Radioimmunotherapy of Brain Tumors

  • Gabriele Pöpperl
Part of the Medical Radiology book series (MEDRAD)


Despite many technical advances (intraoperative resection control, fluorescence guided resection, advances in external beam radiation techniques) and new consolidated findings on systemic chemotherapy, treatment of malignant gliomas with conventional modalities (surgery, radiation therapy, and chemotherapy) is still highly unfavorable. Total tumor eradication is impossible due to tumor infiltrations into the surrounding normal brain tissue and the limitations given by its limited tolerance. New treatment strategies, therefore, aim for a more selective destruction of tumor cells. Malignant gliomas express several antigens or receptors which are not or only to a minor extent present in normal brain tissue. Administration of radiolabeled monoclonal antibodies targeting these tumor-specific structures, especially when given locoregionally, offers an innovative therapeutic strategy that has demonstrated encouraging antitumor effects and acceptable toxicity in many phase I/II clinical trials. This chapter offers a comprehensive summary of own experiences and results of clinical trials reported in the literature dealing with radioimmunotherapy of malignant glioma and highlights future plans to further develop this therapeutic strategy.


Epidermal Growth Factor Receptor Malignant Glioma Anaplastic Astrocytoma Neural Cell Adhesion Molecule Normal Brain Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bartolomei M, Mazzetta C, Handkiewicz-Junak D et al (2004) Combined treatment of glioblastoma patients with locoregional pre-targeted 90Y-biotin radioimmunotherapy and temozolomide. Q J Nucl Med Mol Imaging 48:220–228PubMedGoogle Scholar
  2. Bigner DD, Brown MT, Friedman AH et al (1998) Iodine-131-labeled antitenascin monoclonal antibody 81C6 treatment of patients with recurrent malignant gliomas: phase I trial results. J Clin Oncol 16:2202–2212PubMedGoogle Scholar
  3. Boiardi A, Bartolomei M, Silvani A et al (2005) Intratumoral delivery of mitoxantrone in association with 90-Y radioimmunotherapy (RIT) in recurrent glioblastoma. J Neurooncol 72:125–131PubMedCrossRefGoogle Scholar
  4. Brack SS, Silacci M, Birchler M et al (2006) Tumor-targeting properties of novel antibodies specific to the large isoform of tenascin-C. Clin Cancer Res 12:3200–3208PubMedCrossRefGoogle Scholar
  5. Brady LW, Markoe AM, Woo DV et al (1990a) Iodine-125-labeled anti-epidermal growth factor receptor-425 in the treatment of glioblastoma multiforme: a pilot study. Front Radiat Ther Oncol 24:151–160 (discussion 161–165)PubMedGoogle Scholar
  6. Brady LW, Markoe AM, Woo DV et al (1990b) Iodine125 labeled anti-epidermal growth factor receptor-425 in the treatment of malignant astrocytomas: a pilot study. J Neurosurg Sci 34:243–249PubMedGoogle Scholar
  7. Casaco A, Lopez G, Garcia I et al (2008) Phase I single-dose study of intracavitary-administered Nimotuzumab labeled with 188 Re in adult recurrent high-grade glioma. Cancer Biol Ther 7:333–339PubMedCrossRefGoogle Scholar
  8. Cokgor I, Akabani G, Kuan CT et al (2000) Phase I trial results of iodine-131-labeled antitenascin monoclonal antibody 81C6 treatment of patients with newly diagnosed malignant gliomas. J Clin Oncol 18:3862–3872PubMedGoogle Scholar
  9. De Santis R, Albertoni C, Petronzelli F et al (2006) Low and high tenascin-expressing tumors are efficiently targeted by ST2146 monoclonal antibody. Clin Cancer Res 12:2191–2196PubMedCrossRefGoogle Scholar
  10. Emrich JG, Brady LW, Quang TS et al (2002) Radioiodinated (I-125) monoclonal antibody 425 in the treatment of high grade glioma patients: ten-year synopsis of a novel treatment. Am J Clin Oncol 25:541–546PubMedCrossRefGoogle Scholar
  11. Goetz C, Rachinger W, Poepperl G et al (2003) Intralesional radioimmunotherapy in the treatment of malignant glioma: clinical and experimental findings. Acta Neurochir Suppl 88:69–75PubMedGoogle Scholar
  12. Goetz CM, Rachinger W, Decker M et al (2005) Distribution of labeled anti-tenascin antibodies and fragments after injection into intact or partly resected C6-gliomas in rats. Cancer Immunol Immunother 54:337–344PubMedCrossRefGoogle Scholar
  13. Grana C, Chinol M, Robertson C et al (2002) Pretargeted adjuvant radioimmunotherapy with yttrium-90-biotin in malignant glioma patients: a pilot study. Br J Cancer 86:207–212PubMedCentralPubMedCrossRefGoogle Scholar
  14. Hauck ML, Zalutsky MR (2005a) Enhanced tumour uptake of radiolabeled antibodies by hyperthermia. Part II: application of the thermal equivalency equation. Int J Hyperthermia 21:13–27PubMedCrossRefGoogle Scholar
  15. Hauck ML, Zalutsky MR (2005b) Enhanced tumour uptake of radiolabeled antibodies by hyperthermia: Part I: timing of injection relative to hyperthermia. Int J Hyperthermia 21:1–11PubMedCrossRefGoogle Scholar
  16. Herold-Mende C, Mueller MM, Bonsanto MM et al (2002) Clinical impact and functional aspects of tenascin-C expression during glioma progression. Int J Cancer 98:362–369PubMedCrossRefGoogle Scholar
  17. Hopkins K, Papanastassiou V, Kemshead JT (1996) The treatment of patients with recurrent malignant gliomas with intratumoral radioimmunoconjugates. Recent Results Cancer Res 141:159–175PubMedCrossRefGoogle Scholar
  18. Kim CH, Bak KH, Kim YS et al (2000) Expression of tenascin-C in astrocytic tumors: its relevance to proliferation and angiogenesis. Surg Neurol 54:235–240PubMedCrossRefGoogle Scholar
  19. Kleihues P, Cavenee WK (2000) Tumors of the nervous system. Pathology and genetics. IARC press, Lyon, FranceGoogle Scholar
  20. Leins A, Riva P, Lindstedt R et al (2003) Expression of tenascin-C in various human brain tumors and its relevance for survival in patients with astrocytoma. Cancer 98:2430–2439PubMedCrossRefGoogle Scholar
  21. Lund-Johansen M, Bjerkvig R, Humphrey PA et al (1990) Effect of epidermal growth factor on glioma cell growth, migration, and invasion in vitro. Cancer Res 50:6039–6044PubMedGoogle Scholar
  22. Paganelli G, Grana C, Chinol M et al (1999) Antibody-guided three-step therapy for high grade glioma with yttrium-90 biotin. Eur J Nucl Med 26:348–357PubMedCrossRefGoogle Scholar
  23. Paganelli G, Bartolomei M, Ferrari M et al (2001) Pre-targeted locoregional radioimmunotherapy with 90Y-biotin in glioma patients: phase I study and preliminary therapeutic results. Cancer Biother Radiopharm 16:227–235PubMedCrossRefGoogle Scholar
  24. Paganelli G, Bartolomei M, Grana C et al (2006) Radioimmunotherapy of brain tumor. Neurol Res 28:518–522PubMedCrossRefGoogle Scholar
  25. Patel SJ, Shapiro WR, Laske DW et al (2005) Safety and feasibility of convection-enhanced delivery of Cotara for the treatment of malignant glioma: initial experience in 51 patients. Neurosurgery 56:1243–1252 discussion 1252–1253PubMedCrossRefGoogle Scholar
  26. Petronzelli F, Pelliccia A, Anastasi AM et al (2005) Improved tumor targeting by combined use of two antitenascin antibodies. Clin Cancer Res 11:7137s–7145sPubMedCrossRefGoogle Scholar
  27. Quang TS, Brady LW (2004) Radioimmunotherapy as a novel treatment regimen: 125I-labeled monoclonal antibody 425 in the treatment of high-grade brain gliomas. Int J Radiat Oncol Biol Phys 58:972–975PubMedCrossRefGoogle Scholar
  28. Reardon DA, Akabani G, Coleman RE et al (2002) Phase II trial of murine (131)I-labeled antitenascin monoclonal antibody 81C6 administered into surgically created resection cavities of patients with newly diagnosed malignant gliomas. J Clin Oncol 20:1389–1397PubMedCrossRefGoogle Scholar
  29. Reardon DA, Akabani G, Coleman RE et al (2006) Salvage radioimmunotherapy with murine iodine-131-labeled antitenascin monoclonal antibody 81C6 for patients with recurrent primary and metastatic malignant brain tumors: phase II study results. J Clin Oncol 24:115–122PubMedCrossRefGoogle Scholar
  30. Reardon DA, Zalutsky MR, Bigner DD (2007) Antitenascin-C monoclonal antibody radioimmunotherapy for malignant glioma patients. Expert Rev Anticancer Ther 7:675–687PubMedCrossRefGoogle Scholar
  31. Reardon DA, Zalutsky MR, Akabani G et al (2008) A pilot study: 131I-Antitenascin monoclonal antibody 81c6 to deliver a 44-Gy resection cavity boost. Neuro Oncol 10(2):182–189PubMedCentralPubMedCrossRefGoogle Scholar
  32. Reist CJ, Bigner DD, Zalutsky MR (1998) Human IgG2 constant region enhances in vivo stability of anti-tenascin antibody 81C6 compared with its murine parent. Clin Cancer Res 4:2495–2502PubMedGoogle Scholar
  33. Riva P, Arista A, Sturiale C et al (1992) Treatment of intracranial human glioblastoma by direct intratumoral administration of 131I-labeled anti-tenascin monoclonal antibody BC-2. Int J Cancer 51:7–13PubMedCrossRefGoogle Scholar
  34. Riva P, Franceschi G, Frattarelli M et al (1999a) Loco-regional radioimmunotherapy of high-grade malignant gliomas using specific monoclonal antibodies labeled with 90Y: a phase I study. Clin Cancer Res 5:3275s–3280sPubMedGoogle Scholar
  35. Riva P, Franceschi G, Frattarelli M et al (1999b) 131I radioconjugated antibodies for the locoregional radioimmunotherapy of high-grade malignant glioma–phase I and II study. Acta Oncol 38:351–359PubMedCrossRefGoogle Scholar
  36. Riva P, Franceschi G, Riva N et al (2000) Role of nuclear medicine in the treatment of malignant gliomas: the locoregional radioimmunotherapy approach. Eur J Nucl Med 27:601–609PubMedCrossRefGoogle Scholar
  37. Sasaki H, Yoshida K, Ikeda E et al (1998) Expression of the neural cell adhesion molecule in astrocytic tumors: an inverse correlation with malignancy. Cancer 82:1921–1931PubMedCrossRefGoogle Scholar
  38. Schold SC Jr, Zalutsky MR, Coleman RE et al (1993) Distribution and dosimetry of I-123-labeled monoclonal antibody 81C6 in patients with anaplastic glioma. Invest Radiol 28:488–496PubMedCrossRefGoogle Scholar
  39. Stummer W, Pichlmeier U, Meinel T et al (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401PubMedCrossRefGoogle Scholar
  40. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996PubMedCrossRefGoogle Scholar
  41. Todaro L, Christiansen S, Varela M et al (2007) Alteration of serum and tumoral neural cell adhesion molecule (NCAM) isoforms in patients with brain tumors. J Neurooncol 83:135–144PubMedCrossRefGoogle Scholar
  42. Wikstrand CJ, McLendon RE, Friedman AH et al (1997) Cell surface localization and density of the tumor-associated variant of the epidermal growth factor receptor, EGFRvIII. Cancer Res 57:4130–4140PubMedGoogle Scholar
  43. Zalutsky MR (2004) Targeted radiotherapy of brain tumours. Br J Cancer 90:1469–1473PubMedCentralPubMedCrossRefGoogle Scholar
  44. Zalutsky MR (2005) Current status of therapy of solid tumors: brain tumor therapy. J Nucl Med 46(Suppl 1):151S–156SPubMedGoogle Scholar
  45. Zalutsky MR, Moseley RP, Coakham HB et al (1989) Pharmacokinetics and tumor localization of 131I-labeled anti-tenascin monoclonal antibody 81C6 in patients with gliomas and other intracranial malignancies. Cancer Res 49:2807–2813PubMedGoogle Scholar
  46. Zalutsky MR, Moseley RP, Benjamin JC et al (1990) Monoclonal antibody and F(ab’)2 fragment delivery to tumor in patients with glioma: comparison of intracarotid and intravenous administration. Cancer Res 50:4105–4110PubMedGoogle Scholar
  47. Zalutsky MR, Reardon DA, Akabani G et al (2008) Clinical experience with alpha-particle emitting 211At: treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6. J Nucl Med 49:30–38PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Nuclear MedicineKatharinenhospital—Klinikum StuttgartStuttgartGermany

Personalised recommendations