Nuclear Medicine Dose Assessment

  • Michael G. Stabin
Part of the Medical Radiology book series (MEDRAD)


Radiation dose estimates are necessary for evaluating risks and benefits from medical examinations using radiopharmaceuticals, in particular for therapeutic applications. This chapter describes standardized methods and models for calculating internal doses from radiopharmaceutical studies. Standard organ and marrow dose models are described, techniques for obtaining data from animal or human studies are outlined, with examples given, and discussion of patient-individualized dosimetry and the biological response of tissues to dose from ionizing radiation is also provided.


Single Photon Emission Compute Tomography Dose Calculation Radiological Protection Total Body Mass Absorb Dose Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Andrew R. Prideaux, Hong Song, Robert F. Hobbs, Bin He, Eric C. Frey, Paul W. Ladenson, Richard L (2007) Wahl1and George Sgouros. Three-Dimensional Radiobiologic Dosimetry: Application of Radiobiologic Modeling to Patient-Specific 3-Dimensional Imaging–Based Internal Dosimetry. J Nucl Med 48(6):1008–1016Google Scholar
  2. Autret D, Bitar A, Ferrer L, Lisbona A, Bardies M (2005) Monte Carlo modeling of gamma cameras for I-131 imaging in targeted radiotherapy. Cancer Biother Radiopharmaceuticals 20(1):77–84CrossRefGoogle Scholar
  3. Barendson GW (1982) Dose fractionation, dose-rate and iso-effect relationships for normal tissue responses. Int J Radiat Oncol Biol Phys 8:1981–1987CrossRefGoogle Scholar
  4. Bodey RK, Evans PM, Flux GD (2004) Application of the linear-quadratic model to combined modality radiotherapy. Int J Radiat Oncol Biol Phys 59(1):228–241PubMedCrossRefGoogle Scholar
  5. Bouchet LG, Bolch WE, Howell RW, Rao DV (2000) S-values for radionuclides localized within the skeleton. J Nucl Med 41:189–212PubMedGoogle Scholar
  6. Chang LT (1978) A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci 25:638–643CrossRefGoogle Scholar
  7. Clairand I, Ricard M, Gouriou J, Di Paola M, Aubert B (1999) DOSE3D: EGS4 Monte Carlo code-based software for internal radionuclide dosimetry. J Nucl Med 40:1517–1523PubMedGoogle Scholar
  8. Cristy M, Eckerman K (1987) Specific absorbed fractions of energy at various ages from internal photons sources. ORNL/TM-8381 V1-V7. Oak Ridge National Laboratory, Oak RidgeGoogle Scholar
  9. Dewaraja Yuni K, Wilderman Scott J, Ljungberg Michael, Koral Kenneth F, Zasadny Kenneth, Kaminiski Mark S (2005) Accurate Dosimetry in 131I radionuclide therapy using patient-specific, 3-dimensional methods for SPECT reconstruction and absorbed dose calculation. J Nucl Med 2005(46):840–849Google Scholar
  10. Eckerman K, Stabin M (2000) Electron absorbed fractions and dose conversion factors for marrow and bone by skeletal regions. Health Phys 78(2):199–214PubMedCrossRefGoogle Scholar
  11. Fleming JS (1989) A technique for using CT images in attenuation correction and quantification in SPECT. Nucl Med Commun 10(2):83–97PubMedCrossRefGoogle Scholar
  12. Flynn AA, Green AJ, Pedley RB, Boxer GM, Boden R, Begent RH (2001) A mouse model for calculating the absorbed beta-particle dose from 131I- and 90Y-labeled immunoconjugates, including a method for dealing with heterogeneity in kidney and tumor. Radiat Res 156:28–35PubMedCrossRefGoogle Scholar
  13. Fowler JF (1989) The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol 62:679–694mPubMedCrossRefGoogle Scholar
  14. Guy MJ, Flux GD, Papavasileiou P, Flower MA, Ott RJ (2003) RMDP: a dedicated package for I-131 SPECT quantification, registration and patient-specific dosimetry. Cancer Biother Radiopharmaceuticals 18(1):61–69CrossRefGoogle Scholar
  15. Hindorf C, Ljungberg M, Strand S-E (2004) Evaluation of parameters influencing S values in mouse dosimetry. J Nucl Med 45:1960–1965PubMedGoogle Scholar
  16. Hui TE, Fisher DR, Kuhn JA et al (1994) A mouse model for calculating cross-organ beta doses from yttrium-90-labeled immunoconjugates. Cancer 73(suppl):951–957PubMedGoogle Scholar
  17. International Commission on Radiological Protection (1975) ICRP Publication 23, Task Group report on reference man. Pergamon Press, OxfordGoogle Scholar
  18. International Commission on Radiological Protection (2003) ICRP 2003 Publication 89: Basic anatomical and physiological data for use in radiological protection: Reference Values, Elsevier HealthGoogle Scholar
  19. Keenan MA, Stabin MG, Segars WP, Fernald MJ (2010) RADAR realistic animal model series for dose assessment. J Nucl Med 16(1):60–71Google Scholar
  20. Kirschner A, Ice R, Beierwaltes W (1975) Radiation dosimetry of 131I–19-iodocholesterol: the pitfalls of using tissue concentration data, the author’s reply. J Nucl Med 16(3):248–249Google Scholar
  21. Kobe C, Eschner W, Sudbrock F, Weber I, Marx K, Dietlein M, Schicha H (2007) Graves’ disease and radioiodine therapy: is success of ablation dependent on the achieved dose above 200 Gy? Nuklearmedizin 46:198–202Google Scholar
  22. Kolbert KS, Sgouros G, Scott AM, Bronstein JE, Malane RA, Zhang J, Kalaigian H, McNamara S, Schwartz L, Larson SM (1997) Implementation and evaluation of patient-specific three-dimensional internal dosimetry. J Nucl Med 38:301–308PubMedGoogle Scholar
  23. Kolbert KS, Watson T, Matei C, Xu S, Koutcher JA, Sgouros G. Murine S 2003 factors for liver, spleen and kidney. J Nucl Med 44:784–791Google Scholar
  24. Konijnenberg MW, Bijster M, Krenning EP, de Jong M (2004) A stylized computational model of the rat for organ dosimetry in support of preclinical evaluations of peptide receptor radionuclide therapy with 90Y, 111In, or 177Lu. J Nucl Med 45:1260–1269PubMedGoogle Scholar
  25. Lehmann J, Hartmann Siantar C, Wessol DE, Wemple CA, Nigg D, Cogliati J, Daly T, Descalle MA, Flickinger T, Pletcher D, Denardo G (2005) Monte Carlo treatment planning for molecular targeted radiotherapy within the MINERVA system. Phys Med Biol Mar 7;50(5):947–58Google Scholar
  26. Liu A, Williams L, Lopatin G, Yamauchi D, Wong J, Raubitschek A (1999) A radionuclide therapy treatment planning and dose estimation system. J Nucl Med 40:1151–1153PubMedGoogle Scholar
  27. Dewaraja YK, Wilderman SJ, Ljungberg M, KORAL KF, Zasadny K & Kaminiski MS (2005) Accurate dosimetry in I-131 radionuclide therapy using patient- specific, 3-dimensional methods for SPECT reconstruction and absorbed dose calculation. J Nucl Med 46(5):840–849Google Scholar
  28. Malaroda A, Flux GD, Buffa FM, Ott RJ (2003) Multicellular dosimetry in voxel geometry for targeted radionuclide therapy. Cancer Biother Radiopharmaceuticals 18(3):451–461CrossRefGoogle Scholar
  29. Marinelli L, Quimby E, Hine G (1948) Dosage determination with radioactive isotopes II, practical considerations in therapy and protection. Am J Roent Radium Ther 59:260–280Google Scholar
  30. Muthuswamy MS, Roberson PL, Buchsbaum DJ (1998) A mouse bone marrow dosimetry model. J Nucl Med 39:1243–1247PubMedGoogle Scholar
  31. O’Donoghue JA, Sgouros G, Divgi CR, Humm JL (2000) Single-dose versus fractionated radioimmunotherapy: Model comparisons for uniform tumor dosimetry. J Nucl Med 41(3):538–547PubMedGoogle Scholar
  32. Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S (1991) A practical method for position dependent Compton scatter correction in single photon emission CT. IEEE Trans Nucl Med 10:408–412CrossRefGoogle Scholar
  33. Patton PW (2000) NMR microscopy for skeletal dosimetry: an investigation of marrow cellularity on dose estimates, Dissertation, Nuclear and Radiological Engineering. University of Florida, Gainesville, pp 426Google Scholar
  34. Quimby E, Feitelberg S (1963) Radioactive isotopes in medicine and biology. Lea and Febiger, PhiladelphiaGoogle Scholar
  35. Segars JP (2001) Development and application of the new dynamic NURBS-based Cardiac-Torso (NCAT) Phantom, Ph.D. Dissertation, The University of North CarolinaGoogle Scholar
  36. Segars WP, Tsui B (2007) 4D MOBY and NCAT phantoms for medical imaging simulation of mice and men. J Nucl Med 48(Supplement 2):203PGoogle Scholar
  37. Siegel J, Thomas S, Stubbs J, Stabin M, Hays M, Koral K, Robertson J, Howell R, Wessels B, Fisher D, Weber D, Brill A (1999) MIRD Pamphlet No 16 – Techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med 40:37S–61SPubMedGoogle Scholar
  38. Snyder W, Ford M, Warner G, Fisher, H, Jr (1969) MIRD Pamphlet No 5 - estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. J Nucl Med Suppl No 3, 5***Google Scholar
  39. Snyder W, Ford M, Warner G, Watson S (1975) A tabulation of dose equivalent per microcurie-day for source and target organs of an adult for various radionuclides. ORNL-5000, Oak Ridge National LaboratoryGoogle Scholar
  40. Snyder W, Ford M, Warner G (1978) Estimates of specific absorbed fractions for photon sources uniformly distributed in various organs of a heterogeneous phantom. MIRD Pamphlet No. 5, revised. Society of Nuclear Medicine, New YorkGoogle Scholar
  41. Spiers FW (1969) Beta dosimetry in trabecular bone. In: Mays CW (ed) Delayed effects of bone-seeking radionuclides, pp 95–108, University of Utah Press, Salt Lake CityGoogle Scholar
  42. Stabin M (1996) MIRDOSE: the personal computer software for use in internal dose assessment in nuclear medicine. J Nucl Med 37:538–546PubMedGoogle Scholar
  43. Stabin MG (2008) Fundamentals of nuclear medicine dosimetry. Springer, New YorkGoogle Scholar
  44. Stabin MG, Flux GD (2007) Internal dosimetry as a tool for radiation protection of the patient in nuclear medicine (Review article). Biomed Imaging Interv J 3(2):e28Google Scholar
  45. Stabin M, Watson E, Cristy M, Ryman J, Eckerman K, Davis J, Marshall D, Gehlen K (1995) Mathematical models and specific absorbed fractions of photon energy in the nonpregnant adult female and at the end of each trimester of pregnancy. ORNL Report ORNL/TM-12907Google Scholar
  46. Stabin MG, Eckerman KF, Bolch WE, Bouchet LG, Patton PW (2002) Evolution and status of bone and marrow dose models. Cancer Biother Radiopharmaceuticals 17(4):427–434CrossRefGoogle Scholar
  47. Stabin MG, Sparks RB, Crowe E. OLINDA/EXM (2005) The second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 46:1023–1027Google Scholar
  48. Stabin MG, Peterson TE, Holburn GE, Emmons MA (2006) Voxel-based mouse and rat models for internal dose calculations. J Nucl Med 47:655–659PubMedGoogle Scholar
  49. Stabin MG, Emmons MA, Segars WP, Fernald M, Brill AB (2008) ICRP-89 Based Adult and Pediatric Phantom Series. J Nucl Med 49:14PGoogle Scholar
  50. Strigari L, D’Andrea M, Ludovico Maini C, Sciuto R, Benassi M (2006) Biological optimization of heterogeneous dose distributions in systemic radiotherapy. Med Phys 33(6):1857–1866Google Scholar
  51. Traino AC, Di Martino F, Lazzeri M, Stabin MG (2000) Influence of thyroid volume reduction on calculated dose in radioiodine therapy of Graves’ hyperthyroidism. Phys. Med. Biol. 45:121–129Google Scholar
  52. Yoriyaz H, Stabin M (1997) Electron and photon transport in a model of a 30 g mouse. J Nucl Med 38(5), supplement:228ftableGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Radiology and Radiological SciencesVanderbilt UniversityNashvilleUSA

Personalised recommendations