Monte Carlo Methods in Nuclear Medicine

  • Manuel Bardiès
  • Michael Lassmann
Part of the Medical Radiology book series (MEDRAD)


Monte Carlo modelling in Nuclear Medicine can be applied to two different scientific domains: 1. Imaging. The term ‘‘imaging’’ in fact covers many different scientific aspects, from detector modelling to ‘‘virtual’’ imaging. It also includes the assessment of image reconstruction algorithms, or the benchmarking of correction approaches for quantitative imaging. 2. Radiation transport. For anthropomorphic phantoms, or even now based on the real anatomy of a given patient, radiation emission in a given tissue or organ, radiation propagation and energy deposition in various target tissues or organs can be modelled using Monte Carlo approaches. Both domains (imaging and radiation transport) can be used to address problems at various scales (micro or macro). This chapter gives an overview on the available computer codes and their applications in the respective domains.


Image Quantification Monte Carlo Modelling Radiation Transport Absorb Dose Rate Monte Carlo Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G, Behner F, Bellagamba L, Boudreau J, Broglia L, Brunengo A, Burkhardt H, Chauvie S, Chuma J, Chytracek R, Cooperman G, Cosmo G, Degtyarenko P, Dell’Acqua A, Depaola G, Dietrich D, Enami R, Feliciello A, Ferguson C, Fesefeldt H, Folger G, Foppiano F, Forti A, Garelli S, Giani S, Giannitrapani R, Gibin D, Cadenas JJG, Gonzalez I, Abril GG, Greeniaus G, Greiner W, Grichine V, Grossheim A, Guatelli S, Gumplinger P, Hamatsu R, Hashimoto K, Hasui H, Heikkinen A, Howard A, Ivanchenko V, Johnson A, Jones FW, Kallenbach J, Kanaya N, Kawabata M, Kawabata Y, Kawaguti M, Kelner S, Kent P, Kimura A, Kodama T, Kokoulin R, Kossov M, Kurashige H, Lamanna E, Lampen T, Lara V, Lefebure V, Lei F, Liendl M, Lockman W, Longo F, Magni S, Maire M, Medernach E, Minamimoto K, de Freitas PM, Morita Y, Murakami K, Nagamatu M, Nartallo R, Nieminen P, Nishimura T, Ohtsubo K, Okamura M, O’Neale S, Oohata Y, Paech K, Perl J, Pfeiffer A, Pia MG, Ranjard F, Rybin A, Sadilov S, Di Salvo E, Santin G, Sasaki T, Savvas N, Sawada Y, Scherer S, Seil S, Sirotenko V, Smith D, Starkov N, Stoecker H, Sulkimo J, Takahata M, Tanaka S, Tcherniaev E, Tehrani ES, Tropeano M, Truscott P, Uno H, Urban L, Urban P, Verderi M, Walkden A, Wander W, Weber H, Wellisch JP, Wenaus T, Williams DC, Wright D, Yamada T, Yoshida H, Zschiesche D (2003) GEANT4-a simulation toolkit. Nucl Instrum Methods Phys Res Sect a-Accel Spectrom Detect Assoc Equip 506:250–303Google Scholar
  2. Assie K, Gardin I, Vera P, Buvat I (2005) Validation of the Monte Carlo simulator GATE for indium-111 imaging. Phys Med Biol 50:3113–3125PubMedCrossRefGoogle Scholar
  3. Autret D, Bitar A, Ferrer L, Lisbona A, Bardies M (2005) Monte Carlo modeling of gamma cameras for I-131 imaging in targeted radiotherapy. Cancer Biother Radiopharm 20:77–84PubMedCrossRefGoogle Scholar
  4. Bataille F, Comtat C, Jan S, Trébossen R (2004) MonteCarlo simulation for the ECAT HRRT using GATE. In: Proceedings of the IEEE medical imaging conference Rome, Italy, pp 2570–2574Google Scholar
  5. Berger MJ (1963) Monte Carlo calculation of the penetration and diffusion of fast charged particles. In: Methods in computational physics . Alder B et al (ed), Academic Press, New YorkGoogle Scholar
  6. Berger MJ (1971) MIRD Pamphlet No. 7: distribution of absorbed doses around point sources of electrons and beta particles in water and other media. J Nucl Med 12:5–23Google Scholar
  7. Berger MJ (1973) Improved point kernels for electrons and beta-ray dosimetry. National Bureau of Standards, GaithersburgGoogle Scholar
  8. Blaickner M, Kindl P (2008) Diversification of existing reference phantoms in nuclear medicine: calculation of specific absorbed fractions for 21 mathematical phantoms and validation through dose estimates resulting from the administration of (18)F-FDG. Cancer Biother Radiopharm 23:767–782PubMedCrossRefGoogle Scholar
  9. Bolch WE (2010) The Monte Carlo method in nuclear medicine: current uses and future potential. J Nucl Med 51:337–339PubMedCrossRefGoogle Scholar
  10. Bolch WE, Bouchet LG, Robertson JS, Wessels BW, Siegel JA, Howell RW, Erdi AK, Aydogan B, Costes S, Watson EE, Brill AB, Charkes ND, Fisher DR, Hays MT, Thomas SR (1999) MIRD pamphlet No. 17: the dosimetry of nonuniform activity distributions–radionuclide S values at the voxel level. Medical Internal Radiation Dose Committee. J Nucl Med 40:11S–36SPubMedGoogle Scholar
  11. Briesmeister JF (ed) (1993) Los Alamos National Laboratory Report LA-12625-MGoogle Scholar
  12. Buvat I, Castiglioni I (2002) Monte Carlo simulations in SPET and PET. Q J Nucl Med 46:48–61PubMedGoogle Scholar
  13. Caon M (2004) Voxel-based computational models of real human anatomy: a review. Radiat Environ Biophys 42:229–235PubMedCrossRefGoogle Scholar
  14. Carlier T, Moisan M, Ferrer L, Kraeber-Bodéré F, Barbet J and Bardiès M (2008) Validation of a GATE model of the Siemens Symbia system for 99mTc, 111In and 131I acquisitions. J Nucl Med 49:404Google Scholar
  15. Carlier T, Salaun PY, Cavarec MB, Valette F, Turzo A, Bardies M, Bizais Y, Couturier O (2006) Optimized radioiodine therapy for Graves’ disease: two MIRD-based models for the computation of patient-specific therapeutic 131I activity. Nucl Med Commun 27:559–566PubMedCrossRefGoogle Scholar
  16. Chiavassa S, Aubineau-Laniece I, Bitar A, Lisbona A, Barbet J, Franck D, Jourdain JR, Bardies M (2006) Validation of a personalized dosimetric evaluation tool (Oedipe) for targeted radiotherapy based on the Monte Carlo MCNPX code. Phys Med Biol 51:601–616PubMedCrossRefGoogle Scholar
  17. Chiavassa S, Autret D, Herry J, Becker S, Laffont S, Ferrer L, Benoit D, Vernier E, Lisbona A, Aubineau-Laniece I, Bardiès M (2005) Feasability of specific-patient dosimetry in the use of iodine 131-Lipiodol therapy for hepatocellular carcinoma Eur J Nucl Med Mol Imaging 32(S1):S84Google Scholar
  18. Clairand I, Bouchet LG, Ricard M, Durigon M, Di Paola M, Aubert B (2000) Improvement of internal dose calculations using mathematical models of different adult heights. Phys Med Biol 45:2771–2785PubMedCrossRefGoogle Scholar
  19. Cristy M, Eckerman KF (1987) Specific absorbed fractions of energy at various ages from internal photon sources (Oak Ridge. Oak Ridge National Laboratory, Oak RidgeGoogle Scholar
  20. Dartial N, Carlier T, Fusellier M, Desfontis J, Visvikis D, Bardiès M, Hindorf C (2009) Monte-Carlo simulation of the Inveon microPET system using GATE. J Nucl Med 50(Supp 2):297Google Scholar
  21. Descalle MA, Hartmann Siantar CL, Dauffy L, Nigg DW, Wemple CA, Yuan A, DeNardo GL (2003) Application of MINERVA Monte Carlo simulations to targeted radionuclide therapy. Cancer Biother Radiopharm 18:71–79PubMedCrossRefGoogle Scholar
  22. Descourt P, Carlier T, Du Y (2010) Implementation of angular response function modeling in SPECT simulations with GATE. Phys Med Biol 55:N253–N266Google Scholar
  23. Dewaraja YK, Ljungberg M, Koral KF (2000) Characterization of scatter and penetration using Monte Carlo simulation in 131I imaging. J Nucl Med 41:123–130PubMedCentralPubMedGoogle Scholar
  24. Dewaraja YK, Ljungberg M, Majumdar A, Bose A, Koral KF (2002) A parallel Monte Carlo code for planar and SPECT imaging: implementation, verification and applications in (131)I SPECT. Comput Methods Programs Biomed 67:115–124PubMedCentralPubMedCrossRefGoogle Scholar
  25. Dewaraja YK, Wilderman SJ, Ljungberg M, Koral KF, Zasadny K, Kaminiski MS (2005) Accurate dosimetry in 131I radionuclide therapy using patient-specific, 3-dimensional methods for SPECT reconstruction and absorbed dose calculation. J Nucl Med 46:840–849PubMedCentralPubMedGoogle Scholar
  26. Divoli A, Chiavassa S, Ferrer L, Barbet J, Flux GD, Bardies M (2009) Effect of patient morphology on dosimetric calculations for internal irradiation as assessed by comparisons of Monte Carlo versus conventional methodologies. J Nucl Med 50:316–323PubMedCrossRefGoogle Scholar
  27. Ferrari P, Gualdrini G (2007) MCNPX internal dosimetry studies based on the NORMAN-05 voxel model. Radiat Prot Dosimetry 127:209–213PubMedCrossRefGoogle Scholar
  28. Furhang EE, Chui CS, Sgouros G (1996) A Monte Carlo approach to patient-specific dosimetry. Med Phys 23:1523–1529PubMedCrossRefGoogle Scholar
  29. Gonias P, Bertsekas N, Karakatsanis N, Saatsakis G, Gaitanis A, Nikolopoulos D, Loudos G, Papaspyrou L, Sakellios N, Tsantilas X, Daskalakis A, Liaparinos P, Nikita K, Louizi A, Cavouras D, Kandarakis I, Panayiotakis GS (2007) Validation of a GATE model for the simulation of the Siemens biograph (TM) 6 PET scanner. Nucl Instrum Methods Phys Res Sect A-Accel Spectrom Detect Assoc Equip 571:263–266Google Scholar
  30. Holstensson M, Partridge M, Buckley SE, Flux GD (2010) The effect of energy and source location on gamma camera intrinsic and extrinsic spatial resolution: an experimental and Monte Carlo study. Phys Med Biol 55:1735–1751PubMedCrossRefGoogle Scholar
  31. Jan S, Chatziioannou AF, Comtat C (2003) Monte Carlo simulation for the microPET P4 system using GATE. Mol Imaging Biol 5:138Google Scholar
  32. Jan S, Comtat C, Strul D, Santin G, Trebossen R (2005) Monte Carlo simulation for the ECAT EXACT HR plus system using GATE. IEEE Trans Nucl Sci 52:627–633CrossRefGoogle Scholar
  33. Jan S, Desbrée A, Pain F, Guez D, Comtat C, Gurden H, Kerhoas S, Lanièce P, Lefebvre F, Mastrippolito R, Trebossen R (2005b) Monte Carlo simulation of the microPET FOCUS system for small rodents imaging applications. In: IEEE Medical Imaging Conference, pp 1653–1657Google Scholar
  34. Jan S, Santin G, Strul D, Staelens S, Assie K, Autret D, Avner S, Barbier R, Bardies M, Bloomfield PM, Brasse D, Breton V, Bruyndonckx P, Buvat I, Chatziioannou AF, Choi Y, Chung YH, Comtat C, Donnarieix D, Ferrer L, Glick SJ, Groiselle CJ, Guez D, Honore PF, Kerhoas-Cavata S, Kirov AS, Kohli V, Koole M, Krieguer M, van der Laan DJ, Lamare F, Largeron G, Lartizien C, Lazaro D, Maas MC, Maigne L, Mayet F, Melot F, Merheb C, Pennacchio E, Perez J, Pietrzyk U, Rannou FR, Rey M, Schaart DR, Schmidtlein CR, Simon L, Song TY, Vieira JM, Visvikis D, Van de Walle R, Wieers E, Morel C (2004) GATE: a simulation toolkit for PET and SPECT. Phys Med Biol 49:4543–4561PubMedCentralPubMedCrossRefGoogle Scholar
  35. Johnson TK, McClure D, McCourt S (1999a) MABDOSE. I: characterization of a general purpose dose estimation code. Med Phys 26:1389–1395PubMedCrossRefGoogle Scholar
  36. Johnson TK, McClure D, McCourt S (1999b) MABDOSE II: validation of a general purpose dose estimation code. Med Phys 26:1396–1403PubMedCrossRefGoogle Scholar
  37. Lamare F, Turzo A, Bizais Y, Le Rest CC, Visvikis D (2006) Validation of a Monte Carlo simulation of the Philips Allegro/GEMINI PET systems using GATE. Phys Med Biol 51:943–962PubMedCrossRefGoogle Scholar
  38. Lee C, Park S, Lee JK (2007) Specific absorbed fraction for Korean adult voxel phantom from internal photon source. Radiat Prot Dosimetry 123:360–368PubMedCrossRefGoogle Scholar
  39. Lehmann J, Hartmann Siantar C, Wessol DE, Wemple CA, Nigg D, Cogliati J, Daly T, Descalle MA, Flickinger T, Pletcher D, Denardo G (2005) Monte Carlo treatment planning for molecular targeted radiotherapy within the MINERVA system. Phys Med Biol 50:947–958 Google Scholar
  40. Ljungberg M, Strand SE, King MA (1998) Monte Carlo calculation in nuclear medicine: applications in diagnostic imaging. IOP Publishing, BristolGoogle Scholar
  41. Merheb C, Nicol S, Petegnief Y, Talbot JN, Buvat I (2006) Assessment of the Mosaic animal PET system response using list-mode data for validation of GATE Monte Carlo modelling. Nucl Instrum Methods Phys Res Sect a-Accel Spectrom Detect Assoc Equip 569:220–224CrossRefGoogle Scholar
  42. Michel C, Eriksson L, Rothfuss H, Bendriem B (2006) Influence of Crystal material on the performance of the HiRez 3D PET scanner: A Monte Carlo study. IEEE Nucl Sci Symp Conf Rec 4:2528–2531Google Scholar
  43. Nelson WR, Hirayama H, Rogers DWO (1985) The EGS4 code system. Stanford Linear Accelerator Center, StanfordGoogle Scholar
  44. Peter J, Tornai MP, Jaszczek RJ (2000) Analytical versus voxelized phantom representation for Monte Carlo simulation in radiological imaging. IEEE Trans Med Imaging 19:556–564PubMedCrossRefGoogle Scholar
  45. Rannou FR, Kohli V, Prout DL, Chatziioannou AF (2004) Investigation of OPET performance using GATE, a Geant4-based simulation software. IEEE Trans Nucl Sci 51:2713–2717PubMedCentralPubMedCrossRefGoogle Scholar
  46. Rey M, Jan S, Vieira JM, Mosset JB, Krieguer M, Comtat C, Morel C (2007) Count rate performance study of the Lausanne ClearPET scanner demonstrator. Nucl Instrum Methods Phys Res Sect A-Accel Spectrom Detect Assoc Equip 571:207–210CrossRefGoogle Scholar
  47. Saito K, Wittmann A, Koga S, Ida Y, Kamei T, Funabiki J, Zankl M (2001) Construction of a computed tomographic phantom for a Japanese male adult and dose calculation system. Radiat Environ Biophys 40:69–75PubMedCrossRefGoogle Scholar
  48. Schmidtlein CR, Kirov AS, Nehmeh SA, Erdi YE, Humm JL, Amols HI, Bidaut LM, Ganin A, Stearns CW, McDaniel DL, Hamacher KA (2006) Validation of GATE Monte Carlo simulations of the GE Advance/Discovery LS PET scanners. Med Phys 33:198–208PubMedCrossRefGoogle Scholar
  49. Sgouros G (2005) Dosimetry of internal emitters. J Nucl Med 46(Suppl 1):18S–27SPubMedGoogle Scholar
  50. Sgouros G, Barest G, Thekkumthala J, Chui C, Mohan R, Bigler RE, Zanzonico PB (1990) Treatment planning for internal radionuclide therapy: three-dimensional dosimetry for nonuniformly distributed radionuclides. J Nucl Med 31:1884–1891PubMedGoogle Scholar
  51. Sgouros G, Frey E, Wahl R, He B, Prideaux A, Hobbs R (2008) Three-dimensional imaging-based radiobiological dosimetry. Semin Nucl Med 38:321–334PubMedCentralPubMedCrossRefGoogle Scholar
  52. Sgouros G, Kolbert KS, Sheikh A, Pentlow KS, Mun EF, Barth A, Robbins RJ, Larson SM (2004) Patient-specific dosimetry for 131I thyroid cancer therapy using 124I PET and 3-dimensional-internal dosimetry (3D-ID) software. J Nucl Med 45:1366–1372PubMedGoogle Scholar
  53. Sjogreen K, Ljungberg M, Wingardh K, Minarik D, Strand SE (2005) The LundADose method for planar image activity quantification and absorbed-dose assessment in radionuclide therapy. Cancer Biother Radiopharm 20:92–97PubMedCrossRefGoogle Scholar
  54. Snyder WS, Fisher HL Jr, Ford MR, Warner GG (1969) MIRD Pamphlet No. 5. Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. J Nucl Med 3(Supp l):7–52Google Scholar
  55. Snyder WS, Ford MR, Warner GG, Watson SB (1975) MIRD Pamphlet No. 11: ‘S’, Absorbed dose per unit cumulated activity for selected radionuclides and organs. The Society of Nuclear Medicine, New YorkGoogle Scholar
  56. Song X, Segars WP, Du Y, Tsui BM, Frey EC (2005) Fast modelling of the collimator-detector response in Monte Carlo simulation of SPECT imaging using the angular response function. Phys Med Biol 50:1791–1804PubMedCrossRefGoogle Scholar
  57. Stabin MG (1996) MIRDOSE: personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 37:538–546PubMedGoogle Scholar
  58. Stabin MG, Yoriyaz H (2002) Photon specific absorbed fractions calculated in the trunk of an adult male voxel-based phantom. Health Phys 82:21–44PubMedCrossRefGoogle Scholar
  59. Staelens S, Strul D, Santin G, Vandenberghe S, Koole M, D’Asseler Y, Lemahieu I, Van de Walle R (2003) Monte Carlo simulations of a scintillation camera using GATE: validation and application modelling. Phys Med Biol 48:3021–3042PubMedCrossRefGoogle Scholar
  60. Xu G (2005) Stylized versus tomographic: an experience on anatomical modelling at RPI. In: Monte Carlo 2005 topical meeting. American Nuclear Society, ChattannogaGoogle Scholar
  61. Xu XG, Chao TC, Bozkurt A (2000) VIP-Man: an image-based whole-body adult male model constructed from color photographs of the visible human project for multi-particle Monte Carlo calculations. Health Phys 78:476–486PubMedCrossRefGoogle Scholar
  62. Yamauchi M, Ishikawa M, Hoshi M (2005) A stylized computational model of the head for the reference Japanese male. Med Phys 32:85–92PubMedCrossRefGoogle Scholar
  63. Yoriyaz H, dos Santos A, Stabin MG, Cabezas R (2000) Absorbed fractions in a voxel-based phantom calculated with the MCNP-4B code. Med Phys 27:1555–1562PubMedCrossRefGoogle Scholar
  64. Yoriyaz H, Stabin MG, dos Santos A (2001) Monte Carlo MCNP-4B-based absorbed dose distribution estimates for patient-specific dosimetry. J Nucl Med 42:662–669PubMedGoogle Scholar
  65. Zaidi H (1999) Relevance of accurate Monte Carlo modeling in nuclear medical imaging. Med Phys 26:574–608PubMedCrossRefGoogle Scholar
  66. Zaidi H (2000) Addendum to “Relevance of accurate Monte Carlo modeling in nuclear medical imaging” [Med Phys 26:574–608 (1999)] Med Phys 27:816–817Google Scholar
  67. Zaidi H (2006) Quantitative analysis in nuclear medicine imaging. Springer, New YorkGoogle Scholar
  68. Zaidi H, Sgouros G (2003) Therapeutic applications of Monte-Carlo calculations in nuclear medicine. IOP Publishing, BristolCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Centre de Recherche en Cancérologie de ToulouseUMR 1037 INSERM/Université Paul SabatierToulouse cedexFrance
  2. 2.Department of Nuclear MedicineUniversity of WürzburgWürzburgGermany

Personalised recommendations