Gene Expression Analysis by DNA Microarray in Papillary and Follicular Differentiated Thyroid Cancer

  • Barbara Jarzab
  • Daria Handkiewicz-Junak
Part of the Medical Radiology book series (MEDRAD)


In the recent ten years, molecular evaluation of cancer has been tremendously accelerated by the development of microarrays. DNA microarrays have been used for gene expression profiling, i.e., to measure messenger RNA (mRNA) expression. The presence of mRNA is the first signal of the activation of the gene transcription and the necessary condition to conduct the synthesis of the protein. The thyroid follicular cells give rise to a variety of malignant tumors that differ markedly in their morphology, biological, and clinical behavior. Contrary to most other cancers, both papillary (PTCs) and follicular thyroid cancers (FTCs), despite being malignant, retain many properties of their cells of origin. Histoarchitecture-based criteria play here a much more distinct role than cytological appearance. The primary goal of the evaluation of patients with nodular thyroid disease is the exclusion of thyroid malignancy. However, the identification and differentiation of rarely occurring thyroid cancer from frequently occurring benign nodular thyroid disease is a challenging task. Gene expression profiles of FTC were analyzed in several microarray studies, with the aim to improve the molecular differentiation between FTC and follicular adenomas and to elucidate the molecular etiology of FTC. Different sets of genes characteristic for FTC had been established. The lack of overlap between those studies is not unexpected, the lack of independent confirmation of either study is more worrying. This indicates on heterogeneity of follicular thyroid tumors. The list of genes shown in the chapter may also be useful for analysis of potential new molecules for in vivo imaging of PTC foci. Their future application for nuclear medicine is dual. First, it enables large-scale identification of molecular targets that can be used to develop molecular imaging agents helpful for the accurate diagnosis and prognosis of human cancer. Second, radiopharmaceuticals directed against these molecular targets can be useful in the new approach to targeted nuclear medicine therapy.


Thyroid Cancer Papillary Thyroid Carcinoma Thyroid Nodule Papillary Thyroid Cancer Thyroid Tumour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Armstrong NJ, van de Wiel MA (2004) Microarray data analysis: from hypotheses to conclusions using gene expression data. Cell Oncol 26(5–6):279–290PubMedGoogle Scholar
  2. Arora N, Scognamiglio T, Lubitz CC, Moo TA, Kato MA, Zhu B, Zarnegar R, Chen YT, Fahey TJ III (2009) Identification of borderline thyroid tumors by gene expression array analysis. Cancer 115(23):5421–5431PubMedCrossRefGoogle Scholar
  3. Bacher U, Kohlmann A, Haferlach T (2009) Perspectives of gene expression profiling for diagnosis and therapy in haematological malignancies. Brief Funct Genomic Proteomic 8(3):184–193PubMedCrossRefGoogle Scholar
  4. Bilitewski U (2009) Microchip methods in diagnostics. Humana Press, New YorkGoogle Scholar
  5. Cerutti JM, Delcelo R, Amadei MJ, Nakabashi C, Maciel RM, Peterson B, Shoemaker J, Riggins GJ (2004) A preoperative diagnostic test that distinguishes benign from malignant thyroid carcinoma based on gene expression. J Clin Invest 113(8):1234–1242PubMedCentralPubMedCrossRefGoogle Scholar
  6. Dahl E, Winterhager E, Reuss B, Traub O, Butterweck A, Willecke K (1996) Expression of the gap junction proteins connexin31 and connexin43 correlates with communication compartments in extraembryonic tissues and in the gastrulating mouse embryo, respectively. J Cell Sci 109(Pt 1):191–197PubMedGoogle Scholar
  7. Duggan DJ, Bittner M, Chen Y, Meltzer P, Trent JM (1999) Expression profiling using cDNA microarrays. Nat Genet 21(1 Suppl):10–14PubMedCrossRefGoogle Scholar
  8. Durand S, Ferraro-Peyret C, Joufre M, Chave A, Borson-Chazot F, Selmi-Ruby S, Rousset B (2009) Molecular characteristics of papillary thyroid carcinomas without BRAF mutation or RET/PTC rearrangement: relationship with clinico-pathological features. Endocr Relat Cancer 16(2):467–481PubMedCrossRefGoogle Scholar
  9. Eszlinger M, Krohn K, Paschke R (2001) Complementary DNA expression array analysis suggests a lower expression of signal transduction proteins and receptors in cold and hot thyroid nodules. J Clin Endocrinol Metab 86(10):4834–4842PubMedCrossRefGoogle Scholar
  10. Eszlinger M, Krohn K, Frenzel R, Kropf S, Tonjes A, Paschke R (2004) Gene expression analysis reveals evidence for inactivation of the TGF-beta signaling cascade in autonomously functioning thyroid nodules. Oncogene 23(3):795–804PubMedCrossRefGoogle Scholar
  11. Fagin JA (2004) Challenging dogma in thyroid cancer molecular genetics–role of RET/PTC and BRAF in tumor initiation. J Clin Endocrinol Metab 89(9):4264–4266PubMedCrossRefGoogle Scholar
  12. Fontaine JF, Mirebeau-Prunier D, Franc B, Triau S, Rodien P, Houlgatte R, Malthiery Y, Savagner F (2008) Microarray analysis refines classification of non-medullary thyroid tumours of uncertain malignancy. Oncogene 27(15):2228–2236PubMedCrossRefGoogle Scholar
  13. Franc B, de La SP, Lange F, Hoang C, Louvel A, de RA, Vilde F, Hejblum G, Chevret S, Chastang C (2003) Interobserver and intraobserver reproducibility in the histopathology of follicular thyroid carcinoma. Hum Pathol 34(11):1092–1100Google Scholar
  14. Fujarewicz K, Jarzab M, Eszlinger M, Krohn K, Paschke R, Oczko-Wojciechowska M, Wiench M, Kukulska A, Jarzab B, Swierniak A (2007) A multi-gene approach to differentiate papillary thyroid carcinoma from benign lesions: gene selection using support vector machines with bootstrapping. Endocr Relat Cancer 14(3):809–826PubMedCentralPubMedCrossRefGoogle Scholar
  15. Gingras R, Richard C, El-Alfy M, Morales CR, Potier M, Pshezhetsky AV (1999) Purification, cDNA cloning, and expression of a new human blood plasma glutamate carboxypeptidase homologous to N-acetyl-aspartyl-alphaglutamate carboxypeptidase/prostate-specific membrane antigen. J Biol Chem 274(17):11742–11750PubMedCrossRefGoogle Scholar
  16. Giordano TJ, Kuick R, Thomas DG, Misek DE, Vinco M, Sanders D, Zhu Z, Ciampi R, Roh M, Shedden K, Gauger P, Doherty G, Thompson NW, Hanash S, Koenig RJ, Nikiforov YE (2005) Molecular classification of papillary thyroid carcinoma: distinct BRAF, RAS, and RET/PTC mutation-specific gene expression profiles discovered by DNA microarray analysis. Oncogene 24(44):6646–6656PubMedCrossRefGoogle Scholar
  17. Giordano TJ, Au AY, Kuick R, Thomas DG, Rhodes DR, Wilhelm KG Jr, Vinco M, Misek DE, Sanders D, Zhu Z, Ciampi R, Hanash S, Chinnaiyan A, Clifton-Bligh RJ, Robinson BG, Nikiforov YE, Koenig RJ (2006) Delineation, functional validation, and bioinformatic evaluation of gene expression in thyroid follicular carcinomas with the PAX8-PPARG translocation. Clin Cancer Res 12(7 Pt 1):1983–1993PubMedCrossRefGoogle Scholar
  18. Grande M, Franzen A, Karlsson JO, Ericson LE, Heldin NE, Nilsson M (2002) Transforming growth factor-beta and epidermal growth factor synergistically stimulate epithelial to mesenchymal transition (EMT) through a MEK-dependent mechanism in primary cultured pig thyrocytes. J Cell Sci 115(Pt 22):4227–4236PubMedCrossRefGoogle Scholar
  19. Griffith OL, Melck A, Jones SJ, Wiseman SM (2006) Meta-analysis and meta-review of thyroid cancer gene expression profiling studies identifies important diagnostic biomarkers. J Clin Oncol 24(31):5043–5051PubMedCrossRefGoogle Scholar
  20. Handkiewicz-Junak D, Czarniecka A, Jarzab B (2010) Molecular prognostic markers in papillary and follicular thyroid cancer: Current status and future directions. Mol Cell Endocrinol 322(1–2):8–28PubMedCrossRefGoogle Scholar
  21. Huang Y, Prasad M, Lemon WJ, Hampel H, Wright FA, Kornacker K, LiVolsi V, Frankel W, Kloos RT, Eng C, Pellegata NS, de La CA (2001) Gene expression in papillary thyroid carcinoma reveals highly consistent profiles. Proc Natl Acad Sci U S A 98(26):15044–15049PubMedCentralPubMedCrossRefGoogle Scholar
  22. Illario M, Cavallo AL, Monaco S, Di Vito E, Mueller F, Marzano LA, Troncone G, Fenzi G, Rossi G, Vitale M (2005) Fibronectin-induced proliferation in thyroid cells is mediated by alphavbeta3 integrin through Ras/Raf- 1/MEK/ERK and calcium/CaMKII signals. J Clin Endocrinol Metab 90(5):2865–2873PubMedCrossRefGoogle Scholar
  23. Jarzab B, Wiench M, Fujarewicz K, Simek K, Jarzab M, Oczko-Wojciechowska M, Wloch J, Czarniecka A, Chmielik E, Lange D, Pawlaczek A, Szpak S, Gubala E, Swierniak A (2005) Gene expression profile of papillary thyroid cancer: sources of variability and diagnostic implications. Cancer Res 65(4):1587–1597PubMedCrossRefGoogle Scholar
  24. Kittel A, Kiss AL, Müllner N, Matkó I, Sperlágh B (2005) Expression of NTPDase1 and caveolins in human cardiovascular disease. Histochem Cell Biol 124(1):51–59PubMedCrossRefGoogle Scholar
  25. Krause K, Eszlinger M, Gimm O, Karger S, Engelhardt C, Dralle H, Fuhrer D (2008) TFF3-based candidate gene discrimination of benign and malignant thyroid tumors in a region with borderline iodine deficiency. J Clin Endocrinol Metab 93(4):1390–1393PubMedCrossRefGoogle Scholar
  26. Lacroix L, Lazar V, Michiels S, Ripoche H, Dessen P, Talbot M, Caillou B, Levillain JP, Schlumberger M, Bidart JM (2005) Follicular thyroid tumors with the PAX8-PPARgamma1 rearrangement display characteristic genetic alterations. Am J Pathol 167(1):223–231PubMedCentralPubMedCrossRefGoogle Scholar
  27. Lange D, Sporny S, Sygut J, Kulig A, Jarzab M, Kula D, Jarzab B (2006) Histopathological diagnosis of thyroid cancer in a multicenter trial. Endokrynol Pol 57(4):336–342PubMedGoogle Scholar
  28. Lin F, Ren XD, Doris G, Clark RA (2005) Three-dimensional migration of human adult dermal fibroblasts from collagen lattices into fibrin/fibronectin gels requires syndecan-4 proteoglycan. J Invest Dermatol 124(5):906–913PubMedCrossRefGoogle Scholar
  29. Liu S, Shen T, Huynh L, Klisovic MI, Rush LJ, Ford JL, Yu J, Becknell B, Li Y, Liu C, Vukosavljevic T, Whitman SP, Chang KS, Byrd JC, Perrotti D, Plass C, Marcucci G (2005) Interplay of RUNX1/MTG8 and DNA methyltransferase 1 in acute myeloid leukemia. Cancer Res 65(4):1277–1284PubMedCrossRefGoogle Scholar
  30. LiVolsi VA, Baloch ZW (2004) Follicular neoplasms of the thyroid: view, biases, and experiences. Adv Anat Pathol 11(6):279–287PubMedCrossRefGoogle Scholar
  31. Montero-Conde C, Martin-Campos JM, Lerma E, Gimenez G, Martinez-Guitarte JL, Combalia N, Montaner D, Matias-Guiu X, Dopazo J, de LA, Robledo M, Mauricio D (2008) Molecular profiling related to poor prognosis in thyroid carcinoma. Combining gene expression data and biological information. Oncogene 27(11):1554–1561PubMedCrossRefGoogle Scholar
  32. Nappi TC, Salerno P, Zitzelsberger H, Carlomagno F, Salvatore G, Santoro M (2009) Identification of Polo-like kinase 1 as a potential therapeutic target in anaplastic thyroid carcinoma. Cancer Res 69(5):1916–1923PubMedCrossRefGoogle Scholar
  33. Noro B, Licheri B, Sgarra R, Rustighi A, Tessari MA, Chau KY, Ono SJ, Giancotti V, Manfioletti G (2003) Molecular dissection of the architectural transcription factor HMGA2. Biochemistry 42(15):4569–4577PubMedCrossRefGoogle Scholar
  34. Pita JM, Banito A, Cavaco BM, Leite V (2009) Gene expression profiling associated with the progression to poorly differentiated thyroid carcinomas. Br J Cancer 101(10):1782–1791PubMedCentralPubMedCrossRefGoogle Scholar
  35. Pollack JR (2009) Microarray analysis of the physical genome. Methods and protocol. Humana Press, New YorkCrossRefGoogle Scholar
  36. Prasad ML, Pellegata NS, Kloos RT, Barbacioru C, Huang Y, de La CA (2004) CITED1 protein expression suggests Papillary Thyroid Carcinoma in high throughput tissue microarray-based study. Thyroid 14(3):169–175PubMedCrossRefGoogle Scholar
  37. Ruco LP, Stoppacciaro A, Ballarini F, Prat M, Scarpino S (2001) Met protein and hepatocyte growth factor (HGF) in papillary carcinoma of the thyroid: evidence for a pathogenetic role in tumourigenesis. J Pathol 194(1):4–8PubMedCrossRefGoogle Scholar
  38. Spessotto P, Cervi M, Mucignat MT, Mungiguerra G, Sartoretto I, Doliana R, Colombatti A (2003) Beta 1 Integrin-dependent cell adhesion to EMILIN-1 is mediated by the gC1q domain. J Biol Chem 278(8):6160–6167PubMedCrossRefGoogle Scholar
  39. Teixeira MR (2006) Recurrent fusion oncogenes in carcinomas. Crit Rev Oncog 12(3–4):257–271PubMedCrossRefGoogle Scholar
  40. Theocharis SE, Margeli AP, Koutselinis A (2003) Metallothionein: a multifunctional protein from toxicity to cancer. Int J Biol Markers 18(3):162–169PubMedGoogle Scholar
  41. Weber F, Shen L, Aldred MA, Morrison CD, Frilling A, Saji M, Schuppert F, Broelsch CE, Ringel MD, Eng C (2005) Genetic classification of benign and malignant thyroid follicular neoplasia based on a three-gene combination. J Clin Endocrinol Metab 90(5):2512–2521PubMedCrossRefGoogle Scholar
  42. Weigelt B, Reis-Filho JS (2009) Histological and molecular types of breast cancer: is there a unifying taxonomy? Nat Rev Clin Oncol 6(12):718–730Google Scholar
  43. Weigelt B, Baehner FL, Reis-Filho JS (2010) The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: a retrospective of the last decade. J Pathol 220(2):263–280PubMedGoogle Scholar
  44. Widerak M, Ghoneim C, Dumontier MF, Quesne M, Corvol MT, Savouret JF (2006) The aryl hydrocarbon receptor activates the retinoic acid receptoralpha through SMRT antagonism. Biochimie 88(3–4):387–397PubMedCrossRefGoogle Scholar
  45. Wiseman SM, Griffith OL, Deen S, Rajput A, Masoudi H, Gilks B, Goldstein L, Gown A, Jones SJ (2007) Identification of molecular markers altered during transformation of differentiated into anaplastic thyroid carcinoma. Arch Surg 142(8):717–727PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2012

Authors and Affiliations

  1. 1.Department of Nuclear Medicine and Endocrine OncologyMaria Sklodowska Curie Memorial Cancer Center and Institute of OncologyGliwicePoland

Personalised recommendations