Radiation Protection of Staff and Public

  • Arndt Rimpler
  • Ilona Barth
Part of the Medical Radiology book series (MEDRAD)


The increase in the use of radionuclide therapies (RNT) requires establishing adequate protective standards to avoid high radiation doses to the occupationally exposed technical and medical staff. Due to the particular working conditions when using unsealed radionuclides in RNT, predominantly exposure to the skin on the hands may occur. First of all, the use of nuclides emitting high-energetic beta radiation, such as Y-90, is a challenge to health physicists. This chapter provides the basic physical characteristics, explains the fundamental principles of radiation protection and describes the key components of a dedicated radiation protection regime in nuclear medicine in order to minimise radiation exposure. The radiation protection measures are based on well-known rules: the use of adequate shields, keeping distance to the sources and limiting the exposure time. These provisions have to be completed by routine monitoring of skin exposure using appropriate ring dosimeters and regular contamination checks. A review of the most important recent literature on exposure and radiation safety related to special therapy procedures is included. Besides the exposure of staff during preparation and administration of radiopharmaceuticals in RNT, protection of members of the public, such as relatives and caregivers of RNT patients, is also a matter of concern. Some precautionary measures have to be observed, especially after the patient’s release from the hospital.


Radiation Protection Radionuclide Therapy Skin Dose Beta Radiation Beta Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aubert B, Guilabert N, Lamon A et al (2002) Which protection against radiation for new protocols of internal radiotherapy by Yttrium 90? In: Proccedings of the 6th european ALARA network workshop, occupational exposure optimisation in the medical field and radiopharmaceutical industry, Madrid, 23–25 Oct 2002, pp 47–49. ISBN 84-7834-437-3Google Scholar
  2. Barth I, Mielcarek J (2002) Occupational exposure during radiosynoviorthesis. In: Proceedings of the 6th european ALARA network workshop, occupational exposure optimisation in the medical field and radiopharmaceutical industry, Madrid, 23–25 Oct 2002, pp 43–46. ISBN 84-7834-437-3Google Scholar
  3. Bund (2011) Strahlenschutz in der Medizin. Richtlinie zur Verordnung über den Schutz vor Schäden durch ionisierende Strahlen vom 17.10.2011, GMBl. 2011, Nr. 44–47, S. 867Google Scholar
  4. Carnicer A, Ferrari P, Baechler S et al (2011) Hand exposure in diagnostic nuclear medicine with 18F and 99mTc-labelled radiopharmaceuticals–results of the ORAMED project. Rad Meas 46:1277–1282CrossRefGoogle Scholar
  5. Cremonesi M, Ferrari M, Paganelli G et al (2006) Radiation protection in radionuclide therapies with 90Y-conjugates: risks and safety. Eur J Nucl Med Mol Imaging 33:1321–1327PubMedCrossRefGoogle Scholar
  6. de Amorin Willegaignon, de Carvalho J, Sapienza M, Ono K et al (2009) Could the treatment of differentiated thyroid carcinoma with 3.7 and 5.55 GBq of (131I) NaI, on an outpatient basis, be safe? Nucl Med Commun 30:533–541CrossRefGoogle Scholar
  7. Delacroix D, Guerre JP, Leblanc P et al (2002) Radionuclide and radiation protection data handbook. Rad Prot Dosim 98:1CrossRefGoogle Scholar
  8. EU (2000) Nuclides 2000: an electronic chart of the nuclides on CD-ROM, European Commission 1999. Institute for Transuranium Elements, Karlsruhe. ISBN 92-828-6512-6, EUR 18737 ENGoogle Scholar
  9. Geworski L, Zöphel K, Rimpler A et al (2006) Strahlenexposition bei der 90Y-Zevalin®-Therapie–Ergebnisse einer prospektiven multizentrischen Studie. Nuklearmedizin 45:82–86PubMedGoogle Scholar
  10. IAEA (1996) International basis safety standards for protection against ionizing radiation and for the safety of radioactive sources. IAEA Safety Series No. 115. International Atomic Energy Agency. PO Box 100, A-1400 Vienna, AustriaGoogle Scholar
  11. IAEA (2006) International Atomic Energy Agency. Nuclear Medicine Resources Manual, Vienna, Austria. ISBN 92-0-107504-9Google Scholar
  12. IAEA International Atomic Energy Agency (2005) Applying radiation safety standards in nuclear medicine. IAEA Safety Report Series No. 40, Vienna, AustriaGoogle Scholar
  13. IAEA International Atomic Energy Agency (2009) Release of patients after radionuclide therapy. Safety Report Series No. 63, Vienna, AustriaGoogle Scholar
  14. ICRP International Commission on Radiological Protection (1996) Radiological protection and safety in medicine. Publication 73, Annals of the ICRP vol 26(2), Elsevier, OxfordGoogle Scholar
  15. ICRP International Commission on Radiological Protection (1997) General principles for the radiation protection of workers. Publication 75, Annals of the ICRP vol 27(1), Elsevier, OxfordGoogle Scholar
  16. ICRP International Commission on Radiological Protection (2000) Pregnancy and medical radiation. Publication 84, Annals of the ICRP vol 30(1), Elsevier, OxfordGoogle Scholar
  17. ICRP International Commission on Radiological Protection (2004) Release of patients after therapy with unsealed radionuclides. Publication 94, Annals of the ICRP vol 34(2), Elsevier, OxfordGoogle Scholar
  18. ICRP International Commission on Radiological Protection (2005) Radiation safety aspects of brachytherapy for prostate cancer using permanently implanted sources. Publication 98, Annals of the ICRP 35(3), Elsevier, OxfordGoogle Scholar
  19. ICRP International Commission on Radiological Protection (2007) The 2007 recommendations of the international commission on radiological protection. ICRP Publication 103, Annals of the ICRP 37(2–4), Elsevier, OxfordGoogle Scholar
  20. ICRP International Commission on Radiological Protection (2011) Statement on tissue reactions, 21 April 2011Google Scholar
  21. ICRP International Commission on Radiological Protection Radiation (1998). Dose to patients from radiopharmaceuticals. Publication 80, Annals of the ICRP vol 28(3), 1998, Elsevier, OxfordGoogle Scholar
  22. Kampen WU, Matis E, Czech N et al (2004) Komplikationen nach Radiosynoviorthese–Erste Ergebnisse einer Umfrage zu Häufigkeit und therapeuthischen Optionen. Nuklearmedizin 43:A21/V13Google Scholar
  23. Panzegrau B, Gordon L, Goudy GH (2005) Outpatient therapeutic 131I for thyroid cancer. J Nucl Med Technol 33:28–30PubMedGoogle Scholar
  24. Petoussi N, Zankl M, Fehrenbacher G, Drexler G (1993) Dose distribution in the ICRU sphere for monoenergetic photons and electrons and for ca. 800 radionuclides. GSF-Bericht 7/93Google Scholar
  25. Rimpler A, Barth I (2005) Beta-Strahler in der Nuklearmedizin–Strahlengefährdung und Strahlenschutz des Personals. Der Nuklearmediziner 28:240–249CrossRefGoogle Scholar
  26. Rimpler A, Barth I (2007) Beta radiation exposure of medical staff and implications for extremity dose monitoring. Rad Prot Dosimetry 125:335–339CrossRefGoogle Scholar
  27. Rimpler A, Barth I, Baum RB et al (2008) Beta radiation exposure of staff during and after therapies with 90Y-labelled substances. Rad Prot Dosimetry 131:73–79CrossRefGoogle Scholar
  28. Rimpler A, Barth I, Ferrari P et al (2011) Extremity exposure in nuclear medicine therapy with 90Y-labelled substances–Results of the ORAMED project. Rad Meas 46:1283–1286CrossRefGoogle Scholar
  29. Sans Merce M, Ruiz N, Barth I et al (2011) Recommendations to reduce hand exposure for standard nuclear medicine procedures. Rad Meas 46:1330–1333CrossRefGoogle Scholar
  30. Tosi G (2002) Report on one accident occurred in a nuclear medicine department in Italy. In: Proccedings of the 6th european ALARA network workshop. Occupational exposure optimisation in the medical field and radiopharmaceutical industry, Madrid, 23–25 Oct 2002, p 225. ISBN 84-7834-437-3Google Scholar
  31. Whitby M, Martin CJ (2005) A multi-centre study of dispensing methods and hand doses in UK hospital radiopharmacies. Nucl Med Commun 26:49–60PubMedCrossRefGoogle Scholar
  32. Wiseman G, Leigh B, Witzig T (2001) Radiation exposure is very low to the family members of patients treated with Yttrium-90 ZevalinTM anti-CD20 monoclonal antibody therapy of lymphoma. Eur J Nucl Med 28:1198, Abstr. No. PS_479Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Radiation Protection and HealthFederal Office for Radiation Protection (BfS)BerlinGermany

Personalised recommendations