Assessment of Response to Therapy

  • Ali Gholamrezanezhad
  • Alin Chirindel
  • Rathan Subramaniam
Part of the Medical Radiology book series (MEDRAD)


In modern clinical oncology, there is a growing need to identify response to treatment to detect improvement or worsening of the disease as early as possible. Anatomical imaging modalities that rely on morphologic or structural data, though precise in the delineation of lesions, do not provide functional information about response and have limited reproducibility. The accuracy of anatomical parameters is limited partly due to the delay between the treatment and the appearance of tumor shrinkage. As the changes in tumor metabolism precede the changes in tumor size, functional imaging modalities are more clinically useful and allow visualization of tumor response at earlier stages. PET provides information regarding the metabolic behavior of the disease, independent of morphological and anatomical criteria. This chapter reviews the current evidence on the potential contribution of PET to evaluation of response to therapy and the challenges ahead, especially the standardization of performing clinical PET/CT across centers, to be meaningful in patient care.


Standardize Uptake Value Standardize Uptake Value Measurement Partial Metabolic Response Metabolic Responder Baseline Standardize Uptake Value 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams MC et al (2010) A systematic review of the factors affecting accuracy of SUV measurements. AJR Am J Roentgenol 195(2):310–320PubMedCrossRefGoogle Scholar
  2. Akhurst T et al (2002) An initial experience with FDG-PET in the imaging of residual disease after induction therapy for lung cancer. Ann Thorac Surg 73(1):259–264 discussion 264-6PubMedCrossRefGoogle Scholar
  3. Akhurst T et al (2005) Recent chemotherapy reduces the sensitivity of [18F]fluorodeoxyglucose positron emission tomography in the detection of colorectal metastases. J Clin Oncol 23(34):8713–8716PubMedCrossRefGoogle Scholar
  4. Alexiou GA et al (2010) Assessment of glioma proliferation using imaging modalities. J Clin Neurosci 17(10):1233–1238PubMedCrossRefGoogle Scholar
  5. Allen AM et al (2009) Early prediction of radiation response of brain metastases with [F-18]-ML-10: a novel molecular PET imaging agent for apoptosis. Int J Radiat Oncol Biol Phys 75(3):S44CrossRefGoogle Scholar
  6. Allen-Auerbach M, Weber WA (2009) Measuring Response with FDG-PET: Methodological Aspects. Oncologist 14(4):369–377PubMedCrossRefGoogle Scholar
  7. Amthauer H et al (2004) Response prediction by FDG-PET after neoadjuvant radiochemotherapy and combined regional hyperthermia of rectal cancer: correlation with endorectal ultrasound and histopathology. Eur J Nucl Med Mol Imaging 31(6):811–819PubMedCrossRefGoogle Scholar
  8. Andrade RS et al (2006) Posttreatment assessment of response using FDG-PET/CT for patients treated with definitive radiation therapy for head and neck cancers. Int J Radiat Oncol Biol Phys 65(5):1315–1322PubMedCrossRefGoogle Scholar
  9. Antoch G et al (2005) Assessment of liver tissue after radiofrequency ablation: findings with different imaging procedures. J Nucl Med 46(3):520–525PubMedGoogle Scholar
  10. Aoyagi K et al (1999) Detection of malignant tumors with whole-boby PET using F-18 alpha-methyl tyrosine: comparison with whole-body FDG PET. J Nucl Med 40(5):229pGoogle Scholar
  11. Apisarnthanarax S et al (2006) Early detection of chemoradioresponse in esophageal carcinoma by 3 ‘-deoxy-3 ‘-H-3-fluorothymidine using preclinical tumor models. Clin Cancer Res 12(15):4590–4597PubMedCrossRefGoogle Scholar
  12. Aschoff AJ et al (2000) Thermal lesion conspicuity following interstitial radiofrequency thermal tumor ablation in humans: a comparison of STIR, turbo spin-echo T2-weighted, and contrast-enhanced T1-weighted MR images at 0.2 T. J Magn Reson Imaging 12(4):584–589PubMedCrossRefGoogle Scholar
  13. Avallone A et al (2009) Circulating endothelial cells (CECs) and FDG-PET for early prediction of response in high-risk locally advanced rectal cancer (HR-LARC) patients (pts) treated with two different schedules of bevacizumab (BEV) in combination with preoperative chemo-radiotherapy (CT-RT). EJC Suppl 7(2):358–358CrossRefGoogle Scholar
  14. Avril N et al (2005) Prediction of response to neoadjuvant chemotherapy by sequential F-18-fluorodeoxyglucose positron emission tomography in patients with advanced-stage ovarian cancer. J Clin Oncol 23(30):7445–7453PubMedCrossRefGoogle Scholar
  15. Avril N, Sassen S, Roylance R (2009) Response to therapy in breast cancer. J Nucl Med 50(Suppl 1):55S–63SPubMedCrossRefGoogle Scholar
  16. Backes H et al (2009) Noninvasive quantification of (18)F-FLT human brain PET for the assessment of tumour proliferation in patients with high-grade glioma. Eur J Nucl Med Mol Imaging 36(12):1960–1967PubMedCrossRefGoogle Scholar
  17. Barrington SF, Carr R (1995) Staging of Burkitt’s lymphoma and response to treatment monitored by PET scanning. Clin Oncol (R Coll Radiol) 7(5):334–335CrossRefGoogle Scholar
  18. Barthel H et al (2003) 3 ‘-deoxy-3 ‘-[F-18]fluorothymidine as a new marker for monitoring tumor response to antiproliferative therapy in vivo with positron emission tomography. Cancer Res 63(13):3791–3798PubMedGoogle Scholar
  19. Barwick T et al (2009) Molecular PET and PET/CT imaging of tumour cell proliferation using F-18 fluoro-L-thymidine: a comprehensive evaluation. Nucl Med Commun 30(12):908–917PubMedCrossRefGoogle Scholar
  20. Batchelor TT et al (2007) AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11(1):83–95PubMedCrossRefGoogle Scholar
  21. Baum RP, Przetak C (2001) Evaluation of therapy response in breast and ovarian cancer patients by positron emission tomography (PET). Q J Nucl Med 45(3):257–268PubMedGoogle Scholar
  22. Belhocine TZ, Blankenberg FG (2006) The imaging of apoptosis with the radiolabelled annexin A5: a new tool in translational research. Curr Clin Pharmacol 1(2):129–137PubMedCrossRefGoogle Scholar
  23. Belhocine T et al (2004) The imaging of apoptosis with the radiolabeled annexin V: optimal timing for clinical feasibility. Technol Cancer Res Treat 3(1):23–32PubMedGoogle Scholar
  24. Bender H et al (1999) Possible role of FDG-PET in the early prediction of therapy outcome in liver metastases of colorectal cancer. Hybridoma 18(1):87–91PubMedCrossRefGoogle Scholar
  25. Berriolo-Riedinger A et al (2007) [F-18]FDG-PET predicts complete pathological response of breast cancer to neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging 34(12):1915–1924PubMedCrossRefGoogle Scholar
  26. Bishton MJ et al (2008) A prospective study of the separate predictive capabilities of 18[F]-FDG-PET and molecular response in patients with relapsed indolent non-Hodgkin’s lymphoma following treatment with iodine-131-rituximab radio-immunotherapy. Haematologica 93(5):789–790PubMedCrossRefGoogle Scholar
  27. Blankenberg FG (2008a) Monitoring of treatment-induced apoptosis in oncology with PET and SPECT. Curr Pharm Des 14(28):2974–2982PubMedCrossRefGoogle Scholar
  28. Blankenberg FG (2008b) In vivo imaging of apoptosis. Cancer Biol Ther 7(10):1525–1532PubMedCrossRefGoogle Scholar
  29. Blankenberg FG (2008c) In vivo detection of apoptosis. J Nucl Med 49(Suppl 2):81S–95SPubMedCrossRefGoogle Scholar
  30. Blankenberg FG (2009a) Imaging the molecular signatures of apoptosis and injury with radiolabeled annexin V. Proc Am Thorac Soc 6(5):469–476PubMedCrossRefGoogle Scholar
  31. Blankenberg FG (2009b) Apoptosis imaging: anti-cancer agents in medicinal chemistry. Anticancer Agents Med Chem 9(9):944–951Google Scholar
  32. Blankenberg F, Ohtsuki K, Strauss HW (1999a) Dying a thousand deaths. Radionuclide imaging of apoptosis. Q J Nucl Med 43(2):170–176PubMedGoogle Scholar
  33. Blankenberg FG et al (1999b) Imaging of apoptosis (programmed cell death) with 99 mTc annexin V. J Nucl Med 40(1):184–191PubMedGoogle Scholar
  34. Blankenberg FG et al (2006) Radiolabeling of HYNIC-annexin V with technetium-99 m for in vivo imaging of apoptosis. Nat Protoc 1(1):108–110PubMedCrossRefGoogle Scholar
  35. Boellaard R et al (2008) The Netherlands protocol for standardisation and quantification of FDG whole body PET studies in multi-centre trials. Eur J Nucl Med Mol Imaging 35(12):2320–2333PubMedCrossRefGoogle Scholar
  36. Bradbury MS et al (2008) Dynamic small-animal PET Imaging of tumor proliferation with 3 ‘-Deoxy-3 ‘-F-18-fluorothymidine in a genetically engineered mouse model of high-grade gliomas. J Nucl Med 49(3):422–429PubMedCrossRefGoogle Scholar
  37. Brandes AA et al (2008) MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol 26(13):2192–2197PubMedCrossRefGoogle Scholar
  38. Brandsma D et al (2008) Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 9(5):453–461PubMedCrossRefGoogle Scholar
  39. Brat DJ, Mapstone TB (2003) Malignant glioma physiology: cellular response to hypoxia and its role in tumor progression. Ann Intern Med 138(8):659–668PubMedGoogle Scholar
  40. Brepoels L et al (2009) F-18-FDG and F-18-FLT uptake early after cyclophosphamide and mTOR Inhibition in an experimental lymphoma model. J Nucl Med 50(7):1102–1109PubMedCrossRefGoogle Scholar
  41. Brock CS et al (2000) Early evaluation of tumour metabolic response using [F-18]fluorodeoxyglucose and positron emission tomography: a pilot study following the phase II chemotherapy schedule for temozolomide in recurrent high-grade gliomas. Br J Cancer 82(3):608–615PubMedCrossRefGoogle Scholar
  42. Buyse M et al (2000) Relation between tumour response to first-line chemotherapy and survival in advanced colorectal cancer: a meta-analysis. Lancet 356(9227):373–378PubMedCrossRefGoogle Scholar
  43. Buck AK et al (2003) Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J Nucl Med 44(9):1426–1431PubMedGoogle Scholar
  44. Busk M et al (2009) Can hypoxia-PET map hypoxic cell density heterogeneity accurately in an animal tumor model at a clinically obtainable image contrast? Radiother Oncol 92(3):429–436PubMedCrossRefGoogle Scholar
  45. Busk M et al (2010) Assessing hypoxia in animal tumor models based on pharmocokinetic analysis of dynamic FAZA PET. Acta Oncol 49(7):922–933PubMedCrossRefGoogle Scholar
  46. Bussink J et al (2010) PET-CT for response assessment and treatment adaptation in head and neck cancer. Lancet Oncol 11(7):661–669PubMedCrossRefGoogle Scholar
  47. Bystrom P et al (2009) Early prediction of response to first-line chemotherapy by sequential [F-18]-2-fluoro-2-deoxy-d-glucose positron emission tomography in patients with advanced colorectal cancer. Ann Oncol 20(6):1057–1061PubMedCrossRefGoogle Scholar
  48. Caroli P et al (2010) Non-FDG PET in the practice of oncology. Indian J Cancer 47(2):120–125PubMedCrossRefGoogle Scholar
  49. Casciari JJ, Graham MM, Rasey JS (1995) A modeling approach for quantifying tumor hypoxia with [F-18] fluoromisonidazole pet time-activity data. Med Phys 22(7):1127–1139PubMedCrossRefGoogle Scholar
  50. Cerfolio RJ et al (2004) Repeat FDG-PET after neoadjuvant therapy is a predictor of pathologic response in patients with non-small cell lung cancer. Ann Thorac Surg 78(6):1903–1909PubMedCrossRefGoogle Scholar
  51. Ceulemans G et al (2010) Can 18-FDG-PET During Radiotherapy Replace Post-Therapy Scanning for Detection/Demonstration of Tumor Response in Head-and-Neck Cancer? Int J Radiat Oncol Biol Phys 81(4):938–942PubMedCrossRefGoogle Scholar
  52. Chao ST et al (2001) The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer 96(3):191–197PubMedCrossRefGoogle Scholar
  53. Charnley N et al (2006) Early change in glucose metabolic rate measured using FDG-PET in patients with high-grade glioma predicts response to temozolomide but not temozolomide plus radiotherapy. Int J Radiat Oncol Biol Phys 66(2):331–338PubMedCrossRefGoogle Scholar
  54. Chen YR et al (2004) Value of 18F-FDG PET imaging in diagnosing tumor residue of intracranial glioma after surgery and radiotherapy. Ai Zheng 23(10):1210–1212PubMedGoogle Scholar
  55. Chen W et al (2007) Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [F-18] fluorothymidine positron emission tomography: a pilot study. J Clin Oncol 25(30):4714–4721PubMedCrossRefGoogle Scholar
  56. Chesnay E et al (2003) Early response to chemotherapy in hypopharyngeal cancer: Assessment with C-11-methionine PET, correlation with morphologic response, and clinical outcome. J Nucl Med 44(4):526–532PubMedGoogle Scholar
  57. Cheson BD (2007a) The International Harmonization Project for response criteria in lymphoma clinical trials. Hematol Oncol Clin North Am 21(5):841–854PubMedCrossRefGoogle Scholar
  58. Cheson BD et al (2007b) Revised response criteria for malignant lymphoma. J Clin Oncol 25(5):579–586PubMedCrossRefGoogle Scholar
  59. Choi NC et al (2002) Dose-response relationship between probability of pathologic tumor control and glucose metabolic rate measured with FDG pet after preoperative chemoradiotherapy in locally advanced non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 54(4):1024–1035PubMedCrossRefGoogle Scholar
  60. Czernin J, Allen-Auerbach M, Schelbert HR (2007) Improvements in cancer staging with PET/CT: literature-based evidence as of September 2006. J Nucl Med 48(Suppl 1):78S–88SPubMedGoogle Scholar
  61. de Geus-Oei LF et al (2008) Chemotherapy response evaluation with FDG-PET in patients with colorectal cancer. Ann Oncol 19(2):348–352PubMedCrossRefGoogle Scholar
  62. de Geus-Oei LF et al (2009) Monitoring and predicting response to therapy with 18F-FDG PET in colorectal cancer: a systematic review. J Nucl Med 50(Suppl 1):43S–54SPubMedCrossRefGoogle Scholar
  63. de Langen AJ et al (2009) Reproducibility of quantitative F-18-3’-deoxy-3’-fluorothymidine measurements using positron emission tomography. Eur J Nucl Med Mol Imaging 36(3):389–395PubMedCrossRefGoogle Scholar
  64. de Langen AJ et al (2011) Monitoring Response to Antiangiogenic Therapy in Non-Small Cell Lung Cancer Using Imaging Markers Derived from PET and Dynamic Contrast-Enhanced MRI. J Nucl Med 52(1):48–55PubMedCrossRefGoogle Scholar
  65. De Leyn P et al (2006) Prospective comparative study of integrated positron emission tomography-computed tomography scan compared with remediastinoscopy in the assessment of residual mediastinal lymph node disease after induction chemotherapy for mediastinoscopy-proven stage IIIA-N2 non-small-cell lung cancer: A Leuven lung cancer group study. J Clin Oncol 24(21):3333–3339PubMedCrossRefGoogle Scholar
  66. De Ridder M et al (2009) Prediction of response to neo-adjuvant radiotherapy in patients with locally advanced rectal cancer by means of sequential 18F-FDG-PET. EJC Suppl 7(4):15–15CrossRefGoogle Scholar
  67. De Ridder M et al (2010) Prediction of response to neo-adjuvant radiotherapy in patients with locally advanced rectal cancer by means of sequential 18f-Fdg-Pet. Ann Oncol 21:I55–I55Google Scholar
  68. de Vries E et al (2009) Molecular imaging of breast cancer. Breast 18:S8–S9CrossRefGoogle Scholar
  69. de Wit MCY et al (2004) Immediate post-radiotherapy changes in malignant glioma can mimic tumor progression. Neurology 63(3):535–537PubMedCrossRefGoogle Scholar
  70. Dehdashti F, Flanagan FL, Siegel BA (1997) PET assessment of metabolic flare in advanced breast cancer. Radiology 205:340–340Google Scholar
  71. Dehdashti F et al (1999) Positron emission tomographic assessment of “metabolic flare” to predict response of metastatic breast cancer to antiestrogen therapy. Eur J Nucl Med 26(1):51–56PubMedCrossRefGoogle Scholar
  72. Dehdashti F et al (2000) Evaluation of tumor hypoxia with Cu-60 ATSM and PET. J Nucl Med 41(5):34pGoogle Scholar
  73. Dehdashti F et al (2008) Assessing tumor hypoxia in cervical cancer by PET with Cu-60-labeled diacetyl-bis(N-4-methylthiosemicarbazone). J Nucl Med 49(2):201–205PubMedCrossRefGoogle Scholar
  74. Delgado-Bolton RC, Delgado JLC (2009) Positron emission tomography (PET) in the evaluation of response to therapy in non-small cell lung cancer. Curr Cancer Ther Rev 5:20–27CrossRefGoogle Scholar
  75. Dhermain FG et al (2010) Advanced MRI and PET imaging for assessment of treatment response in patients with gliomas. Lancet Neurology 9(9):906–920PubMedCrossRefGoogle Scholar
  76. Dietz D et al (2007) Tumor hypoxia predicts response to neoadjuvant chemoradiation therapy in rectal cancer: results of a pilot study of the novel hypoxia-detecting 60Cu-ATSM PET scan. Dis Colon Rectum 50(5):780Google Scholar
  77. Dimitrakopoulou-Strauss A, Strauss LG, Burger C (2001) Quantitative PET studies in pretreated melanoma patients: A comparison of 6-[F-18] fluoro-L-dopa with F-18-FDG and O-15-water using compartment and noncompartment analysis. J Nucl Med 42(2):248–256PubMedGoogle Scholar
  78. Dimitrakopoulou-Strauss A, Strauss LG, Rudi J (2003) PET-FDG as predictor of therapy response in patients with colorectal carcinoma. Q J Nucl Med 47(1):8–13PubMedGoogle Scholar
  79. Dimitrakopoulou-Strauss A et al (2004) Prognostic aspects of 18F-FDG PET kinetics in patients with metastatic colorectal carcinoma receiving FOLFOX chemotherapy. J Nucl Med 45(9):1480–1487PubMedGoogle Scholar
  80. Dittmann H et al (2009) 3’-Deoxy-3’-[(18)F]fluorothymidine (FLT) uptake in breast cancer cells as a measure of proliferation after doxorubicin and docetaxel treatment. Nucl Med Biol 36(2):163–169PubMedCrossRefGoogle Scholar
  81. Donckier V et al (2003) [F-18] fluorodeoxyglucose positron emission tomography as a tool for early recognition of incomplete tumor destruction after radiofrequency ablation for liver metastases. J Surg Oncol 84(4):215–223PubMedCrossRefGoogle Scholar
  82. Dooms C et al (2008) Prognostic stratification of stage IIIA-N2 non-small-cell lung cancer after induction chemotherapy: a model based on the combination of morphometric-pathologic response in mediastinal nodes and primary tumor response on serial 18-fluoro-2-deoxy-glucose positron emission tomography. J Clin Oncol 26(7):1128–1134PubMedCrossRefGoogle Scholar
  83. Dose J, Hemminger GE, Bohuslavizki KH (2000) Therapy monitoring using FDG-PET in metastatic cervical cancer. Lancet Oncol 1:106PubMedCrossRefGoogle Scholar
  84. Dunleavy K et al (2010) The value of positron emission tomography in prognosis and response assessment in non-Hodgkin lymphoma. Leuk Lymphoma 51(Suppl 1):28–33PubMedCrossRefGoogle Scholar
  85. Eich HT et al (2008a) Response-adapted therapy using FDG-PET after BEACOPP-chemotherapy in advanced stage Hodgkin’s lymphoma—An interim analysis of the German Hodgkin Study Group (GHSG) trial HD15. Int J Radiat Oncol Biol Phys 72(1):S471–S471CrossRefGoogle Scholar
  86. Eich HT et al (2008b) FDG-PET for treatment response assessment in advanced stage Hodgkin Lymphoma - report on the 2nd interim analysis of GHSG trial HD15. Strahlenther Onkol 184:11–11Google Scholar
  87. Eisenhauer EA et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247PubMedCrossRefGoogle Scholar
  88. Engenhart R et al (1992) Therapy monitoring of presacral recurrences after high-dose irradiation: value of PET, CT, CEA and pain score. Strahlenther Onkol 168(4):203–212PubMedGoogle Scholar
  89. Eradat J et al (2011) Evaluation of treatment response after nonoperative therapy for early-stage non-small cell lung carcinoma. Cancer J 17(1):38–48PubMedCrossRefGoogle Scholar
  90. Erdi YE et al (2000) Use of PET to monitor the response of lung cancer to radiation treatment. Eur J Nucl Med 27(7):861–866PubMedCrossRefGoogle Scholar
  91. Escalona S et al (2010) A systematic review of FDG-PET in breast cancer. Med Oncol 27(1):114–129PubMedCrossRefGoogle Scholar
  92. Everitt S et al (2009) Imaging cellular proliferation during chemo-radiotherapy: a pilot study of serial F-18-Flt positron emission tomography/computed tomography imaging for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 75(4):1098–1104PubMedCrossRefGoogle Scholar
  93. Farrag A et al (2010) Can 18F-FDG-PET response during radiotherapy be used as a predictive factor for the outcome of head and neck cancer patients? Nucl Med Commun 31(6):495–501PubMedGoogle Scholar
  94. Findlay M et al (1996) Noninvasive monitoring of tumor metabolism using fluorodeoxyglucose and positron emission tomography in colorectal cancer liver metastases: correlation with tumor response to fluorouracil. J Clin Oncol 14(3):700–708PubMedGoogle Scholar
  95. Finger PT, Chin KJ (2011) [(18)F]Fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) physiologic imaging of choroidal melanoma: before and after ophthalmic plaque radiation therapy. Int J Radiat Oncol Biol Phys 79(1):137–142PubMedCrossRefGoogle Scholar
  96. Fukumura D, Jain RK (2007) Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc Res 74(2–3):72–84PubMedCrossRefGoogle Scholar
  97. Furth C et al (2010) Evaluation of interim-PET for response assessment in pediatric Hodgkin lymphoma—Results for dedicated assessment criteria in a blinded, dual-center read. Eur J Nucl Med Mol Imaging 37:S213–S213Google Scholar
  98. Galldiks N et al (2006) Use of C-11-methionine PET to monitor the effects of temozolomide chemotherapy in malignant gliomas. Eur J Nucl Med Mol Imaging 33(5):516–524PubMedCrossRefGoogle Scholar
  99. Geets X et al (2007) Adaptive biological image-guided IMRT with anatomic and functional imaging in pharyngo-laryngeal tumors: Impact on target volume delineation and dose distribution using helical tomotherapy. Radiother Oncol 85(1):105–115PubMedCrossRefGoogle Scholar
  100. Gerstner ER, Batchelor TT (2010) Imaging and response criteria in gliomas. Curr Opin Oncol 22(6):598–603PubMedCrossRefGoogle Scholar
  101. Glazer ES et al (2010) Effectiveness of positron emission tomography for predicting chemotherapy response in colorectal cancer liver metastases. Arch Surg 145(4):340–345 discussion 345PubMedCrossRefGoogle Scholar
  102. Green SL, Giaccia AJ (1998) Tumor hypoxia and the cell cycle: implications for malignant progression and response to therapy. Cancer J Sci Am 4(4):218–223PubMedGoogle Scholar
  103. Greven KM et al (2001) Serial positron emission tomography scans following radiation therapy of patients with head and neck cancer. Head Neck-J Sci Special Head Neck 23(11):942–946Google Scholar
  104. Grigsby PW (2009) Role of PET in gynecologic malignancy. Curr Opin Oncol 21(5):420–424PubMedCrossRefGoogle Scholar
  105. Grigsby PW et al (2004) Posttherapy [F-18] fluorodeoxyglucose positron emission tomography in carcinoma of the cervix: response and outcome. J Clin Oncol 22(11):2167–2171PubMedCrossRefGoogle Scholar
  106. Gupta T et al (2010) Diagnostic performance of response assessment FDG-PET/CT in patients with head and neck squamous cell carcinoma treated with high-precision definitive (chemo)radiation. Radiother Oncol 97(2):194–199PubMedCrossRefGoogle Scholar
  107. Haberkorn U et al (1991) Pet studies of fluorodeoxyglucose metabolism in patients with recurrent colorectal tumors receiving radiotherapy. J Nucl Med 32(8):1485–1490PubMedGoogle Scholar
  108. Herholz K, Kracht LW, Heiss WD (2003) Monitoring the effect of chemotherapy in a mixed glioma by C-11-methionine PET. J Neuroimaging 13(3):269–271PubMedGoogle Scholar
  109. Heron DE et al (2008) PET-CT in radiation oncology - The impact on diagnosis, treatment planning, and assessment of treatment response. Am J Clin Oncol-Cancer Clin Trials 31(4):352–362Google Scholar
  110. Herrmann K et al (2007) Early response assessment using 3 ‘-Deoxy-3 ‘-[F-18]fluorothymidine-positron emission tomography in high-grade non-Hodgkin’s lymphoma. Clin Cancer Res 13(12):3552–3558PubMedCrossRefGoogle Scholar
  111. Heuveling DA, de Bree R, van Dongen GA (2011) The potential role of non-FDG-PET in the management of head and neck cancer. Oral Oncol 47(1):2–7PubMedCrossRefGoogle Scholar
  112. Hicks RJ et al (2004) Early FDG-PET imaging after radical radiotherapy for non-small-cell lung cancer: inflammatory changes in normal tissues correlate with tumor response and do not confound therapeutic response evaluation. Int J Radiat Oncol Biol Phys 60(2):412–418PubMedCrossRefGoogle Scholar
  113. Hicks RJ (2009) Role of 18F-FDG PET in assessment of response in non-small cell lung cancer. J Nucl Med 50(Suppl 1):31S–42SPubMedCrossRefGoogle Scholar
  114. Hockel M et al (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56(19):4509–4515PubMedGoogle Scholar
  115. Hofman MS et al (2007) Assessing response to chemotherapy in metastatic melanoma with FDG PET: early experience. Nucl Med Commun 28(12):902–906PubMedCrossRefGoogle Scholar
  116. Horning SJ et al (2010) Interim positron emission tomography scans in diffuse large B-cell lymphoma: an independent expert nuclear medicine evaluation of the Eastern cooperative oncology group E3404 study. Blood 115(4):775–777PubMedCrossRefGoogle Scholar
  117. Huovinen R et al (1993) Carbon-11-Methionine and Pet in Evaluation of Treatment Response of Breast-Cancer. Br J Cancer 67(4):787–791PubMedCrossRefGoogle Scholar
  118. Hustinx R et al (1999) Non-invasive assessment of tumor hypoxia with the 2-nitroimidazole F-18-EF1 and PET. J Nucl Med 40(5):99p–99pGoogle Scholar
  119. Iagaru A et al (2008) (18)F-FDG-PET/CT evaluation of response to treatment in lymphoma: when is the optimal time for the first re-evaluation scan? Hell J Nucl Med 11(3):153–156PubMedGoogle Scholar
  120. Inoue T et al (1998a) Biodistribution studies on L-3-[fluorine-18]fluoro-alpha-methyl tyrosine: A potential tumor-detecting agent. J Nucl Med 39(4):663–667PubMedGoogle Scholar
  121. Inoue T et al (1998b) Preliminary clinical study of PET with F-18 alpha methyl tyrosine (FMT) in patients with brain tumor. J Nucl Med 39(5):53p–53pGoogle Scholar
  122. Inoue T et al (2001) Detection of malignant tumors: whole-body PET with fluorine 18 alpha-methyl tyrosine versus FDG—preliminary study. Radiology 220(1):54–62PubMedGoogle Scholar
  123. Isles MG, McConkey C, Mehanna HM (2008) A systematic review and meta-analysis of the role of positron emission tomography in the follow up of head and neck squamous cell carcinoma following radiotherapy or chemoradiotherapy. Clin Otolaryngol 33(3):210–222PubMedCrossRefGoogle Scholar
  124. Isohashi K et al (2008) 18F-FDG-PET in patients with malignant lymphoma having long-term follow-up: staging and restaging, and evaluation of treatment response and recurrence. Ann Nucl Med 22(9):795–802PubMedCrossRefGoogle Scholar
  125. Ito M et al (2006) PET and planar imaging of tumor hypoxia with labeled metronidazole. Acad Radiol 13(5):598–609PubMedCrossRefGoogle Scholar
  126. Jacobs AH et al (2005) F-18-fluoro-L-thymidine and C-11-methylmethionine as markers of increased transport and proliferation in brain tumors. J Nucl Med 46(12):1948–1958PubMedGoogle Scholar
  127. Janssen MHM et al (2010) Evaluation of early metabolic responses in rectal cancer during combined radiochemotherapy or radiotherapy alone: sequential FDG-PET-CT findings. Radiother Oncol 94(2):151–155PubMedCrossRefGoogle Scholar
  128. Jensen MM et al (2010) Early detection of response to experimental chemotherapeutic Top216 with [18F]FLT and [18F]FDG PET in human ovary cancer xenografts in mice. PLoS One 5(9):e12965PubMedCrossRefGoogle Scholar
  129. Joosten J et al (2005) Cryosurgery and radiofrequency ablation for unresectable colorectal liver metastases. Eur J Surg Oncol 31(10):1152–1159PubMedCrossRefGoogle Scholar
  130. Jost LM, Stahel RA, Force EGT (2005) ESMO minimum clinical recommendations for diagnosis, treatment and follow-up of Hodgkin’s disease. Ann Oncol 16:54–55CrossRefGoogle Scholar
  131. Juweid ME et al (2007) Use of positron emission tomography for response assessment of lymphoma: consensus of the imaging subcommittee of international harmonization project in lymphoma. J Clin Oncol 25(5):571–578PubMedCrossRefGoogle Scholar
  132. Kaira K et al (2010) Assessment of therapy response in lung cancer with (1)F-alpha-methyl tyrosine PET. AJR Am J Roentgenol 195(5):1204–1211PubMedCrossRefGoogle Scholar
  133. Kenny LM et al (2005) Quantification of cellular proliferation in tumor and normal tissues of patients with breast cancer by [18F]fluorothymidine-positron emission tomography imaging: evaluation of analytical methods. Cancer Res 65(21):10104–10112PubMedCrossRefGoogle Scholar
  134. Kenny L et al (2007) Imaging early changes in proliferation at 1 week post chemotherapy: a pilot study in breast cancer patients with 3 ‘-deoxy-3 ‘-[F-18]fluorothymidine positron emission tomography. Eur J Nucl Med Mol Imaging 34(9):1339–1347PubMedCrossRefGoogle Scholar
  135. Kheirallah S et al (2010) Rituximab inhibits B-cell receptor signaling. Blood 115(5):985–994PubMedCrossRefGoogle Scholar
  136. Kikuchi M et al (2010) Sequential FDG-PET/CT after Neoadjuvant Chemotherapy is a Predictor of Histopathologic Response in Patients with Head and Neck Squamous Cell Carcinoma. Mol Imaging Biol 13(2):368–377CrossRefGoogle Scholar
  137. Kim SJ et al (2004) Predictive value of [F-18]FDG PET for pathological response of breast cancer to neo-adjuvant chemotherapy. Ann Oncol 15(9):1352–1357PubMedCrossRefGoogle Scholar
  138. Kim S et al (2005) 11C-methionine PET as a prognostic marker in patients with glioma: comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging 32(1):52–59PubMedCrossRefGoogle Scholar
  139. Kim TJ et al (2009) Multimodality assessment of esophageal cancer: preoperative staging and monitoring of response to therapy. Radiographics 29(2):403–421PubMedCrossRefGoogle Scholar
  140. Kong FMS et al (2007) A pilot study of [F-18] fluorodeoxyglucose positron emission tomography scans during and after radiation-based therapy in patients with non-small-cell lung cancer. J Clin Oncol 25(21):3116–3123PubMedCrossRefGoogle Scholar
  141. Kostakoglu L, Goldsmith SJ (2004) PET in the assessment of therapy response in patients with carcinoma of the head and neck and of the esophagus. J Nucl Med 45(1):56–68PubMedGoogle Scholar
  142. Krak NC et al (2005) Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial. Eur J Nucl Med Mol Imaging 32(3):294–301PubMedCrossRefGoogle Scholar
  143. Krause BJ et al (2009) 18F-FDG PET and 18F-FDG PET/CT for assessing response to therapy in esophageal cancer. J Nucl Med 50(Suppl 1):89S–96SPubMedCrossRefGoogle Scholar
  144. Krochmalczyk D et al (2008) Pet guided beacopp de-escalation in advanced hodgkin lymphoma patients with a good response after the second chemotherapy cycle. Ann Oncol 19:250–250Google Scholar
  145. Kubota R et al (1992) Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 33(11):1972–1980PubMedGoogle Scholar
  146. Kubota K et al (2006) Whole body tumor imaging with O-[C-11] methyl-l-tyrosine and PET: Comparison wiht FDG. Eur J Nucl Med Mol Imaging 33:S201–S201Google Scholar
  147. Langenhoff BS et al (2002) Efficacy of fluorine-18-deoxyglucose positron emission tomography in detecting tumor recurrence after local ablative therapy for liver metastases: a prospective study. J Clin Oncol 20(22):4453–4458PubMedCrossRefGoogle Scholar
  148. Langer A (2010) A systematic review of PET and PET/CT in oncology: a way to personalize cancer treatment in a cost-effective manner? BMC Health Serv Res 10:283PubMedCrossRefGoogle Scholar
  149. Larson SM (1994) Cancer or inflammation? a Holy Grail for nuclear medicine. J Nucl Med 35(10):1653–1655PubMedGoogle Scholar
  150. Larson SM, Schwartz LH (2006) F-18-FDG PET as a candidate for “Qualified Biomarker”: Functional assessment of treatment response in oncology. J Nucl Med 47(6):901–903PubMedGoogle Scholar
  151. Larson SM et al (1999) Tumor treatment response based on visual and quantitative changes in global tumor glycolysis using PET-FDG imaging. The visual response score and the change in total lesion glycolysis. Clin Positron Imaging 2(3):159–171PubMedCrossRefGoogle Scholar
  152. Lawrence J et al (2009) Use of 3’-Deoxy-3’-[18f]Fluorothymidine Pet/Ct for Evaluating Response to Cytotoxic Chemotherapy in Dogs with Non-Hodgkin’s Lymphoma. Vet Radiol Ultrasound 50(6):660–668PubMedCrossRefGoogle Scholar
  153. Lee N et al (2009a) Correlation of dynamic contrast enhanced magnetic resonance imaging (DCE MRI) with (18)f-fluoromisonidazole positron emission and computed tomography (F-18-FMISO PET/CT) in assessing tumor hypoxia in a series of head and neck cancer (HNC) patients with nodal metastases. J Clin Oncol 27(15)::6083Google Scholar
  154. Lee N et al (2009b) Correlation of F-18-Fluoromisonidazole Positron Emission and Computed Tomography (F-18-FMISO PET/CT) with Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE MRI) in Assessing Tumor Hypoxia in Head and Neck Cancer(HNC) Patients with Nodal Metastases. Int J Radiat Oncol Biol Phys 75(3):S176–S176Google Scholar
  155. Lee N et al (2009c) Prospective trial incorporating Pre-/Mid-treatment [F-18]-Misonidazole positron emission tomography for head-and-neck cancer patients undergoing concurrent chemoradiotherapy. Int J Radiat Oncol Biol Phys 75(1):101–108Google Scholar
  156. Leyton J et al (2005) Early detection of tumor response to chemotherapy by 3’-deoxy-3’-[18F]fluorothymidine positron emission tomography: the effect of cisplatin on a fibrosarcoma tumor model in vivo. Cancer Res 65(10):4202–4210PubMedCrossRefGoogle Scholar
  157. Lin LL et al (2006) FDG-PET imaging for the assessment of physiologic volume response during radiotherapy in cervix cancer. Int J Radiat Oncol Biol Phys 65(1):177–181PubMedCrossRefGoogle Scholar
  158. Lindholm P et al (1996) Evaluation of early response to therapy in advanced breast cancer by 11C-methionine PET. J Nucl Med 37(5):1145–1145Google Scholar
  159. Lindholm P et al (2009) Preliminary study of carbon-11 methionine PET in the evaluation of early response to therapy in advanced breast cancer. Nucl Med Commun 30(1):30–36PubMedCrossRefGoogle Scholar
  160. Liu RS et al (1999) Pitfalls of [F-18]FMISO PET in evaluation of tumor hypoxia after radiation therapy: false positive results caused by radiation necrosis. J Nucl Med 40(5):60p–61pGoogle Scholar
  161. Liu ZY et al (2010) Early PET/CT after radiofrequency ablation in colorectal cancer liver metastases: is it useful? Chin Med J (Engl) 123(13):1690–1694Google Scholar
  162. Lonsdale MN, Beyer T (2010) Dual-modality PET/CT instrumentation-Today and tomorrow. Eur J Radiol 73(3):452–460PubMedCrossRefGoogle Scholar
  163. Lordick F et al (2007) PET to assess early metabolic response and to guide treatment of adenocarcinoma of the oesophagogastric junction: The MUNICON phase II trial. Lancet Oncol 8(9):797–805PubMedCrossRefGoogle Scholar
  164. Manus Mac (2003) M.P., et al., Positron emission tomography is superior to computed tomography scanning for response-assessment after radical radiotherapy or chemoradiotherapy in patients with non-small-cell lung cancer. J Clin Oncol 21(7):1285–1292CrossRefGoogle Scholar
  165. Markova J et al (2008) FDG-PET for assessment of early therapy response after 4 cycles of chemotherapy in advanced stage Hodgkin lymphoma. Ann Oncol 19:135–135Google Scholar
  166. Markova J et al (2009a) Early and late response assessment with Fdg-Pet after Beacopp-based Chemotherapy in advanced-Stage Hodgkin Lymphoma patients has a high negative predictive value. Haematologica-the Hematology J 94:33–33Google Scholar
  167. Markova J et al (2009b) FDG-PET for assessment of early treatment response after four cycles of chemotherapy in patients with advanced-stage Hodgkin’s lymphoma has a high negative predictive value. Ann Oncol 20(7):1270–1274PubMedCrossRefGoogle Scholar
  168. Mason RP (2006) Non-invasive assessment of kidney oxygenation: a role for BOLD MRI. Kidney Int 70(1):9–11CrossRefGoogle Scholar
  169. Matthews NE et al (2001) Nitric oxide-mediated regulation of chemosensitivity in cancer cells. J Natl Cancer Inst 93(24):1879–1885PubMedCrossRefGoogle Scholar
  170. McDermott GM et al (2007) Monitoring primary breast cancer throughout chemotherapy using FDG-PET. Breast Cancer Res Treat 102(1):75–84PubMedCrossRefGoogle Scholar
  171. McKinley ET et al (2011) 18FDG-PET predicts pharmacodynamic response to OSI-906, a dual IGF-1R/IR inhibitor, in preclinical mouse models of lung cancer. Clin Cancer Res 17(10):3332–3340PubMedCrossRefGoogle Scholar
  172. Mees G et al (2009) Molecular imaging of hypoxia with radiolabelled agents. Eur J Nucl Med Mol Imaging 36(10):1674–1686PubMedCrossRefGoogle Scholar
  173. Mehrkens JH et al (2008) The positive predictive value of O-(2-[F-18]fluoroethyl)-l-tyrosine (FET) PET in the diagnosis of a glioma recurrence after multimodal treatment. J Neurooncol 88(1):27–35PubMedCrossRefGoogle Scholar
  174. Molthoff CF et al (2007) Monitoring response to radiotherapy in human squamous cell cancer bearing nude mice: comparison of 2’-deoxy-2’-[18F]fluoro-d-glucose (FDG) and 3’-[18F]fluoro-3’-deoxythymidine (FLT). Mol Imag Biol 9(6):340–347CrossRefGoogle Scholar
  175. Mortimer JE et al (2001) Metabolic flare: indicator of hormone responsiveness in advanced breast cancer. J Clin Oncol 19(11):2797–2803PubMedGoogle Scholar
  176. Mortimer JE et al (2003) Metabolic flare by positron emission tomography (PET) predicts for response to tamoxifen more accurately than her-2 status in advanced postmenopausal ER plus breast cancer. Breast Cancer Res Treat 82:S104–S104Google Scholar
  177. Moulin-Romsee G et al (2008) Non-Hodgkin lymphoma: retrospective study on the cost-effectiveness of early treatment response assessment by FDG-PET. Eur J Nucl Med Mol Imaging 35(6):1074–1080PubMedCrossRefGoogle Scholar
  178. Muzi M et al (2005) Kinetic modeling of 3 ‘-deoxy-3 ‘-fluorothymidine in somatic tumors mathematical studies. J Nucl Med 46(2):371–380PubMedGoogle Scholar
  179. Nahmias C et al (2007) Time course of early response to chemotherapy in non-small cell lung cancer patients with 18F-FDG PET/CT. J Nucl Med 48(5):744–751PubMedCrossRefGoogle Scholar
  180. Nam SY et al (2005) Early evaluation of the response to radiotherapy of patients with squamous cell carcinoma of the head and neck using 18FDG-PET. Oral Oncol 41(4):390–395PubMedCrossRefGoogle Scholar
  181. Nguyen Q, Aboagye EO (2010) Imaging the life and death of tumors in living subjects: Preclinical PET imaging of proliferation and apoptosis. Integ Biol 2(10):483–495CrossRefGoogle Scholar
  182. Nicol I et al (2008) Role of FDG PET-CT in cutaneous melanoma. Bull Cancer 95(11):1089–1101PubMedGoogle Scholar
  183. Nishii R et al (2008) Evaluation of 2’-deoxy-2’-[18F]fluoro-5-methyl-1-beta-L: -arabinofuranosyluracil ([18F]-L: -FMAU) as a PET imaging agent for cellular proliferation: comparison with [18F]-D: -FMAU and [18F]FLT. Eur J Nucl Med Mol Imaging 35(5):990–998PubMedCrossRefGoogle Scholar
  184. Nishiyama Y et al (2008) Monitoring the neoadjuvant therapy response in gynecological cancer patients using FDG PET. Eur J Nucl Med Mol Imaging 35(2):287–295PubMedCrossRefGoogle Scholar
  185. Niu G et al (2009) Monitoring therapeutic response of human ovarian cancer to 17-DMAG by noninvasive PET imaging with Cu-64-DOTA-trastuzumab. Eur J Nucl Med Mol Imaging 36(9):1510–1519PubMedCrossRefGoogle Scholar
  186. Nordsmark M et al (2005) Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother Oncol 77(1):18–24PubMedCrossRefGoogle Scholar
  187. Ohtsuki K et al (1999) Technetium-99 m HYNIC-annexin V: a potential radiopharmaceutical for the in-vivo detection of apoptosis. Eur J Nucl Med 26(10):1251–1258PubMedCrossRefGoogle Scholar
  188. Okuma T et al (2006) Fluorine-18-fluorodeoxyglucose positron emission tomography for assessment of patients with unresectable recurrent or metastatic lung cancers after CT-guided radiofrequency ablation: preliminary results. Ann Nucl Med 20(2):115–121PubMedCrossRefGoogle Scholar
  189. Olsen JR et al (2010) Prognostic utility of squamous cell carcinoma antigen in carcinoma of the cervix: association with pre- and posttreatment FDG-PET. Int J Radiat Oncol Biol Phys 8:772–7771Google Scholar
  190. Ott K et al (2003) Prediction of response to preoperative chemotherapy in gastric carcinoma by metabolic imaging: results of a prospective trial. J Clin Oncol 21(24):4604–4610PubMedCrossRefGoogle Scholar
  191. Osinsky S, Zavelevich M, Vaupel P (2009) Tumor hypoxia and malignant progression. Exp Oncol 31(2):80–86PubMedGoogle Scholar
  192. Oude Munnink TH, et al (2009) Molecular imaging of breast cancer. Breast 18 (Suppl 3):S66–73Google Scholar
  193. Ozsunar Y et al (2010) Glioma recurrence versus radiation necrosis? A pilot comparison of arterial spin-labeled, dynamic susceptibility contrast enhanced MRI, and FDG-PET imaging. Academic Radiology 17(3):282–290PubMedCrossRefGoogle Scholar
  194. Padhani A (2010) Science to practice: what does mr oxygenation imaging tell us about human breast cancer hypoxia? Radiology 254(1):1–3PubMedCrossRefGoogle Scholar
  195. Passero VA et al (2010a) Response assessment by combined PET-CT scan versus CT scan alone using RECIST in patients with locally advanced head and neck cancer treated with chemoradiotherapy. Ann Oncol 21(11):2278–2283PubMedCrossRefGoogle Scholar
  196. Passero VA et al (2010b) Response assessment by combined PET-CT scan versus CT scan alone using RECIST in patients with locally advanced head and neck cancer treated with chemoradiotherapy. Ann Oncol 21(11):2278–2283PubMedCrossRefGoogle Scholar
  197. Pauleit D et al (2004) PET with O-(2-[F-18]fluoroethyl)-l-tyrosine (FET) in peripheral tumors. Eur J Nucl Med Mol Imaging 31:S340–S341Google Scholar
  198. Pauleit D et al (2005) PET with O-(2-F-18-fluoroethyl)-L-tyro sine in peripheral tumors: First clinical results. J Nucl Med 46(3):411–416PubMedGoogle Scholar
  199. Pawlik TM et al (2009) Trends in nontherapeutic laparotomy rates in patients undergoing surgical therapy for hepatic colorectal metastases. Ann Surg Oncol 16(2):371–378PubMedCrossRefGoogle Scholar
  200. Petrescu I et al (2010) Diagnosis and treatment protocols of cutaneous melanoma: latest approach 2010. Chirurgia (Bucur) 105(5):637–643Google Scholar
  201. Picardi M et al (2007) Randomized comparison of consolidation radiation versus observation in bulky Hodgkin’s lymphoma with post-chemotherapy negative positron emission tomography scans. Leuk Lymphoma 48(9):1721–1727PubMedCrossRefGoogle Scholar
  202. Pickles MD et al (2005) Role of dynamic contrast enhanced MRI in monitoring early response of locally advanced breast cancer to neoadjuvant chemotherapy. Breast Cancer Res Treat 91(1):1–10PubMedCrossRefGoogle Scholar
  203. Pons F, Duch J, Fuster D (2009) Breast cancer therapy: the role of PET-CT in decision making. Q J Nucl Med Mol Imaging 53(2):210–223PubMedGoogle Scholar
  204. Popperl G et al (2006) Serial O-(2-[(18)F]fluoroethyl)-L: -tyrosine PET for monitoring the effects of intracavitary radioimmunotherapy in patients with malignant glioma. Eur J Nucl Med Mol Imaging 33(7):792–800PubMedCrossRefGoogle Scholar
  205. Port JL et al (2004) Positron emission tomography scanning poorly predicts response to preoperative chemotherapy in non-small cell lung cancer. Ann Thorac Surg 77(1):254–259 discussion 259PubMedCrossRefGoogle Scholar
  206. Pottgen C et al (2006) Value of F-18-fluoro-2-deoxy-d-glucose-positron emission tomography/computed tomography in non-small-cell lung cancer for prediction of pathologic response and times to relapse after neoadjuvant chemoradiotherapy. Clin Cancer Res 12(1):97–106PubMedCrossRefGoogle Scholar
  207. Rachinger W et al (2005) Positron emission tomography with O-(2-[F-18]fluoroethyl)-l-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery 57(3):505–511PubMedCrossRefGoogle Scholar
  208. Rajendran JG et al (2002) (FMISO)-F-18 PET hypoxia imaging in head and neck cancer: Heterogeneity in hypoxia—Primary tumor vs lymph nodal metastases. J Nucl Med 43(5):73p–74pGoogle Scholar
  209. Rajendran JG et al (2003) F-18 FMISO PET tumor hypoxia imaging: Investigating the tumor volume-hypoxia connection. J Nucl Med 44(5):376p–376pGoogle Scholar
  210. Rankin, S., PET/CT for staging and monitoring non small cell lung cancer. Cancer Imaging, 2008. 8 Spec No A: p. S27-31Google Scholar
  211. Reinhardt MJ et al (2002) Value of tumour marker S-100B in melanoma patients: a comparison to 18F-FDG PET and clinical data. Nuklearmedizin 41(3):143–147PubMedGoogle Scholar
  212. Reischl G et al (2007) Imaging of tumor hypoxia with [I-124] IAZA in comparison with [F-18] FMISO and [F-18]FAZA - first small animal PET results. J Pharm Pharm Sci 10(2):203–211PubMedGoogle Scholar
  213. Riemann B et al (2004) Early effects of irradiation on [(123)I]-IMT and [(18)F]-FDG uptake in rat C6 glioma cells. Strahlenther Onkol 180(7):434–441PubMedCrossRefGoogle Scholar
  214. Rose PG et al (1996) The impact of CA-125 on the sensitivity of abdominal pelvic CT scan before second-look laparotomy in advanced ovarian carcinoma. Int J Gynecol Cancer 6(3):213–218CrossRefGoogle Scholar
  215. Rose PG et al (2001a) Positive emission tomography for evaluating a complete clinical response in patients with ovarian or peritoneal carcinoma: correlation with second-look laparotomy. Gynecol Oncol 82(1):17–21PubMedCrossRefGoogle Scholar
  216. Rose PG et al (2001b) Positive emission tomography for evaluating a complete clinical response in patients with ovarian or peritoneal carcinoma: Correlation with second-look laparotomy. Gynecol Oncol 82(1):17–21PubMedCrossRefGoogle Scholar
  217. Rosenberg R et al (2009) The predictive value of metabolic response to preoperative radiochemotherapy in locally advanced rectal cancer measured by PET/CT. Int J Colorectal Dis 24(2):191–200PubMedCrossRefGoogle Scholar
  218. Rousseau C et al (2006) Monitoring of early response to neoadjuvant chemotherapy in stage II and III breast cancer by [F-18]fluorodeoxyglucose positron emission tomography. J Clin Oncol 24(34):5366–5372PubMedCrossRefGoogle Scholar
  219. Rueger MA et al (2010) [(18)F]FLT PET for Non-Invasive Monitoring of Early Response to Gene Therapy in Experimental Gliomas. Mol Imaging Biol 13:547–557CrossRefGoogle Scholar
  220. Ryu JS et al (2002) FDG-PET in staging and restaging non-small cell lung cancer after neoadjuvant chemoradiotherapy: correlation with histopathology. Lung Cancer 35(2):179–187PubMedCrossRefGoogle Scholar
  221. Saquib N et al (2007) Weight gain and recovery of pre-cancer weight after breast cancer treatments: evidence from the women’s healthy eating and living (WHEL) study. Breast Cancer Res Treat 105(2):177–186PubMedCrossRefGoogle Scholar
  222. Sakamoto H et al (1998) Monitoring of response to radiotherapy with fluorine-18 deoxyglucose PET of head and neck squamous cell carcinomas. Acta Otolaryngol Suppl 538:254–260PubMedGoogle Scholar
  223. Savage KJ et al (2007) FDG-PET guided consolidative radiotherapy in patients with advanced stage Hodgkin lymphoma with residual abnormalities on post chemotherapy CT scan. Blood 110(11):70aGoogle Scholar
  224. Schelling M et al (2000) Positron emission tomography using [F-18]fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J Clin Oncol 18(8):1689–1695PubMedGoogle Scholar
  225. Schiepers C et al (1999) The effect of preoperative radiation therapy on glucose utilization and cell kinetics in patients with primary rectal carcinoma. Cancer 85(4):803–811PubMedCrossRefGoogle Scholar
  226. Schoder H et al (2009) PET monitoring of therapy response in head and neck squamous cell carcinoma. J Nucl Med 50(Suppl 1):74S–88SPubMedCrossRefGoogle Scholar
  227. Schwarz J et al (2004) Oncologic imaging of tumor hypoxia by Cu-ATSM and correlating findings on Cu-ATSM PET scans to cellular markers that may predict for radiation response. Int J Radiat Oncol Biol Phys 60(1):S305–S306CrossRefGoogle Scholar
  228. Schwarz JK et al (2007) Association of posttherapy positron emission tomography with tumor response and survival in cervical carcinoma. JAMA 298(19):2289–2295PubMedCrossRefGoogle Scholar
  229. Schwarz JK et al (2009) The role of 18F-FDG PET in assessing therapy response in cancer of the cervix and ovaries. J Nucl Med 50(Suppl 1):64S–73SPubMedCrossRefGoogle Scholar
  230. Schwarz-Dose J et al (2009) Monitoring primary systemic therapy of large and locally advanced breast cancer by using sequential positron emission tomography imaging with [F-18] Fluorodeoxyglucose. J Clin Oncol 27(4):535–541PubMedCrossRefGoogle Scholar
  231. Shamim SA et al (2011) FDG PET/CT evaluation of treatment response in patients with recurrent colorectal cancer. Clin Nucl Med 36(1):11–16PubMedCrossRefGoogle Scholar
  232. Shields AF et al (1998) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 4(11):1334–1336PubMedCrossRefGoogle Scholar
  233. Shiraishi K et al (2010) Repeat FDG-PET for Predicting Pathological Tumor Response and Prognosis after Neoadjuvant Treatment in Nonsmall Cell Lung Cancer: Comparison with Computed Tomography. Ann Thorac Cardiovasc Surg 16(6):394–400PubMedGoogle Scholar
  234. Siegel BA, Dehdashti F (2005) Oncologic PET/CT: current status and controversies. Eur Radiol 15:D127–D132PubMedCrossRefGoogle Scholar
  235. Sironi S et al (2004) Integrated FDG PET/CT in patients with persistent ovarian cancer: Correlation with histologic findings. Radiology 233(2):433–440PubMedCrossRefGoogle Scholar
  236. Smith IC et al (2000) Positron emission tomography using [F-18]-fluorodeoxy-d-glucose to predict the pathologic response of breast cancer to primary chemotherapy. J Clin Oncol 18(8):1676–1688PubMedGoogle Scholar
  237. Smyczek-Gargya B et al (2004) PET with [18F]fluorothymidine for imaging of primary breast cancer: a pilot study. Eur J Nucl Med Mol Imaging 31(5):720–724PubMedCrossRefGoogle Scholar
  238. Sohn HJ et al (2008) [F-18] Fluorothymidine Positron Emission Tomography before and 7 Days after Gefitinib Treatment Predicts Response in Patients with Advanced Adenocarcinoma of the Lung. Clin Cancer Res 14(22):7423–7429PubMedCrossRefGoogle Scholar
  239. Solit DB et al (2007) 3’-deoxy-3’-[F-18]fluorothymidine positron emission tomography is a sensitive method for imaging the response of BRAF-dependent tumors to MEK inhibition. Cancer Res 67(23):11463–11469PubMedCrossRefGoogle Scholar
  240. Solomon B et al (2005) Modulation of intratumoral hypoxia by the epidermal growth factor receptor inhibitor gefitinib detected using small animal PET imaging. Mol Cancer Ther 4(9):1417–1422PubMedCrossRefGoogle Scholar
  241. Spaepen K, Mortelmans L (2001) Evaluation of treatment response in patients with lymphoma using [18F]FDG-PET: differences between non-Hodgkin’s lymphoma and Hodgkin’s disease. Q J Nucl Med 45(3):269–273PubMedGoogle Scholar
  242. Strauss, H.W., et al., Translational imaging: imaging of apoptosis. Handb Exp Pharmacol, 2008(185 Pt 2): p. 259–275Google Scholar
  243. Strobel K et al (2007) S-100B and FDG-PET/CT in therapy response assessment of melanoma patients. Dermatology 215(3):192–201PubMedCrossRefGoogle Scholar
  244. Strobel K et al (2008) Chemotherapy response assessment in stage IV melanoma patients-comparison of 18F-FDG-PET/CT, CT, brain MRI, and tumormarker S-100B. Eur J Nucl Med Mol Imaging 35(10):1786–1795PubMedCrossRefGoogle Scholar
  245. Sun HH et al (2005) Imaging DNA synthesis with [F-18]FMAU and positron emission tomography in patients with cancer. Eur J Nucl Med Mol Imaging 32(1):15–22PubMedCrossRefGoogle Scholar
  246. Sun X et al. (2010) Tumor hypoxia imaging. Mol Imaging Biol 13:399–410Google Scholar
  247. Sutherland RM (1998) Tumor hypoxia and gene expression–implications for malignant progression and therapy. Acta Oncol 37(6):567–574PubMedCrossRefGoogle Scholar
  248. Taal W et al (2008) Incidence of early pseudo-progression in a cohort of malignant glioma patients treated with chemoirradiation with temozolomide. Cancer 113(2):405–410PubMedCrossRefGoogle Scholar
  249. Takai Y et al (2007) [(18)]FFRP-170: A novel hypoxia maker for PET: Initial clinical data for the usefulness and the correlation between tumor response to radiotherapy and [(18)]FFRP-170 uptake. EJC Suppl 5(4):135–135CrossRefGoogle Scholar
  250. Tan MCB et al (2007) Chemotherapy-induced normalization of FDG uptake by colorectal liver metastases does not usually indicate complete pathologic response. J Gastrointest Surg 11(9):1112–1119PubMedCrossRefGoogle Scholar
  251. Tanvetyanon T et al (2008) Computed tomography response, but not positron emission tomography scan response, predicts survival after neoadjuvant chemotherapy for resectable non-small-cell lung cancer. J Clin Oncol 26(28):4610–4616PubMedCrossRefGoogle Scholar
  252. Terakawa Y et al (2008) Diagnostic accuracy of C-11-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 49(5):694–699PubMedCrossRefGoogle Scholar
  253. Thomas A et al (2010) 18-Fluoro-deoxyglucose positron emission tomography report interpretation as predictor of outcome in diffuse large B-cell lymphoma including analysis of ‘indeterminate’ reports. Leuk Lymphoma 51(3):439–446PubMedCrossRefGoogle Scholar
  254. Tomiyoshi K et al (1999) Metabolic studies of [F-18-alpha-methyl]tyrosine in mice bearing colorectal carcinoma LS-180. Anticancer Drugs 10(3):329–336PubMedCrossRefGoogle Scholar
  255. Townsend DW et al (2004) PET/CT today and tomorrow. J Nucl Med 45:4S–14SPubMedGoogle Scholar
  256. Troost EG et al (2007) 18F-FLT PET does not discriminate between reactive and metastatic lymph nodes in primary head and neck cancer patients. J Nucl Med 48(5):726–735PubMedCrossRefGoogle Scholar
  257. Troost EGC et al (2010) F-18-FLT PET/CT for early response monitoring and dose escalation in oropharyngeal tumors. J Nucl Med 51(6):866–874PubMedCrossRefGoogle Scholar
  258. Tseng J et al (2004) F-18-FDG kinetics in locally advanced breast cancer: Correlation with tumor blood flow and changes in response to neoadjuvant chemotherapy. J Nucl Med 45(11):1829–1837PubMedGoogle Scholar
  259. Tsuyuguchi N et al (2004) Methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery–in malignant glioma. Ann Nucl Med 18(4):291–296PubMedCrossRefGoogle Scholar
  260. Ullrich RT et al (2008) Early detection of erlotinib treatment response in NSCLC by 3’-deoxy-3’-[F]-fluoro-L-thymidine ([F]FLT) positron emission tomography (PET). PLoS One 3(12):e3908PubMedCrossRefGoogle Scholar
  261. van Westreenen HL et al (2005) Comparison of 18F-FLT PET and 18F-FDG PET in esophageal cancer. J Nucl Med 46(3):400–404PubMedGoogle Scholar
  262. van der Hiel B, Pauwels EK, Stokkel MP (2001) Positron emission tomography with 2-[18F]-fluoro-2-deoxy-d-glucose in oncology. Part IIIa: Therapy response monitoring in breast cancer, lymphoma and gliomas. J Cancer Res Clin Oncol 127(5):269–277PubMedCrossRefGoogle Scholar
  263. Van Laere K et al (2005) Direct comparison of 18F-FDG and 11C-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value. Eur J Nucl Med Mol Imaging 32(1):39–51PubMedCrossRefGoogle Scholar
  264. Vansteenkiste JF et al (1998) Potential use of FDG-PET scan after induction chemotherapy in surgically staged IIIa-N-2 non-small-cell lung cancer: A prospective pilot study. Ann Oncol 9(11):1193–1198PubMedCrossRefGoogle Scholar
  265. Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26(2):225–239PubMedCrossRefGoogle Scholar
  266. Vaupel P, Mayer A, Hockel M (2004) Tumor hypoxia and malignant progression. Methods Enzymol 381:335–354PubMedCrossRefGoogle Scholar
  267. Veit P et al (2006) Detection of residual tumor after radiofrequency ablation of liver metastasis with dual-modality PET/CT: initial results. Eur Radiol 16(1):80–87PubMedCrossRefGoogle Scholar
  268. Vera P et al (2011) Simultaneous positron emission tomography (PET) assessment of metabolism with (18)F-fluoro-2-deoxy-d-glucose (FDG), proliferation with (18)F-fluoro-thymidine (FLT), and hypoxia with (18)fluoro-misonidazole (F-miso) before and during radiotherapy in patients with non-small-cell lung cancer (NSCLC): A pilot study. Radiother Oncol 98(1):109–116PubMedCrossRefGoogle Scholar
  269. Vergez S et al (2010) Preclinical and clinical evidence that deoxy-2-[F-18]fluoro-d-glucose positron emission tomography with computed tomography is a reliable tool for the detection of early molecular responses to erlotinib in head and neck cancer. Clin Cancer Res 16(17):4434–4445PubMedCrossRefGoogle Scholar
  270. Vriens PW et al (1998) The use of technetium Tc 99 m annexin V for in vivo imaging of apoptosis during cardiac allograft rejection. J Thorac Cardiovasc Surg 116(5):844–853PubMedCrossRefGoogle Scholar
  271. Vriens D et al (2009a) Chemotherapy response monitoring of colorectal liver metastases by dynamic Gd-DTPA-enhanced MRI perfusion parameters and F-18-FDG PET metabolic rate. J Nucl Med 50(11):1777–1784PubMedCrossRefGoogle Scholar
  272. Vriens D et al (2009b) Evaluation of different normalization procedures for the calculation of the standardized uptake value in therapy response monitoring studies. Nucl Med Commun 30(7):550–557PubMedCrossRefGoogle Scholar
  273. Vriens D et al (2009c) Tailoring therapy in colorectal cancer by PET-CT. Q J Nucl Med Mol Imaging 53(2):224–244PubMedGoogle Scholar
  274. Wahl RL et al (1993) Metabolic monitoring of breast-cancer chemohormonotherapy using positron emission tomography—initial evaluation. J Clin Oncol 11(11):2101–2111PubMedGoogle Scholar
  275. Wahl RL et al (2009) From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J Nucl Med 50(Suppl 1):122S–150SPubMedCrossRefGoogle Scholar
  276. Waldherr C et al (2005) Monitoring antiproliferative responses to kinase inhibitor therapy in mice with 3’-deoxy-3’-18F-fluorothymidine PET. J Nucl Med 46(1):114–120PubMedGoogle Scholar
  277. Wang HE et al (1999) Biological characterization of three diastereomers of [F-18]4-fluoro-1-(2 ‘-nitro-1 ‘-imidazolyl)-2,3-dihydroxybutane as PET agents for tumor hypoxia evaluation. J Nucl Med 40(5):311pGoogle Scholar
  278. Wang G et al (2007) How do oncologists deal with incidental abnormalities on whole-body fluorine-18 fluorodeoxyglucose PET/CT? Cancer 109(1):117–124PubMedCrossRefGoogle Scholar
  279. Wang L et al (2008) PET study demonstrates radiation dependent changes on tumor hypoxia and proliferation during the course of radiotherapy in a lung cancer xenograft model. Int J Radiat Oncol Biol Phys 72(1):S30–S30CrossRefGoogle Scholar
  280. Wang WL et al (2009a) Impact of attenuation and scatter correction in estimating tumor hypoxia-related kinetic parameters for FMISO dynamic animal-PET imaging. 2008 IEEE Nuclear Science Symposium and Medical Imaging Conference (2008 Nss/Mic), Vols 1–9, 2009: pp 4500–4505Google Scholar
  281. Wang WL et al (2009b) Evaluation of a compartmental model for estimating tumor hypoxia via FMISO dynamic PET imaging. Phys Med Biol 54(10):3083–3099PubMedCrossRefGoogle Scholar
  282. Weber WA et al (2001) Prediction of response to preoperative chemotherapy in adenocarcinomas of the esophagogastric junction by metabolic imaging. J Clin Oncol 19(12):3058–3065PubMedGoogle Scholar
  283. Weber WA (2005) PET for response assessment in oncology: radiotherapy and chemotherapy. Br J Radiol 78:42–49Google Scholar
  284. Weber WA (2006) Positron emission tomography as an imaging biomarker. J Clin Oncol 24(20):3282–3292PubMedCrossRefGoogle Scholar
  285. Weber WA (2010) Monitoring tumor response to therapy with 18F-FLT PET. J Nucl Med 51(6):841–844PubMedCrossRefGoogle Scholar
  286. Weckesser M et al (2005) O-(2-[F-18]fluorethyl)-l-tyrosine PET in the clinical evaluation of primary brain tumours. Eur J Nucl Med Mol Imaging 32(4):422–429PubMedCrossRefGoogle Scholar
  287. Wei LH et al (2008) Changes in tumor metabolism as readout for mammalian target of rapamycin kinase inhibition by rapamycin in glioblastoma. Clin Cancer Res 14(11):3416–3426PubMedCrossRefGoogle Scholar
  288. Wieder HA et al (2004) Time course of tumor metabolic activity during chemoradiotherapy of esophageal squamous cell carcinoma and response to treatment. J Clin Oncol 22(5):900–908PubMedCrossRefGoogle Scholar
  289. Wieder HA et al (2007) PET imaging with [F-18]3 ‘-deoxy-3 ‘-fluorothymidine for prediction of response to neoadjuvant treatment in patients with rectal cancer. Eur J Nucl Med Mol Imaging 34(6):878–883PubMedCrossRefGoogle Scholar
  290. Wiedemann N et al (2010) Dynamics of tumor hypoxia in patients undergoing radiochemotherapy for head and neck cancer evaluated with serial F-18-tluoromisonidazole PET. Int J Radiat Oncol Biol Phys 78(3):S703–S703CrossRefGoogle Scholar
  291. Wiering B et al (2008) Controversies in the management of colorectal liver metastases: role of PET and PET/CT. Dig Surg 25(6):413–420PubMedCrossRefGoogle Scholar
  292. Wong RK et al (2007) Pre-operative radiotherapy and curative surgery for the management of localized rectal carcinoma. Cochrane Database Syst Rev 2:CD002102Google Scholar
  293. Wu X et al (2010) Early treatment response evaluation in patients with diffuse large B-cell lymphoma-A pilot study comparing volumetric MRI and PET/CT. Mol Imaging Biol 13(4):785–792Google Scholar
  294. Wurker M et al (1996) Glucose consumption and methionine uptake in low-grade gliomas after iodine-125 brachytherapy. Eur J Nucl Med 23(5):583–586PubMedCrossRefGoogle Scholar
  295. Wyss M et al (2009) Early metabolic responses in temozolomide treated low-grade glioma patients. J Neurooncol 95(1):87–93PubMedCrossRefGoogle Scholar
  296. Yamamoto Y et al (2006) Correlation of FDG-PET findings with histopathology in the assessment of response to induction chemoradiotherapy in non-small cell lung cancer. Eur J Nucl Med Mol Imaging 33(2):140–147PubMedCrossRefGoogle Scholar
  297. Yamamoto Y et al (2008) Comparison of (18)F-FLT PET and (18)F-FDG PET for preoperative staging in non-small cell lung cancer. Eur J Nucl Med Mol Imaging 35(2):236–245PubMedCrossRefGoogle Scholar
  298. Yamaura G et al (2006) O-[F-18]fluoromethyl-l-tyrosine is a potential tracer for monitoring tumour response to chemotherapy using PET: an initial comparative in vivo study with deoxyglucose and thymidine. Eur J Nucl Med Mol Imaging 33(10):1134–1139PubMedCrossRefGoogle Scholar
  299. Yang DJ et al (1995) Development of F-18 labeled fluoroerythronitroimidizole as a pet agent for imaging tumor hypoxia. Radiology 194(3):795–800PubMedGoogle Scholar
  300. Yang W et al (2010) Imaging of proliferation with 18F-FLT PET/CT versus 18F-FDG PET/CT in non-small-cell lung cancer. Eur J Nucl Med Mol Imaging 37(7):1291–1299PubMedCrossRefGoogle Scholar
  301. Yao M et al (2004) Value of FDG PET in assessment of treatment response and surveillance in head-and-neck cancer patients after intensity modulated radiation treatment: a preliminary report. Int J Radiat Oncol Biol Phys 60(5):1410–1418PubMedCrossRefGoogle Scholar
  302. Yap CS et al (2006) Evaluation of thoracic tumors with 18F-fluorothymidine and 18F-fluorodeoxyglucose-positron emission tomography. Chest 129(2):393–401PubMedCrossRefGoogle Scholar
  303. Yoshida Y et al (2004) Metabolic monitoring of advanced uterine cervical cancer neoadjuvant chemotherapy by using [F-18]-Fluorodeoxyglucose positron emission tomography: preliminary results in three patients. Gynecol Oncol 95(3):597–602PubMedCrossRefGoogle Scholar
  304. Yoshimoto Y et al (2007) Defining regional infusion treatment strategies for extremity melanoma: comparative analysis of melphalan and temozolomide as regional chemotherapeutic agents. Mol Cancer Ther 6(5):1492–1500PubMedCrossRefGoogle Scholar
  305. Yue J et al (2010) Measuring tumor cell proliferation with 18F-FLT PET during radiotherapy of esophageal squamous cell carcinoma: a pilot clinical study. J Nucl Med 51(4):528–534PubMedCrossRefGoogle Scholar
  306. Zaucha J et al (2009) The role of PET for interim response assessment in patients with Hodgkin’s lymphoma. Wspolczesna Onkologia-Contemporary Oncology 13(4):161–166Google Scholar
  307. Zhang HQ et al (2010) Prognostic value of (18)F-fluorodeoxyglucose uptake in patients with non-small cell lung cancer treated by concurrent chemoradiotherapy. Zhonghua Zhong Liu Za Zhi 32(8):603–606PubMedGoogle Scholar
  308. Zhu AX et al (2010) Efficacy and safety of gemcitabine, oxaliplatin, and bevacizumab in advanced biliary-tract cancers and correlation of changes in 18-fluorodeoxyglucose PET with clinical outcome: a phase 2 study. Lancet Oncol 11(1):48–54PubMedCrossRefGoogle Scholar
  309. Zinzani PL et al (2010) Midtreatment (18)F-fluorodeoxyglucose positron-emission tomography in aggressive non-Hodgkin lymphoma. Cancer 117(5):1010–1018PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2012

Authors and Affiliations

  • Ali Gholamrezanezhad
    • 1
  • Alin Chirindel
    • 1
  • Rathan Subramaniam
    • 1
  1. 1.Russell H Morgan Department of Radiology and Radiological ScienceJohns Hopkins Medical InstitutionsBaltimoreUSA

Personalised recommendations