Advertisement

Treatment of Lymphoma with 131I-Chimeric Monoclonal Antibodies

  • J. Harvey Turner
Chapter
Part of the Medical Radiology book series (MEDRAD)

Abstract

Radioimmunotherapy is a safe, effective treatment of low grade lymphoma and increases overall survival, whilst preserving quality of life. Efficacy is comparable with that of standard rituximab chemotherapy regimens and 131I-rituximab radioimmunotherapy is associated with less toxicity. Radioiodinated chimeric anti-CD 20 monoclonal antibody offers practical, cost-effective radioimmunotherapy for routine clinical applications where regulatory or cost constraints limit the availability of proprietary radiolabelled murine anti-CD 20 monoclonal antibodies. 131I-rituximab has, in addition, the potential for safe, effective, repeated radioimmunotherapy upon relapse of non-Hodgkin lymphoma.

Keywords

Objective Response Rate Mantle Cell Lymphoma Beam Conditioning CD20 Positive Cell Line Hospital Nuclear Medicine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Anderson DR, Grillo-López A, Varns C et al (1997) Targeting cytotoxic immunotherapy: targeted anticancer therapy using rituximab, a chimeric anti CD20 antibody (IDEC-C2B8) in the treatment of non-Hodgkin’s B-cell lymphoma. Biochem Soc Trans 25:705–708PubMedGoogle Scholar
  2. Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) (2004) Discharge of patients undergoing treatment of radioactive substances, radiation protection series no. 4Google Scholar
  3. Behr TM, Griesinger F, Riggert J et al (2002) High-dose myeloablative radioimmunotherapy of mantle cell non-hodgkin lymphoma with the iodine-131 labeled chimeric anti-CD20 antibody C2B8 and autologous stem cell support. Cancer Cytopathol CA 94(S4):1363–1372Google Scholar
  4. Bienert M, Reisinger I, Srock S et al (2005) Radioimmunotherapy using 131I-rituximab in patients with advanced stage B-cell non-Hodgkin’s lymphoma: initial experience. Eur J Nucl Med Mol Imaging 32:1225–1233PubMedCrossRefGoogle Scholar
  5. Bishton MJ, Leahy MF, Hicks RJ et al (2008) Repeat treatment with iodine-131 rituximab is safe and effective in patients with relapsed indolent B-cell non-Hodgkin’s lymphoma who had previously responded to iodine-131 rituximab. Ann Oncol 19:1629–1633PubMedCrossRefGoogle Scholar
  6. Boucek JA, Turner JH (2005) Validation of prospective whole body bone marrow dosimetry by SPECT/CT multimodality imaging in 131I-anti CD 20 rituximab radioimmunotherapy of non-Hodgkins lymphoma. Eur J Nucl Med Mol Imaging 32(4):458–469PubMedCrossRefGoogle Scholar
  7. Dancey G, Violet J, Malaroda A et al (2009) A phase I clinical trial of CHT-25 a 131I-labeled chimeric anti-CD25antibody showing efficacy in patients with refractory lymphoma. Clin Cancer Res 15(24):7701–7710PubMedCrossRefGoogle Scholar
  8. Fernandez HF, Escalon MP, Pereira D et al (2007) Autotransplant conditioning regimens for aggressive lymphoma: are we on the right road? Bone Marrow Transplant 40(6):505–513PubMedCrossRefGoogle Scholar
  9. Forrer F, Chen J, Fani M et al (2009) In vitro characterization of 177Lu radiolabelled chimeric anti-CD 20 monoclonal antibody and a preliminary dosimetry study. Eur J Nucl Med Mol Imaging 36:1443–1452PubMedCrossRefGoogle Scholar
  10. Kruger PC et al (2012) Iodine-131 rituximab radioimmunotherapy with BEAM conditioning and autologous stem cell transplant salvage therapy for relapsed/refractory aggressive non-Hodgkin lymphoma. Cancer Biother Radiopharm (in press)Google Scholar
  11. Grillo-López (2003) Rituximab (Rituxan®/MabThera®): the first decade (1993–2003). Expert Rev Anticancer Thera 3(6):767–779Google Scholar
  12. Hagberg H, Gisselbrecht C (2006) Randomised phase III study of R-ICE versus R-DHAP in relapsed patients with CD20 diffuse large B-cell lymphoma (DLBCL) followed by high-dose therapy and a second randomisation to maintenance treatment with rituximab or not: an update of the CORAL study. Ann Oncol 17 (Suppl 4):iv31–iv32Google Scholar
  13. Horning SJ (1993) Natural history of and therapy for the indolent non-Hodgkin’s lymphomas. Semin Oncol (5 Suppl 5):75–88Google Scholar
  14. Hunter WM, Greenwood FC (1962) Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature 194:495–496PubMedCrossRefGoogle Scholar
  15. Illidge TM, Bayne M, Brown NS et al (2009) Phase 1/2 study of fractionated (131)I-rituximab in low-grade B-cell lymphoma: the effect of prior rituximab dosing and tumor burden on subsequent radioimmunotherapy. Blood 113(7):1412–1421PubMedCrossRefGoogle Scholar
  16. International Commission on Radiological Protection (ICRP) (2004) Release of patients after therapy with unsealed radionuclides ICRP publication 94Google Scholar
  17. Johnson PW, Rohatiner AZ, Whelan JS et al (1995) Patterns of survival in patients with recurrent follicular lymphoma: a 20-year study from a single center. J Clin Oncol 13(1):140–147PubMedGoogle Scholar
  18. Kaminski MS, Estes J, Zasadny KR et al (2000) Radioimmunotherapy with iodine (131)I tositumomab for relapsed or refractory B-cell non-Hodgkin lymphoma: updated results and long-term follow-up of the University of Michigan experience. Blood 96(4):1259–1266PubMedGoogle Scholar
  19. Kaminski MS, Tuck M, Estes J et al (2005) 131I-tositumomab therapy as initial treatment for follicular treatment. N Engl J Med 352:441–449PubMedCrossRefGoogle Scholar
  20. Kang HJ, Park YH, Cheon GJ et al. (2006) Radioimmunotherapy in refractory B-cell non-Hogkin’s lymphoma with I-131-labeled chimeric anti-CD20 C2B8 (I-131 rituximab): preliminary results. J Nucl Med Meeting Abstracts 47:484Google Scholar
  21. Kapadia NS, Engles J, Wahl RL (2008) In vitro evaluation of radioprotective and radiosensitizing effects of rituximab. J Nucl Med 49:674–678PubMedCrossRefGoogle Scholar
  22. Leahy MF, Turner JH (2011) Radioimmunotherapy of relapsed indolent non-Hodgkin lymphoma with 131I-rituximab in routine clinical practice: 10 year single institution experience in 142 consecutive patients. Blood 117(1):45–52PubMedCrossRefGoogle Scholar
  23. Leahy MF, Seymour JF, Hicks RJ et al (2006) Multicenter phase 11 clinical study of Iodine-131 rituximab radioimmunotherapy in relapsed or refractory indolent non-Hodgkin’s lymphoma. J Clin Oncol 24:4418–4425PubMedCrossRefGoogle Scholar
  24. Marcus R, Imrie K, Solal-Celigny P (2008) Phase III study of R-CVP compared with cyclophosphamide, vincristine, and prednisone alone in patients with previously untreated advanced follicular lymphoma. J Clin Oncol 26(28):4579–4586PubMedCrossRefGoogle Scholar
  25. Markwell MAK (1982) A new solid-state reagent to iodinate proteins: conditions for the efficient labelling of antiserum. Annal Biochem 125:427–432CrossRefGoogle Scholar
  26. McLauglin P, Grillo-Lopez AJ, Link BJ et al (1998) Rituximab chimeric anti-CD 20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol 16:2825–2833Google Scholar
  27. Reff ME, Carner K, Chambers KS et al (1994) Depletion of B-cells in vivo by a chimeric mouse human monoclonal antibody to CD 20 Blood 83(2):435–445Google Scholar
  28. Scheidhauer K, Wolf I, Baumgartl HJ et al (2002) Biodistribution and kinetics of (131) I-labelled anti-CD 20 MAB IDEC-C2B8 (rituximab) in relapsed non-Hodgkin’s lymphoma. Eur J Nucl Med Mol Imaging 29:1276–1282PubMedCrossRefGoogle Scholar
  29. Skvortsova I, Skvortsov S, Popper BA et al (2006) Rituximab enhances radiation-triggered apoptosis in non-Hodgkin’s lymphoma cells via caspase-dependent and-independent mechanism. J Radiat Res 47:183–196PubMedGoogle Scholar
  30. Spencer A, Prince HM, DeAngelo DJ et al (2007) Phase IA/II study or oral LBH589, a novel deacetylase inhibitor (ACi) administered on 2 schedules in patients with advanced hematologic malignancies. Blood (ASH Annual Meeting Abstracts) 110:907Google Scholar
  31. Torres-Garcia E, Ferro-Flores G, Arteaga de Murphy C et al (2008) Bokinetics and dosimetry of 188Re-anti-CD 20 in patients with non-Hodgkin’s lymphoma: preliminary experience. Arch Med Res 39:100–109PubMedCrossRefGoogle Scholar
  32. Tran L, Baars JW, Maessen HJ et al (2009) A simple and safe method for 131I radiolabeling of rituximab for myeloablative high-dose radioimmunotherapy. Cancer Bioth Radiopharm 24:103–110Google Scholar
  33. Turner JH (2009) Defining pharmacokinetics for individual patient dosimetry in routine radiopeptide and radioimmunotherapy of cancer: Australian experience. Curr Pharm Des 15:966–982PubMedCrossRefGoogle Scholar
  34. Turner JH, Martindale AA, Boucek J et al (2003) 131I-anti CD 20 radioimmunotherapy of relapsed or refractory non-Hodgkins lymphoma: a phase II clinical trial of a non-myeloablative dose regimen of chimeric rituximab radiolabelled in a hospital. Cancer Bioth Radiopharm 18:513–524Google Scholar
  35. van Oers MH (2007) Rituximab maintenance therapy: a step forward in follicular lymphoma. Haematologica 92(6):826–833Google Scholar
  36. Visser GW, Klok RP, Gebbinck JW et al (2001) Optimal quality 131I-monoclonal antibodies on high-dose labelling in a large reaction volume and temporarily coating the antibody with IODO-GEN. J Nucl Med 42:509PubMedGoogle Scholar
  37. Vose J, Bierman P, Enke C et al (2005) Phase I trial of iodine-131 tositumomab with high-dose chemotherapy and autologous stem-cell transplantation for relapsed non-Hodgkin’s lymphoma. J Clin Oncol 23:461–467PubMedCrossRefGoogle Scholar
  38. Zhao WL, Wang L, Liu YH et al (2007) Combined effects of histone deacetylase inhibitor and rituximab on non-Hodgkin’s B-lymphoma cells apoptosis. Exp Hematol 35(12):1801–1811Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.School of Medicine and Pharmacology, Department of Nuclear MedicineThe University of Western AustraliaFremantleAustralia

Personalised recommendations