The Use of Dosimetry in the Planning of Patient Therapy

  • Michael A. Stabin
  • Glenn D. Flux
Part of the Medical Radiology book series (MEDRAD)


Arguments for the use of radiation dose calculations in the planning of therapy with radiopharmaceuticals are presented. The technical basis for radiation dose calculations are briefly reviewed, and approaches to the use of dosimetry in radionuclide therapy by various investigators are discussed. Although resistance remains in the nuclear medicine community to adding this component to the treatment of patients undergoing these therapies, the literature basis demonstrating improved outcomes with dosimetry planning is extensive


Dose Calculation Peptide Receptor Radionuclide Therapy Radionuclide Therapy Biologically Effective Dose Medical Internal Radiation Dose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akabani G, Cokgor I, Coleman RE, Trotter DG, Wong TZ, Friedman HS, Friedman AH, Garcia-Turner A, Herndon JE, DeLong D, McLendon RE, Zhao XG, Pegram CN, Provenzale JM, Bigner DD, Zalutsky MR (2000) Dosimetry and dose-response relationships in newly diagnosed patients with malignant gliomas treated with iodine-131-labeled anti-tenascin monoclonal antibody 81C6 therapy. Int J Radiat Oncol Biol Phys 46(4):947–958PubMedCrossRefGoogle Scholar
  2. Allahabadia A, Daykin J, Holder RL, Sheppard MC, Gough SCL, Frankly JA (2000) Age and gender predict the outcome of treatment for Graves’ hyperthyroidism. J Clin Endocin Metab 85(3):1038–1042Google Scholar
  3. Allen BJ (2008) Clinical trials of targeted alpha therapy for cancer. Rev Recent Clin Trials 3(3):185–191PubMedCrossRefGoogle Scholar
  4. Barone R, Borson-Chazot FO, Valkerna R, Walrand S, Chauvin F, Gogou L, Kvols LK, Krenning EP, Jamar F, Pauwels S (2005) Patient-specific dosimetry in predicting renal toxicity with Y-90-DOTATOC: relevance of kidney volume and dose rate in finding a dose-effect relationship. J Nucl Med 46:99S–106SPubMedGoogle Scholar
  5. Benua RS, Leeper RD (1986) A method and rationale for treatment of thyroid carcinoma with the largest, safe dose of 131-I. In: Medeiros-Neto G, Gaitan E (eds) Frontiers in thyroidology. Plenum Medical, New York, p 1317Google Scholar
  6. Bodei L, Lam M, Chiesa C, Flux G, Brans B, Chiti A, Giammarile F (2008a) EANM procedure guideline for treatment of refractory metastatic bone pain. Eur J Nucl Med Mol Imaging 35(10):1934–1940PubMedCrossRefGoogle Scholar
  7. Bodei L, Cremonesi M, Ferrari M, Pacifici M, Grana CM, Bartolomei M, Baio SM, Sansovini M, Paganelli G (2008b) Long-term evaluation of renal toxicity after peptide receptor radionuclide therapy with 90Y-DOTATOC and 177Lu-DOTATATE: the role of associated risk factors. Eur J Nucl Med Mol Imaging 35:1847–1856PubMedCrossRefGoogle Scholar
  8. Bodey RK, Flux GD, Evans PM (2003a) Combining dosimetry for targeted radionuclide and external beam therapies using the biologically effective dose. Cancer Biother Radiopharm 18(1):89–97PubMedCrossRefGoogle Scholar
  9. Bodey RK, Flux GD, Evans PM (2003b) Combining dosimetry for targeted radionuclide and external beam therapies using the biologically effective dose. Cancer Biother Radiopharm 18(1):89–97PubMedCrossRefGoogle Scholar
  10. Bolch WE, Eckerman KF, Sgouros G, Thomas SR (2009) MIRD pamphlet No. 21: a generalized schema for radiopharmaceutical dosimetry—standardization of nomenclature. J Nucl Med 50(3):477–484PubMedCrossRefGoogle Scholar
  11. Brans B, Monsieurs M, Laureys G, Kaufman JM, Thierens H, Dierckx RA (2002) Thyroidal uptake and radiation dose after repetitive I-131-MIBG treatments: influence of potassium iodide for thyroid blocking. Med Pediatr Oncol 38(1):41–46PubMedCrossRefGoogle Scholar
  12. Breitz H, Wendt R, Stabin M, Bouchet L, Wessels B (2003) Dosimetry of high dose skeletal targeted radiotherapy (STR) with 166Ho-DOTMP. Cancer Biother Radiopharm 18(2):225–230PubMedCrossRefGoogle Scholar
  13. Buckley SE, Saran FH, Gaze MN, Chittenden S, Partridge M, Lancaster D, Pearson A, Flux GD (2007) Dosimetry for fractionated I-131-mIBG therapies in patients with primary resistant high-risk neuroblastoma: preliminary results. Cancer Biother Radiopharm 22(1):105–112PubMedCrossRefGoogle Scholar
  14. Buckley SE, Chittenden SC, Saran FH, Meller ST, Flux GD (2009) Whole-body dosimetry for individualized treatment planning of 131I-mIBG radionuclide therapy for neuroblastoma. J Nucl Med 50(9):1518–1524Google Scholar
  15. Canadas V, Vilar L, Moura E, Brito A, Castellar E (2007) Avaliação da Radioiodoterapia com Doses Fixas de 10 e 15 mCi em Pacientes com Doença de Graves. Arq Bras Endocrinol Metab 51(7):1069–1076CrossRefGoogle Scholar
  16. Chen DY, Jing J, Schneider PF, Chen TH (2009) Comparison of the long-term efficacy of low dose 131I versus antithyroid drugs in the treatment of hyperthyroidism. Nucl Med Commun 30:160–168PubMedCrossRefGoogle Scholar
  17. Clairand I, Ricard M, Gouriou J, Di Paola M, Aubert B (1999) DOSE3D: EGS4 Monte Carlo code-based software for internal radionuclide dosimetry. J Nucl Med 40:1517–1523PubMedGoogle Scholar
  18. Cremonesi M, Ferrari M, Bodei L, Tosi G, Paganelli G (2006) Dosimetry in peptide radionuclide receptor therapy: a review. J Nucl Med 47(9):1467–1475PubMedGoogle Scholar
  19. Cremonesi M, Ferrari M, Bartolomei M, Dia AD, Bonomo G, De Cicco C, Travaini L, Vigna PD, Orsi F, Pedroli G, Paganelli G (2008) Radioembolization with 90Y-microspheres: any possible correlation among response, imaging and dosimetry? European Association of Nuclear Medicine meeting, MunichGoogle Scholar
  20. Cristy M, Eckerman K (1987) Specific absorbed fractions of energy at various ages from internal photons sources, ORNL/TM-8381 V1-V7. Oak Ridge National Laboratory, Oak RidgeGoogle Scholar
  21. Dale R, Carabe-Fernandez A (2005) The radiobiology of conventional radiotherapy and its application to radionuclide therapy. Cancer Biother Radiopharm 20(1):47–51PubMedCrossRefGoogle Scholar
  22. De Jong M, Breeman WAP, Valkema R, Bernard BF, Krenning EP (2005) Combination radionuclide therapy using Lu-177- and Y-90-Labeled somatostatin analogs. J Nucl Med 46:13S–17SPubMedGoogle Scholar
  23. DeNardo GL, Juweid ME, White CA, Wiseman GA, DeNardo SJ (2001) Role of radiation dosimetry in radioimmunotherapy planning and treatment dosing. Crit Rev Oncol Hematol 39(1–2):203–218PubMedCrossRefGoogle Scholar
  24. Dewaraja YK, Wilderman SJ, Ljungberg M, Koral KF, Zasadny K, Kaminiski MS (2005) Accurate dosimetry in 131I radionuclide therapy using patient-specific, 3-dimensional methods for SPECT reconstruction and absorbed dose calculation. J Nucl Med 2005(46):840–849Google Scholar
  25. Dorn R, Kopp J, Vogt H, Heidenreich P, Carroll RG, Gulec SA (2003) Dosimetry-guided radioactive iodine treatment in patients with metastatic differentiated thyroid cancer: largest safe dose sing a risk-adapted approach. J Nucl Med 44:451–456PubMedGoogle Scholar
  26. Flux GD, Webb S, Ott RJ, Chittenden SJ, Thomas R (1997) Three-dimensional dosimetry for intralesional radionuclide therapy using mathematical modeling and multimodality imaging. J Nucl Med 38(7):1059–1066PubMedGoogle Scholar
  27. Flux G, Bardies M, Chiesa C, Monsieurs M, Savolainen S, Strand SE, Lassmann M (2007) Letter to the editor: clinical radionuclide therapy dosimetry: the quest for the “holy gray”. Eur J Nucl Med Mol Imaging 34:1699–1700PubMedCrossRefGoogle Scholar
  28. Flux GD, Buscombe J, Gaze M, Guy M, Mather S, Moss L, Orchard K (2011) BIR molecular radiotherapy in the UK: current status and recommendations for further investigation. British Inst Radiol ISBN: 978-0-905749-70-9 2011Google Scholar
  29. Flux GD, Haq M, Chittenden SJ, Buckley S, Hindorf C, Newbold K, Harme CL (2010) A dose-effect correlation for radioiodine ablation in differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 37(2):270–275PubMedCrossRefGoogle Scholar
  30. Gaze MN, Chang YC, Flux GD, Mairs RJ, Saran FH, Meller ST (2005) Feasibility of dosimetry-based high-dose I-131-meta-iodobenzylguanidine with topotecan as a radiosensitizer in children with metastatic neuroblastoma. Cancer Biother Radiopharm 20(2):195–199PubMedCrossRefGoogle Scholar
  31. Guy MJ, Flux GD, Papavasileiou P, Flower MA, Ott RJ (2003) RMDP: a dedicated package for I-131 SPECT quantification, registration and patient-specific dosimetry. Cancer Biother Radiopharm 18(1):61–69PubMedCrossRefGoogle Scholar
  32. Hegedus L (2009) Treatment of Graves’ hyperthyroidism: evidence-based and emerging modalities. Endocrinol Metab Clin N Am 38:355–371CrossRefGoogle Scholar
  33. Hindorf C, Chittenden S, Causer L, Lewington VJ, Macke HR, Flux GD (2007) Dosimetry for Y-90-DOTATOC therapies in patients with neuroendocrine tumors. Cancer Biother Radiopharm 22(1):130–135PubMedCrossRefGoogle Scholar
  34. International Commission on Radiological Protection (1979) Limits for intakes of radionuclides by workers, ICRP Publication 30. Pergamon Press, New YorkGoogle Scholar
  35. International Commission on Radiological Protection (2009) Radiation dose to patients from radiopharmaceuticals, ICRP publication 106. Elsevier, New YorkGoogle Scholar
  36. Jonsson H, Mattsson S (2004) Excess radiation absorbed doses from non-optimised radioiodine treatment of hyperthyroidism. Radiat Prot Dosim 108(2):107–114CrossRefGoogle Scholar
  37. Juweid ME, Zhang CH, Blumenthal RD, Hajjar G, Sharkey RM, Goldenberg DM (1999) Prediction of hematologic toxicity after radioimmunotherapy with 131I labeled anticarcinoembryonic antigen monoclonal antibodies. J Nucl Med 40:1609–1616PubMedGoogle Scholar
  38. Kobe C, Eschner W, Sudbrock F, Weber I, Marx K, Dietlein M, Schicha H (2007) Graves’ disease and radioiodine therapy: is success of ablation dependent on the achieved dose above 200 Gy? Nuklearmedizin 47(1):13–17Google Scholar
  39. Kolbert KS, Sgouros G, Scott AM, Bronstein JE, Malane RA, Zhang J, Kalaigian H, McNamara S, Schwartz L, Larson SM (1997) Implementation and evaluation of patient-specific three-dimensional internal dosimetry. J Nucl Med 38:301–308PubMedGoogle Scholar
  40. Hyer S. Konga A, Pratta B, Harmer C (2007) Salivary gland toxicity after radioiodine therapy for thyroid cancer. Clin Oncol 19(1):83–86Google Scholar
  41. Koral KF, Dewaraja Y, Clarke LA, Li J, Zasadny R, Rommelfanger SG, Francis IR, Kaminski MS, Wahl RL (2000) Tumor absorbed dose estimates versus response in tositumomab therapy of previously untreated patients with follicular non-Hodgkin’s lymphoma: preliminary report. Cancer Biother Radiopharm 15(4):347–355Google Scholar
  42. Lau WY, Leung WT, Ho S et al (1994) Treatment of inoperable hepatocellular carcinoma with intrahepatic yttrium-90 microspheres:a phase I and II study. Br J Cancer 70:994–999PubMedCentralPubMedCrossRefGoogle Scholar
  43. Lehmann J, Hartmann Siantar C, Wessol DE, Wemple CA, Nigg D, Cogliati J, Daly T, Descalle MA, Flickinger T, Pletcher D, Denardo G (2005) Monte Carlo treatment planning for molecular targeted radiotherapy within the MINERVA system. Phys Med Biol 50(5):947–958Google Scholar
  44. Liu SY, Eary JF, Petersdorf SH et al (1998) Follow-up of relapsed Bcell lymphoma patients treated with iodine-131-labeled anti-CD20 antibody and autologous stem-cell rescue. J Clin Oncol 16:3270–3278PubMedGoogle Scholar
  45. Liu A, Williams L, Lopatin G, Yamauchi D, Wong J, Raubitschek A (1999) A radionuclide therapy treatment planning and dose estimation system. J Nucl Med 40:1151–1153PubMedGoogle Scholar
  46. Marinelli L, Quimby E, Hine G (1948) Dosage determination with radioactive isotopes II, practical considerations in therapy and protection. Am J Roent Radium Ther 59:260–280Google Scholar
  47. Mastrangelo R, Tornesello A, Riccardi R, Lasorella A, Mastrangelo S, Mancini A, Rufini V, Troncone L (1995) A new approach in the treatment of stage-IV neuroblastoma using a combination of [I-131] metaiodobenzylguanidine (mIBG) and cisplatin. Eur J Cancer 31A(4):606–611PubMedCrossRefGoogle Scholar
  48. Matthay KK, Panina C, Huberty J, Price D, Glidden DV, Tang HR, Hawkins RA, Veatch J, Hasegawa B (2001) Correlation of tumor and whole-body dosimetry with tumor response and toxicity in refractory neuroblastoma. treated with I-131-MIBG. J Nucl Med 42(11):1713–1721PubMedGoogle Scholar
  49. Maxon HR (1999) Quantitative radioiodine therapy in the treatment of differentiated thyroid cancer. Q J Nucl Med 43(4):313–323PubMedGoogle Scholar
  50. Maxon HR, Englaro EE, Thomas SR, Hertzberg VS, Hinnefeld JD, Chen LS et al (1992) Radioiodine-131 therapy for well-differentiated thyroid-cancer—a quantitative radiation dosimetric approach—outcome and validation in 85 patients. J Nucl Med 33(6):1132–1136PubMedGoogle Scholar
  51. McCluskey AG, Boyd M, Ross SC, Cosimo E, Clark AM, Angerson WJ, Gaze MN, Mairs RJ (2005) [I-131]meta-ldobenzylguanidine and topotecan combination treatment of tumors expressing the noradrenaline transporter. Clin Cancer Res 11(21):7929–7937PubMedCrossRefGoogle Scholar
  52. Metso S, Jaatinen P, Huhtala H, Luukkaala T, Oksala H, Salmi J (2004) Long-term follow-up study of radioiodine treatment of hyperthyroidism. Clin Endocrinol 61:641–648CrossRefGoogle Scholar
  53. Monsieurs M, Brans B, Bacher K, Dierckx R, Thierens H (2002) Patient dosimetry for I-131-MIBG therapy for neuroendocrine tumours based on I-123-MIBG scans. Eur J Nucl Med Mol Imaging 29(12):1581–1587PubMedCrossRefGoogle Scholar
  54. O’Donoghue JA, Sgouros G, Divgi CR, Humm JL (2000) Single-dose versus fractionated radioimmunotherapy: model comparisons for uniform tumor dosimetry. J Nucl Med 41(3):538–547PubMedGoogle Scholar
  55. O’Sullivan JM, Norman AR, McCready VR, Flux G, Buffa FM, Johnson B, Coffey J, Cook G, Treleaven J, Horwich A, Huddart RA, Parker CC, Dearnaley DP (2006) A phase 2 study of high-activity Re-186-HEDP with autologous peripheral blood stem cell transplant in progressive hormone-refractory prostate cancer metastatic to bone. Eur J Nucl Med Mol Imaging 33(9):1055–1061PubMedCrossRefGoogle Scholar
  56. Pauwels S , Barone R , Walrand S , Borson-Chazot F , Valkema R , Kvols LK , Krenning EP , Jamar F (2005) Practical dosimetry of peptide receptor radionuclide therapy with 90Y-Labeled somatostatin analogs. J Nucl Med 46(Suppl1):92S–98SGoogle Scholar
  57. Peters H, Fischer C, Bogner U, Reinerst C, Schleusener H (1995) Radioiodine therapy of Graves’ hyperthyroidism: standard vs. calculated l3liodine activity. Results from a prospective, randomized, multicentre study. Eur J Clin Invest 25:186–193PubMedCrossRefGoogle Scholar
  58. Press OW (2008) Evidence mounts for the efficacy of radioimmunotherapy for B-cell lymphomas. J Clin Oncol Volume 26(32):5147–5150Google Scholar
  59. Press OW, Leonard JP, Coiffier B, Levy R, Timmerman J (2001) Immunotherapy of non-Hodgkin’s lymphomas. Hematology Am Soc Hematol Educ Program 221–240Google Scholar
  60. Prideaux AR, Song H, Hobbs RF, He B, Frey EC, Ladenson PW, Wahl RL, Sgouros G (2007) Three-dimensional radiobiologic dosimetry: application of radiobiologic modeling to patient-specific 3-dimensional imaging-based internal dosimetry. J Nucl Med 48(6):1008–1016PubMedCentralPubMedCrossRefGoogle Scholar
  61. Quimby E, Feitelberg S (1963) Radioactive isotopes in medicine and biology. Lea and Febiger, PhiladelphiaGoogle Scholar
  62. Rolleman EJ, Melis M, Valkema R, Boerman OC, Krenning EP, De Jong M (2010) Kidney protection during peptide receptor radionuclide therapy with somatostatin analogues. Eur J Nucl Med Mol Imaging 37(5):1018–1031PubMedCrossRefGoogle Scholar
  63. Segars JP (2001) Development and application of the new dynamic NURBS-based cardiac-torso (NCAT) phantom. Ph.D. Dissertation, The University of North CarolinaGoogle Scholar
  64. Sgouros G, Squeri S, Ballangrud AM, Kolbert KS, Teitcher JB, Panageas KS, Finn RD, Divgi CR, Larson SM, Zelenetz AD (2003) Patient-specific, 3-dimensional dosimetry in non-Hodgkin’s lymphoma patients treated with 131I-anti-B1 antibody: assessment of tumor dose-response. J Nucl Med 44:260–268PubMedGoogle Scholar
  65. Shen S, Meredith RF, Duan J, Macey DJ, Khazaeli MB, Robert F, LoBuglio AF (2002) Improved prediction of myelotoxicity using a patient-specific imaging dose estimate for non-marrow-targeting 90Y-antibody therapy. J Nucl Med 43:1245–1253PubMedGoogle Scholar
  66. Siegel JA, Stabin MG, Brill AB (2002) The importance of patient-specific radiation dose calculations for the administration of radionuclides in therapy. Cell Mol Biol 48(5):451–459Google Scholar
  67. Siegel JA, Marcus CS, Sparks RB (2002b) Calculating the absorbed dose from radioactive patients: the line-source versus point-source model. J Nucl Med 43:1241–1244PubMedGoogle Scholar
  68. Siegel JA, Yeldell D, Goldenberg DM, Stabin MG, Sparks RB, Sharkey RM, Brenner A, Blumenthal RD (2003) Red marrow radiation dose adjustment using plasma FLT3-L cytokine levels: improved correlations between hematologic toxicity and bone marrow dose for radioimmunotherapy patients. J Nucl Med 44:67–76PubMedGoogle Scholar
  69. Sisson JC, Shulkin BL, Lawson S (2003) Increasing efficacy and safety of treatments of patients with well-differentiated thyroid carcinoma by measuring body retentions of 131I. J Nucl Med 44:898–908PubMedGoogle Scholar
  70. Stabin MG (2008a) Fundamentals of nuclear medicine dosimetry. Springer, New YorkGoogle Scholar
  71. Stabin MG (2008b) The case for patient-specific dosimetry in radionuclide therapy. Cancer Biother Radiopharm 23(3):273–284PubMedCrossRefGoogle Scholar
  72. Stabin MG, Siegel JA (2003) Physical models and dose factors for use in internal dose assessment. Health Phys 85(3):294–310PubMedCrossRefGoogle Scholar
  73. Stabin MG, Sparks RB, Crowe E (2005) OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 46 1023–1027Google Scholar
  74. Stabin MG, Emmons MA, Segars WP, Fernald M, Brill AB (2008) ICRP-89 based adult and pediatric phantom series. J Nucl Med 49:14PGoogle Scholar
  75. Strigari L, D’Andrea M, Maini CL, Sciuto R, Benassi M (2006) Biological optimization of heterogeneous dose distributions in systemic radiotherapy. Med Phys 33(6):1857–1866PubMedCrossRefGoogle Scholar
  76. Traino AC, Di Martino F, Lazzeri M, Stabin MG (2000) Influence of thyroid volume reduction on calculated dose in radioiodine therapy of Graves’ hyperthyroidism. Phys Med Biol 45:121–129PubMedCrossRefGoogle Scholar
  77. Wahl RL (2005) Tositumomab and I-131 therapy in non-Hodgkin’s lymphoma. J Nucl Med 46:128S–140SPubMedGoogle Scholar
  78. Wiseman GA, White CA, Sparks RB, Erwin WD, Podoloff DA, Lamonica D, Bartlett NL, Parker JA, Dunn WL, Spies SM, Belanger R, Witzig TE, Leigh BR (2001) Biodistribution and dosimetry results from a phase III prospectively randomized controlled trial of Zevalin (TM) radioimmunotherapy for low-grade, follicular, or transformed B- cell non-Hodgkin’s lymphoma. Crit Rev Oncol Hematol 39(1–2):181–194PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Royal Marsden Hospital, Institute of Cancer ResearchSuttonUK

Personalised recommendations