Axial and Peripheral QCT

  • Thomas M. Link
Part of the Medical Radiology book series (MEDRAD)


While Dual X-ray absorptiometry (DXA) is considered as the standard technique to measure bone mineral density (BMD), quantitative computed tomography (QCT) measures true volumetric and not areal BMD and has a number of advantages over DXA, which makes QCT an attractive alternative technique for certain indications.


Bone Mineral Density Proximal Femur Fragility Fracture Bone Mineral Density Measurement Quantitative Compute Tomography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arnold B (1989) Solid phantom for QCT bone mineral analysis. Proceedings of the 7th international workshop on bone densitometry, Palm, Springs, California, 17–21 Sept 1989Google Scholar
  2. Augat P, Fan B, Lane N et al (1998a) Assessment of bone mineral at appendicular sites in females with fractures of the proximal femur. Bone 22:395–402CrossRefGoogle Scholar
  3. Augat P, Fuerst T, Genant H (1998b) Quantitative bone mineral assessment at the forearm: a review. Osteoporos Int 8:299–310CrossRefGoogle Scholar
  4. Bauer JS, Henning TD, Mueller D et al (2007) Volumetric quantitative CT of the spine and hip derived from contrast-enhanced MDCT: conversion factors. AJR Am J Roentgenol 188(5):1294–1301PubMedCrossRefGoogle Scholar
  5. Baum T, Muller D, Dobritz M et al (2011) BMD measurements of the spine derived from sagittal reformations of contrast-enhanced MDCT without dedicated software. Eur J Radiol 80(2):e140–145PubMedCrossRefGoogle Scholar
  6. Baum T, Muller D, Dobritz M et al (2012) Converted lumbar BMD values derived from sagittal reformations of contrast-enhanced MDCT predict incidental osteoporotic vertebral fractures. Calcif Tissue Int 90(6):481–487PubMedCrossRefGoogle Scholar
  7. Bergot C, Laval-Jeantet A, Hutchinson K et al (2001) A comparison of spinal quantitative computed tomography with dual energy X-ray absorptiometry in European women with vertebral and nonvertebral fractures. Calcif Tissue Int 68:74–82PubMedCrossRefGoogle Scholar
  8. Binkley N, Krueger D, Vallarta-Ast N (2003) An overlying fat panniculus affects femur bone mass measurement. J Clin Densitom 6(3):199–204PubMedCrossRefGoogle Scholar
  9. Black DM, Greenspan SL, Ensrud KE et al (2003) The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Engl J Med 349(13):1207–1215PubMedCrossRefGoogle Scholar
  10. Block J, Smith R, Glüer CC et al (1989) Models of spinal trabecular bone loss as determined by quantitative computed tomography. J Bone Miner Res 4:249–257PubMedCrossRefGoogle Scholar
  11. Bousson V, Le Bras A, Roqueplan F et al (2006) Volumetric quantitative computed tomography of the proximal femur: relationships linking geometric and densitometric variables to bone strength. Role for compact bone. Osteoporos Int 17(6):855–864PubMedCrossRefGoogle Scholar
  12. Boutroy S, Bouxsein ML, Munoz F et al (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90(12):6508–6515PubMedCrossRefGoogle Scholar
  13. Burghardt AJ, Buie HR, Laib A et al (2010a) Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT. Bone 47(3):519–528CrossRefGoogle Scholar
  14. Burghardt AJ, Dais KA, Masharani U et al (2008) In vivo quantification of intra-cortical porosity in human cortical bone using hr-pQCT in patients with type II diabetes. J Bone Miner Res 23:S450Google Scholar
  15. Burghardt AJ, Issever AS, Schwartz AV et al (2010b) High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 95(11):5045–5055CrossRefGoogle Scholar
  16. Burghardt AJ, Kazakia GJ, Ramachandran S et al (2010c) Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia. J Bone Miner Res 25(5):983–993Google Scholar
  17. Burghardt AJ, Kazakia GJ, Sode M et al (2010d) A longitudinal HR-pQCT study of alendronate treatment in post-menopausal women with low bone density: Relations between density, cortical and trabecular micro-architecture, biomechanics, and bone turnover. J Bone Miner Res 25:2282–2295CrossRefGoogle Scholar
  18. Burrows M, Liu D, McKay H (2009) High-resolution peripheral QCT imaging of bone micro-structure in adolescents. Osteoporos Int 21(3):515–520PubMedCrossRefGoogle Scholar
  19. Butz S, Wüster C, Scheidt-Nave C et al. (1994) Forearm BMD as measured by peripheral quantitative computed tomography (pQCT) in a German reference population. Osteoporos Int (4):179–184Google Scholar
  20. Cann C, Genant H (1980) Precise measurement of vertebral mineral content using computed tomography. J Comput Assist Tomogr 4:493–500PubMedCrossRefGoogle Scholar
  21. Cann C, Genant H, Kolb F et al (1985) Quantitative computed tomography for the prediction of vertebral body fracture risk. Bone 6:1–7PubMedCrossRefGoogle Scholar
  22. Clowes JA, Eastell R, Peel NF (2005) The discriminative ability of peripheral and axial bone measurements to identify proximal femoral, vertebral, distal forearm and proximal humeral fractures: a case control study. Osteoporos Int 16(12):1794–1802PubMedCrossRefGoogle Scholar
  23. Damilakis J, Adams JE, Guglielmi G et al (2010) Radiation exposure in X-ray-based imaging techniques used in osteoporosis. Eur Radiol 20(11):2707–2714PubMedCrossRefGoogle Scholar
  24. Diederichs G, Engelken F, Marshall LM et al (2011) Diffuse idiopathic skeletal hyperostosis (DISH): relation to vertebral fractures and bone density. Osteoporos Int 22(6):1789–1797PubMedCrossRefGoogle Scholar
  25. Engelke K, Adams JE, Armbrecht G et al (2008) Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD official positions. J Clin Densitom 11(1):123–162PubMedCrossRefGoogle Scholar
  26. Farhat GN, Cauley JA, Matthews KA et al (2006a) Volumetric BMD and vascular calcification in middle-aged women: the study of women’s health across the nation. J Bone Miner Res 21(12):1839–1846CrossRefGoogle Scholar
  27. Farhat GN, Strotmeyer ES, Newman AB et al (2006b) Volumetric and areal bone mineral density measures are associated with cardiovascular disease in older men and women: the health, aging, and body composition study. Calcif Tissue Int 79(2):102–111CrossRefGoogle Scholar
  28. Felsenberg D, Gowin W (1999) Knochendichtemessung mit Zwei-Spektren-Methoden. Radiologe 39:186–193PubMedCrossRefGoogle Scholar
  29. Firooznia H, Rafii M, Golimbu C et al (1986) Trabecular mineral content of the spine in women with hip fracture: CT measurement. Musculoskel Rad 159:737–740Google Scholar
  30. Formica CA, Nieves JW, Cosman F et al (1998) Comparative assessment of bone mineral measurements using dual X-ray absorptiometry and peripheral quantitative computed tomography. Osteoporos Int 8(5):460–467PubMedCrossRefGoogle Scholar
  31. Genant H, Cann C, Ettinger B et al (1982) Quantitative computed tomography of vertebral spongiosa: a sensitive method for detecting early bone loss after oophorectomy. Ann Int Med 97:699–704PubMedCrossRefGoogle Scholar
  32. Genant HK, Boyd DP (1977) Quantitative bone mineral analysis using dual energy computed tomography. Invest Radiol 12:545–551PubMedCrossRefGoogle Scholar
  33. Genant HK, Cann CE, Pozzi-Mucelli RS et al (1983) Vertebral mineral determination by quantitative computed tomography: clinical feasibility and normative data. J Comput Assist Tomogr 7:554CrossRefGoogle Scholar
  34. Glüer C, Genant H (1989) Impact of marrow fat in accuracy of quantitative CT. J Comput Assist Tomogr 13:1023–1035PubMedCrossRefGoogle Scholar
  35. Graeff C, Timm W, Nickelsen TN et al (2007) Monitoring teriparatide-associated changes in vertebral microstructure by high-resolution CT in vivo: results from the EUROFORS study. J Bone Miner Res 22(9):1426–1433PubMedCrossRefGoogle Scholar
  36. Grampp S, Genant H, Mathur A et al (1997) Comparisons of noninvasive bone mineral measurements in assessing age-related loss, fracture discrimination, and diagnostic classification. J Bone Miner Res 12:697–711PubMedCrossRefGoogle Scholar
  37. Issever AS, Vieth V, Lotter A et al (2002) Local differences in the trabecular bone structure of the proximal femur depicted with high-spatial-resolution MR imaging and multisection CT. Acad Radiol 9(12):1395–1406PubMedCrossRefGoogle Scholar
  38. Ito M, Ikeda K, Nishiguchi M et al (2005) Multi-detector row CT imaging of vertebral microstructure for evaluation of fracture risk. J Bone Miner Res 20(10):1828–1836PubMedCrossRefGoogle Scholar
  39. Kalender W, Brestowsky H, Felsenberg D (1988) Bone mineral measurements: automated determination of the mitvertebral CT section. Radiology 168:219–221PubMedGoogle Scholar
  40. Kalender W, Felsenberg D, Louis O et al (1989) Reference values for trabecular and cortical vertebral bone density in single and dual-energy quantitative computed tomography. Europ J Radiol 9:75–80Google Scholar
  41. Kalender WA, Klotz E, Süss C (1987) Vertebral bone mineral analysis: an integrated approach. Radiology 164:419–423PubMedGoogle Scholar
  42. Kalender WA, Süss C (1987) A new calibration phantom for quantitative computed tomography. Med Phys 9:816–819Google Scholar
  43. Keaveny TM (2010) Biomechanical computed tomography-noninvasive bone strength analysis using clinical computed tomography scans. Ann N Y Acad Sci 1192:57–65PubMedCrossRefGoogle Scholar
  44. Keaveny TM, Hoffmann PF, Singh M et al (2008) Femoral bone strength and its relation to cortical and trabecular changes after treatment with PTH, alendronate, and their combination as assessed by finite element analysis of quantitative CT scans. J Bone Miner Res 23(12):1974–1982PubMedCrossRefGoogle Scholar
  45. Khoo BC, Brown K, Cann C et al (2009) Comparison of QCT-derived and DXA-derived areal bone mineral density and T scores. Osteoporos Int 20(9):1539–1545PubMedCrossRefGoogle Scholar
  46. Krug R, Burghardt AJ, Majumdar S et al (2010) High-resolution imaging techniques for the assessment of osteoporosis. Radiol Clin North Am 48(3):601–621PubMedCrossRefGoogle Scholar
  47. Lang T, Keyak J, Heitz M et al (1997) Volumetric quantitative computed tomography of the proximal femur: precision and relation to bone strength. Bone 21:101–108PubMedCrossRefGoogle Scholar
  48. Lang T, Li J, Harris S et al (1999) Assessment of vertebral bone mineral density using volumetric quantitative CT. J Comput Assist Tomogr 23:130–137PubMedCrossRefGoogle Scholar
  49. Lenchik L, Shi R, Register TC et al (2004) Measurement of trabecular bone mineral density in the thoracic spine using cardiac gated quantitative computed tomography. J Comput Assist Tomogr 28(1):134–139PubMedCrossRefGoogle Scholar
  50. Li EK, Zhu TY, Hung VY et al (2010) Ibandronate increases cortical bone density in patients with systemic lupus erythematosus on long-term glucocorticoid. Arthritis Res Ther 12(5):R198PubMedCrossRefGoogle Scholar
  51. Link T, Vieth V, Stehling C et al (2003) High resolution MRI versus Multislice spiral CT—which technique depicts the trabecular bone structure best? Eur Radiol 13:663–671PubMedGoogle Scholar
  52. Link TM (2012) Osteoporosis imaging: state of the art and advanced imaging. Radiology 263(1):3–17PubMedCrossRefGoogle Scholar
  53. Link TM, Koppers BB, Licht T et al (2004) In vitro and in vivo spiral CT to determine bone mineral density: initial experience in patients at risk for osteoporosis. Radiology 231(3):805–811PubMedCrossRefGoogle Scholar
  54. Liu XS, Zhang XH, Sekhon KK et al (2010) High-resolution peripheral quantitative computed tomography can assess microstructural and mechanical properties of human distal tibial bone. J Bone Miner Res 25(4):746–756PubMedGoogle Scholar
  55. Macneil JA, Boyd SK (2008a) Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. Bone 42(6):1203–1213CrossRefGoogle Scholar
  56. MacNeil JA, Boyd SK (2008b) Improved reproducibility of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys 30(6):792–799CrossRefGoogle Scholar
  57. Mawatari T, Miura H, Hamai S et al (2008) Vertebral strength changes in rheumatoid arthritis patients treated with alendronate, as assessed by finite element analysis of clinical computed tomography scans: a prospective randomized clinical trial. Arthritis Rheum 58(11):3340–3349PubMedCrossRefGoogle Scholar
  58. NIH Consensus Development Panel on Osteoporosis Prevention, D., and Therapy (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795CrossRefGoogle Scholar
  59. Papadakis AE, Karantanas AH, Papadokostakis G et al (2009) Can abdominal multi-detector CT diagnose spinal osteoporosis? Eur Radiol 19(1):172–176PubMedCrossRefGoogle Scholar
  60. Rodriguez-Soto AE, Fritscher KD, Schuler B et al (2010) Texture analysis, bone mineral density, and cortical thickness of the proximal femur: fracture risk prediction. J Comput Assist Tomogr 34(6):949–957PubMedCrossRefGoogle Scholar
  61. Sandor T, Kalender WA, Hanlon WB et al (1985) Spinal bone mineral determination using automated contour detection: application to single and dual—energy CT. SPIE Med Imaging Instrum 555:188–194CrossRefGoogle Scholar
  62. Schwartz AV, Sellmeyer DE (2004) Women, type 2 diabetes, and fracture risk. Curr Diab Rep 4(5):364–369PubMedCrossRefGoogle Scholar
  63. Sode M, Burghardt AJ, Kazakia GJ et al (2010) Regional variations of gender-specific and age-related differences in trabecular bone structure of the distal radius and tibia. Bone 46(6):1652–1660PubMedCrossRefGoogle Scholar
  64. Steiger P, Block J, Steiger S (1990) Spinal bone mineral density measured with quantitative CT: effect of region of interest, vertebral level and techniques. Radiology 175:537–543PubMedGoogle Scholar
  65. Szulc P, Boutroy S, Vilayphiou N et al. (2010) Cross-sectional analysis of the association between fragility fractures and bone microarchitecture in older men—the STRAMBO study. J Bone Miner Res. epub ahead of printGoogle Scholar
  66. Tothill P, Hannan WJ, Cowen S et al (1997) Anomalies in the measurement of changes in total-body bone mineral by dual-energy X-ray absorptiometry during weight change. J Bone Miner Res 12(11):1908–1921PubMedCrossRefGoogle Scholar
  67. Weigert J, Cann C (1999) DXA in obese patients: are normal values really normal. J Women’s Imaging 1:11–17Google Scholar
  68. Yu W, Gluer C, Grampp S et al (1995) Spinal bone mineral assessment in postmenopausal women: a comparison between dual X-ray absorptiometry and quantitative computed tomography. Osteoporos Int 5:433–439PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoUSA

Personalised recommendations