger M (1999) Expression of the Na+/I− symporter gene in human thyroid tumors: a comparison study with other thyroid-specific genes. J Clin Endocrinol Metab 84:3228–3234

    CAS  PubMed  Google Scholar 

  • Liu YY, Stokkel MP, Pereira AM, Corssmit EP, Morreau HA, Romijn JA, Smit JW (2006) Bexarotene increases uptake of radioiodide in metastases of differentiated thyroid carcinoma. Eur J Endocrinol 154:525–531

    Article  CAS  PubMed  Google Scholar 

  • Lotan R (1991) Retinoids as modulators of tumor cells invasion and metastasis. Semin Cancer Biol 2:197–208

    CAS  PubMed  Google Scholar 

  • Luong QT, O’Kelly J, Braunstein GD, Hershman JM, Koeffler HP (2006) Antitumor activity of suberoylanilide hydroxamic acid against thyroid cancer cell lines in vitro and in vivo. Clin Cancer Res 12:5570–5577

    Article  CAS  PubMed  Google Scholar 

  • McBurney MW, Costa S, Pratt MA (1993) Retinoids and cancer: a basis for differentiation therapy. Cancer Invest 11:590–598

    Article  CAS  PubMed  Google Scholar 

  • Oyen WJ, Bodei L, Giammarile F, Maecke HR, Tennvall J, Luster M, Brans B (2007) Targeted therapy in nuclear medicine–current status and future prospects. Ann Oncol 18:1782–1792

    Article  CAS  PubMed  Google Scholar 

  • Pacini F, Agate L, Elisei R, Capezzone M, Ceccarelli C, Lippi F, Molinaro E, Pinchera A (2001) Outcome of differentiated thyroid cancer with detectable serum Tg and negative diagnostic (131)I whole body scan: comparison of patients treated with high (131)I activities versus untreated patients. J Clin Endocrinol Metab 86:4092–4097

    Article  CAS  PubMed  Google Scholar 

  • Pacini F, Schlumberger M, Dralle H, Elisei R, Smit JW, Wiersinga W (2006) European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur J Endocrinol 154:787–803

    Article  CAS  PubMed  Google Scholar 

  • Peyssonnaux C, Eychene A (2001) The Raf/MEK/ERK pathway: new concepts of activation. Biol Cell 93:53–62

    Article  CAS  PubMed  Google Scholar 

  • Riesco-Eizaguirre G, Santisteban P (2007) Molecular biology of thyroid cancer initiation. Clin Transl Oncol 9:686–693

    Article  CAS  PubMed  Google Scholar 

  • Rigas JR, Dragnev KH (2005) Emerging role of rexinoids in non-small cell lung cancer: focus on bexarotene. Oncologist 10:22–33

    Article  CAS  PubMed  Google Scholar 

  • Ringel MD (2006) Phase II study of histone deacetylase inhibitor SAHA in patients with metastatic thyroid cancer. Thyroid 14:928–929

    Google Scholar 

  • Rochaix P, Monteil-Onteniente S, Rochette-Egly C, Caratero C, Voigt JJ, Jozan S (1998) Reduced expression of retinoic acid receptor beta protein (RAR Beta) in human papillary thyroid carcinoma: immunohistochemical and western blot study. Histopathology 33:337–343

    Article  CAS  PubMed  Google Scholar 

  • Ruegemer JJ, Hay ID, Bergstralh EJ, Ryan JJ, Offord KP, Gorman CA (1988) Distant metastases in differentiated thyroid carcinoma: a multivariate analysis of prognostic variables. J Clin Endocrinol Metab 67:501–508

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Endo T, Kawaguchi A, Ikeda M, Katoh R, Kawaoi A, Muramatsu A, Onaya T (1998) Increased expression of the sodium/iodide symporter in papillary thyroid carcinomas. J Clin Invest 101:1296–1300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Santoro M, Melillo RM, Fusco A (2006) RET/PTC activation in papillary thyroid carcinoma: European journal of endocrinology prize lecture. Eur J Endocrinol 155:645–653

    Article  CAS  PubMed  Google Scholar 

  • Sanz MA, Grimwade D, Tallman MS, Lowenberg B, Fenaux P, Estey EH, Naoe T, Lengfelder E, Buchner T, Dohner H, Burnett AK, Lo-Coco F (2009) Management of acute promyelocytic Leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood 113:1875–1891

    Article  CAS  PubMed  Google Scholar 

  • Schlumberger M, Challeton C, De VF, Travagli JP, Gardet P, Lumbroso JD, Francese C, Fontaine F, Ricard M, Parmentier C (1996) Radioactive iodine treatment and external radiotherapy for lung and bone metastases from thyroid carcinoma. J Nucl Med 37:598–605

    CAS  PubMed  Google Scholar 

  • Schmutzler C, Winzer R, Meissner-Weigl J, Kohrle J (1997) Retinoic acid increases sodium/iodide symporter MRNA levels in human thyroid cancer cell lines and suppresses expression of functional symporter in nontransformed FRTL-5 rat thyroid cells. Biochem Biophys Res Commun 240:832–838

    Article  CAS  PubMed  Google Scholar 

  • Schmutzler C, Brtko J, Winzer R, Jakobs TC, Meissner-Weigl J, Simon D, Goretzki PE, Kohrle J (1998) Functional retinoid and thyroid hormone receptors in human thyroid-carcinoma cell lines and tissues. Int J Cancer 76:368–376

    Article  CAS  PubMed  Google Scholar 

  • Schmutzler C, Schmitt TL, Glaser F, Loos U, Kohrle J (2002) The promoter of the human sodium/iodide-symporter gene responds to retinoic acid. Mol Cell Endocrinol 189:145–155

    Article  CAS  PubMed  Google Scholar 

  • Schmutzler C, Hoang-Vu C, Ruger B, Kohrle J (2004) Human thyroid carcinoma cell lines show different retinoic acid receptor repertoires and retinoid responses. Eur J Endocrinol 150:547–556

    Article  CAS  PubMed  Google Scholar 

  • Schreck R, Schnieders F, Schmutzler C, Kohrle J (1994) Retinoids stimulate type I iodothyronine 5′-deiodinase activity in human follicular thyroid carcinoma cell lines. J Clin Endocrinol Metab 79:791–798

    CAS  PubMed  Google Scholar 

  • Sherman SI, Wirth LJ, Droz JP, Hofmann M, Bastholt L, Martins RG, Licitra L, Eschenberg MJ, Sun YN, Juan T, Stepan DE, Schlumberger MJ (2008) Motesanib diphosphate in progressive differentiated thyroid cancer. N Engl J Med 359:31–42

    Article  CAS  PubMed  Google Scholar 

  • Short SC, Suovuori A, Cook G, Vivian G, Harmer C (2004) A phase II study using retinoids as redifferentiation agents to increase iodine uptake in metastatic thyroid cancer. Clin Oncol (R Coll Radiol) 16:569–574

    Article  CAS  Google Scholar 

  • Simon D, Koehrle J, Reiners C, Boerner AR, Schmutzler C, Mainz K, Goretzki PE, Roeher HD (1998) Redifferentiation therapy with retinoids: therapeutic option for advanced follicular and papillary thyroid carcinoma. World J Surg 22:569–574

    Article  CAS  PubMed  Google Scholar 

  • Simon D, Korber C, Krausch M, Segering J, Groth P, Gorges R, Grunwald F, Muller-Gartner HW, Schmutzler C, Kohrle J, Roher HD, Reiners C (2002) Clinical impact of retinoids in redifferentiation therapy of advanced thyroid cancer: final results of a pilot study. Eur J Nucl Med Mol Imaging 29:775–782

    Article  CAS  PubMed  Google Scholar 

  • Soares P, Sobrinho-Simoes M (1995) Recent advances in cytometry, cytogenetics and molecular genetics of thyroid tumours and tumour-like lesions. Pathol Res Pract 191:304–317

    Article  CAS  PubMed  Google Scholar 

  • Sobrinho-Simoes M, Preto A, Rocha AS, Castro P, Maximo V, Fonseca E, Soares P (2005) Molecular pathology of well-differentiated thyroid carcinomas. Virchows Arch 447:787–793

    Article  CAS  PubMed  Google Scholar 

  • Takiyama Y, Miyokawa N, Sugawara A, Kato S, Ito K, Sato K, Oikawa K, Kobayashi H, Kimura S, Tateno M (2004) Decreased expression of retinoid X receptor isoforms in human thyroid carcinomas. J Clin Endocrinol Metab 89:5851–5861

    Article  CAS  PubMed  Google Scholar 

  • Tallini G (2002) Molecular pathobiology of thyroid neoplasms. Endocr Pathol 13:271–288

    Article  CAS  PubMed  Google Scholar 

  • Tepmongkol S, Keelawat S, Honsawek S, Ruangvejvorachai P (2008) Rosiglitazone effect on radioiodine uptake in thyroid carcinoma patients with high thyroglobulin but negative total body scan: a correlation with the expression of peroxisome proliferator-activated receptor-gamma. Thyroid 18:697–704

    Article  CAS  PubMed  Google Scholar 

  • Van Herle AJ, Agatep ML, Padua DN III, Totanes TL, Canlapan DV, Van Herle HM, Juillard GJ (1990) Effects of 13 cis-retinoic acid on growth and differentiation of human follicular carcinoma cells (UCLA R0 82W-1) in vitro. J Clin Endocrinol Metab 71:755–763

    Article  PubMed  Google Scholar 

  • Vecchio G, Santoro M (2000) Oncogenes and thyroid cancer. Clin Chem Lab Med 38:113–116

    CAS  PubMed  Google Scholar 

  • Venkataraman GM, Yatin M, Marcinek R, Ain KB (1999) Restoration of iodide uptake in dedifferentiated thyroid carcinoma: relationship to human Na+/I− symporter gene methylation status. J Clin Endocrinol Metab 84:2449–2457

    CAS  PubMed  Google Scholar 

  • Wang CY, Zhong WB, Chang TC, Lai SM, Tsai YF (2003) Lovastatin, a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor, induces apoptosis and differentiation in human anaplastic thyroid carcinoma cells. J Clin Endocrinol Metab 88:3021–3026

    Article  CAS  PubMed  Google Scholar 

  • Wong WW, Dimitroulakos J, Minden MD, Penn LZ (2002) HMG-CoA reductase inhibitors and the malignant cell: the statin family of drugs as triggers of tumor-specific apoptosis. Leukemia 16:508–519

    Article  CAS  PubMed  Google Scholar 

  • Woyach JA, Kloos RT, Ringel MD, Arbogast D, Collamore M, Zwiebel JA, Grever M, Villalona-Calero M, Shah MH (2009) Lack of therapeutic effect of the histone deacetylase inhibitor vorinostat in patients with metastatic radioiodine-refractory thyroid carcinoma. J Clin Endocrinol Metab 94:164–170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ying H, Suzuki H, Zhao L, Willingham MC, Meltzer P, Cheng SY (2003) Mutant thyroid hormone receptor beta represses the expression and transcriptional activity of peroxisome proliferator-activated receptor gamma during thyroid carcinogenesis. Cancer Res 63:5274–5280

    CAS  PubMed  Google Scholar 

  • Zettinig G, Fueger BJ, Passler C, Kaserer K, Pirich C, Dudczak R, Niederle B (2002) Long-term follow-up of patients with bone metastases from differentiated thyroid carcinoma—surgery or conventional therapy? Clin Endocrinol (Oxf) 56:377–382

    Article  Google Scholar 

  • Zhong WB, Liang YC, Wang CY, Chang TC, Lee WS (2005) Lovastatin suppresses invasiveness of anaplastic thyroid cancer cells by inhibiting Rho geranylgeranylation and RhoA/ROCK signaling. Endocr Relat Cancer 12:615–629

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Luster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Luster, M., Handkiewicz-Junak, D., Smit, J.W. (2012). Redifferentiation Therapy in Thyroid Cancer. In: Baum, R. (eds) Therapeutic Nuclear Medicine. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2012_742

Download citation

  • DOI: https://doi.org/10.1007/174_2012_742

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36718-5

  • Online ISBN: 978-3-540-36719-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics