Inorganic Radionuclides for Nuclear Medicine Therapy

  • Yun-Sang Lee
  • Jae Min Jeong
Part of the Medical Radiology book series (MEDRAD)


The most commonly used radionuclides for therapy are beta emitters which have shorter penetration depth than gamma emitters. Alpha or Auger emitters also are studied for higher efficiency within shorter range. Most of these radionuclides for therapy are metals and these should be labeled to specific ligands such as peptides or proteins via bifunctional chelating agents conjugated to them. Selection of the bifunctional chelating agents generally based on the dissociation constants with target metallic radionuclides. For the improved efficiency of radionuclide therapy, intensive studies about development of new ligands and labeling methods are required.


Auger Electron Peptide Receptor Radionuclide Therapy Radionuclide Therapy Label Monoclonal Antibody Auger Electron Emitter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anderson CJ, Dehdashti F, Cutler PD, Schwarz SW, Laforest R, Bass LA et al (2001) Cu-64-TETA-Octreotide as a PET imaging agent for patients with neuroendocrine tumors. J Nucl Med 42(2):213–221PubMedGoogle Scholar
  2. Areberg J, Norrgren K, Mattsson S (1999) Absorbed doses to patients from 191Pt-, 193mPt- and 195mPt-cisplatin. Appl Radiat Isot 51(5):581–586PubMedCrossRefGoogle Scholar
  3. Bodei L, Handkiewicz-Junak D, Grana C, Mazzetta C, Rocca P, Bartolomei M et al (2004) Receptor radionuclide therapy with Y-90-DOTATOC in patients with medullary thyroid carcinomas. Cancer Biother Radiopharm 19(1):65–71PubMedCrossRefGoogle Scholar
  4. Boswell CA, Sun XK, Niu WJ, Weisman GR, Wong EH, Rheingold AL et al (2004) Comparative in vivo stability of copper-64-labeled cross-bridged and conventional tetraazamacrocyclic complexes. J Med Chem 47(6):1465–1474PubMedCrossRefGoogle Scholar
  5. Brechbiel MW (2008) Bifunctional chelates for metal nuclides. Q J Nucl Med Mol Imaging 52(2):166–173. Epub 2007/11/29Google Scholar
  6. Brechbiel MW, Gansow OA (1992) Synthesis of c-functionalized trans-cyclohexyldiethylenetriaminepenta-acetic acids for labeling of monoclonal-antibodies with the bismuth-212 alpha-particle emitter. J Chem Soc Perkin Trans 1 1992(9):1173–1178Google Scholar
  7. Brechbiel MW, Gansow OA, Atcher RW, Schlom J, Esteban J, Simpson DE et al (1986) Synthesis of 1-(para-isothiocyanatobenzyl) derivatives of dtpa and edta—antibody labeling and tumor-imaging studies. Inorg Chem 25(16):2772–2781CrossRefGoogle Scholar
  8. Buchegger F, Perillo-Adamer F, Dupertuis YM, Delaloye AB (2006) Auger radiation targeted into DNA: a therapy perspective. Eur J Nucl Med Mol Imaging 33(11):1352–1363. Epub 2006/08/10Google Scholar
  9. Cacheris WP, Nickle SK, Sherry AD (1987) Thermodynamic study of lanthanide complexes of 1,4,7-triazacyclononane-N, N′, N″-triacetic acid and 1,4,7,10-tetraazacyclododecane-N, N′, N″ N′′′-tetraacetic acid. Inorg Chem 26(6):958–960CrossRefGoogle Scholar
  10. Carrasquillo JA, White JD, Paik CH, Raubitschek A, Le N, Rotman M et al (1999) Similarities and differences in In-111- and Y-90-labeled 1B4 M-DTPA antiTac monoclonal antibody distribution. J Nucl Med 40(2):268–276PubMedGoogle Scholar
  11. Chakraborty S, Das T, Sarma HD, Venkatesh M, Banerjee S (2008) Comparative studies of 177Lu-EDTMP and 177Lu-DOTMP as potential agents for palliative radiotherapy of bone metastasis. Appl Radiat Isot 66(9):1196–1205. Epub 2008/03/29Google Scholar
  12. Chakraborty S, Das T, Sarma HD, Venkatesh M, Banerjee S (2008b) Comparative studies of Lu-177-EDTMP and Lu-177-DOTMP as potential agents for palliative radiotherapy of bone metastasis. Appl Radiat Isot 66(9):1196–1205PubMedCrossRefGoogle Scholar
  13. Chatal JF, Hoefnagel CA (1999) Radionuclide therapy. Lancet 354(9182):931–935. Epub 1999/09/18Google Scholar
  14. Chinol M, Vallabhajosula S, Goldsmith SJ, Klein MJ, Deutsch KF, Chinen LK et al (1993) Chemistry and biological behavior of sm-153 and rhenium-186-labeled hydroxyapatite particles—potential radiopharmaceuticals for radiation synovectomy. J Nucl Med 34(9):1536–1542PubMedGoogle Scholar
  15. Clarke ET, Martell AE (1991) Stabilities of the Fe(Iii), Ga(Iii) and in(Iii) chelates of N, N′, N″-triazacyclononanetriacetic acid. Inorg Chim Acta 181(2):273–280CrossRefGoogle Scholar
  16. Cobb LM, Humm JL (1986) Radioimmunotherapy of malignancy using antibody targeted radionuclides. Br J Cancer 54(6):863–870PubMedCentralPubMedCrossRefGoogle Scholar
  17. Cole WC, Denardo SJ, Meares CF, Mccall MJ, Denardo GL, Epstein AL et al (1986) Serum stability of Cu-67 chelates—comparison with In-111 and Co-57. Nucl Med Biol 13(4):363–368Google Scholar
  18. Cole WC, Denardo SJ, Meares CF, Mccall MJ, Denardo GL, Epstein AL et al (1987) Comparative serum stability of radiochelates for antibody radiopharmaceuticals. J Nucl Med 28(1):83–90PubMedGoogle Scholar
  19. Cyr JE, Pearson DA, Wilson DM, Nelson CA, Guaraldi M, Azure MT et al (2007) Somatostatin receptor-binding peptides suitable for tumor radiotherapy with Re-188 or Re-186. Chemistry and initial biological studies. J Med Chem 50(6):1354–1364PubMedCrossRefGoogle Scholar
  20. Dasgupta AK, Mausner LF, Srivastava SC (1991) A new separation procedure for Cu-67 from proton irradiated Zn. Appl Radiat Isot 42(4):371–376Google Scholar
  21. de Jong M, Breeman WAP, Bernard BF, Bakker WH, Schaar M, van Gameren A et al (2001) [Lu-177-DOTA(0), Tyr(3)]octreotate for somatostatin receptor-targeted radionuclide therapy. Int J Cancer 92(5):628–633PubMedCrossRefGoogle Scholar
  22. Eisenwiener KP, Powell P, Macke HR (2000) A convenient synthesis of novel bifunctional prochelators for coupling to bioactive peptides for radiometal labelling. Bioorg Med Chem Lett 10(18):2133–2135PubMedCrossRefGoogle Scholar
  23. Fichna J, Janecka A (2003) Synthesis of target-specific radiolabeled peptides for diagnostic Imaging. Bioconjug Chem 14(1):3–17PubMedCrossRefGoogle Scholar
  24. Filossofov DV, Lebedev NA, Novgorodov AF, Bontchev GD, Starodub GY (2001) Production, concentration and deep purification of In-111 radiochemicals. Appl Radiat Isot 55(3):293–295PubMedCrossRefGoogle Scholar
  25. Fjalling M, Andersson P, ForsselAronsson E, Gretarsdottir J, Johanson V, Tisell LE et al (1996) Systemic radionuclide therapy using indium-111-DTPA-D-Phe(1)-octreotide in midgut carcinoid syndrome. J Nucl Med 37(9):1519–1521PubMedGoogle Scholar
  26. Fortin MA, Orlova A, Malmstrom PU, Tolmachev V (2007) Labelling chemistry and characterization of [(90)y/Lu-177]-DOTA-Z(HER2: 342)-3 affibody molecule, a candidate agent for locoregional treatment of urinary bladder carcinoma. Int J Mol Med 19(2):285–291PubMedGoogle Scholar
  27. Gordon LI, Witzig TE, Wiseman GA, Flinn IW, Spies SS, Silverman DH et al (2002) Yttrium 90 ibritumomab tiuxetan radioimmunotherapy for relapsed or refractory low-grade non-Hodgkin’s lymphoma. Semin Oncol 29(1):87–92PubMedCrossRefGoogle Scholar
  28. Hafeli UO, Casillas S, Dietz DW, Pauer GJ, Rybicki LA, Conzone SD et al. (1999) Hepatic tumor radioembolization in a rat model using radioactive rhenium (186Re/188Re) glass microspheres. Int J Radiat Oncol Biol Phys 44(1):189–199. Epub 1999/04/29Google Scholar
  29. Hassfjell SP, Bruland OS, Hoff P (1997) 212Bi-DOTMP: an alpha particle emitting bone-seeking agent for targeted radiotherapy. Nucl Med Biol 24(3):231–237. Epub 1997/04/01Google Scholar
  30. Hilgers K, Coenen HH, Qaim SM (2008) Production of the therapeutic radionuclides 193mPt and 195mPt with high specific activity via [alpha]-particle-induced reactions on 192Os. Appl Radiat Isot 66(4):545–551PubMedCrossRefGoogle Scholar
  31. Hoefnagel CA, Clarke SE, Fischer M, Chatal JF, Lewington VJ, Nilsson S et al. (1999) Radionuclide therapy practice and facilities in Europe, EANM Radionuclide Therapy Committee. Eur J Nucl Med 26(3):277–282. Epub 1999/03/18Google Scholar
  32. Howell RW, Rao DV, Sastry KSR (1989) Macroscopic dosimetry for radioimmunotherapy—nonuniform activity distributions in solid tumors. Med Phys 16(1):66–74PubMedCrossRefGoogle Scholar
  33. Hughes OD, Bishop MC, Perkins AC, Frier M, Price MR, Denton G et al. (1997) Preclinical evaluation of copper-67 labelled anti-MUC1 mucin antibody C595 for therapeutic use in bladder cancer. Eur J Nucl Med 24(4):439–443. Epub 1997/04/01Google Scholar
  34. Humm JL (1986) Dosimetric aspects of radiolabeled antibodies for tumor-therapy. J Nucl Med 27(9):1490–1497PubMedGoogle Scholar
  35. Janson ET, Eriksson B, Oberg K, Skogseid B, Ohrvall U, Nilsson S et al (1999) Treatment with high dose [In-111-DTPA-D-PHE1]-octreotide in patients with neuroendocrine tumors–evaluation of therapeutic and toxic effects. Acta Oncol 38(3):373–377CrossRefGoogle Scholar
  36. Jeong JM, Chung JK (2003) Therapy with Re-188-labeled radiopharmaceuticals: An overview of promising results from initial clinical trials. Cancer Biother Radiopharm 18(5):707–717PubMedCrossRefGoogle Scholar
  37. Jeong JM, Lee YJ, Kim YJ, Chang YS, Lee DS, Chung JK et al (2000) Preparation of rhenium-188-tin colloid as a radiation synovectomy agent and comparison with rhenium-188-sulfur colloid. Appl Radiat Isot 52(4):851–855PubMedCrossRefGoogle Scholar
  38. Jeong JM, Kim YJ, Lee YS, Ko JI, Son M, Lee DS, et al. (2001) Lipiodol solution of a lipophilic agent, (188)Re-TDD, for the treatment of liver cancer. Nucl Med Biol 28(2):197–204. Epub 2001/04/11Google Scholar
  39. Jeong JM, Lee YJ, Kim EH, Chang YS, Kim YJ, Son M et al (2003) Preparation of Re-188-labeled paper for treating skin cancer. Appl Radiat Isot 58(5):551–555PubMedCrossRefGoogle Scholar
  40. John E, Thakur ML, Defulvio J, Mcdevitt MR, Damjanov I (1993) Rhenium-186-labeled monoclonal-antibodies for radioimmunotherapy - preparation and evaluation. J Nucl Med 34(2):260–267PubMedGoogle Scholar
  41. Jurisson S, Cutler C, Smith SV (2008) Radiometal complexes: characterization and relevant in vitro studies. Q J Nucl Med Mol Imaging 52(3):222–234PubMedGoogle Scholar
  42. Karagiannis TC (2007) Comparison of different classes of radionuclides for potential use in radioimmunotherapy. Hell J Nucl Med 10(2):82-8. Epub 2007/08/09Google Scholar
  43. Kassis AI, Adelstein SJ (2005) Radiobiologic principles in radionuclide therapy. J Nucl Med 46:4S–12SPubMedGoogle Scholar
  44. Ketring AR (1987) 153Sm-EDTMP and 186Re-HEDP as bone therapeutic radiopharmaceuticals. Int J Rad Appl Instrum B 14(3):223–232. Epub 1987/01/01Google Scholar
  45. Ketring AR (1987b) Sm-153 Edtmp and Re-186-Hedp as bone therapeutic radiopharmaceuticals. Nucl Med Biol 14(3):223–232Google Scholar
  46. Kline SJ, Betebenner DA, Johnson DK (1991) Carboxymethyl-substituted bifunctional chelators - preparation of aryl isothiocyanate derivatives of 3-(carboxymethyl)-3-azapentanedioic acid, 3,12-bis(carboxymethyl)-6,9-dioxa-3,12-diazatetradecanedioic acid, and 1,4,7,10-tetraazacyclododecane-N, N′, N″, N′′′-tetraacetic acid for use as protein labels. Bioconjug Chem. 2(1):26–31PubMedCrossRefGoogle Scholar
  47. Knapp FF Jr (1998) Rhenium-188–a generator-derived radioisotope for cancer therapy. Cancer Biother Radiopharm 13(5):337–349. Epub 2000/06/14Google Scholar
  48. Lee J, Lee DS, Kim KM, Yeo JS, Cheon GJ, Kim SK et al (2000) Dosimetry of rhenium-188 diethylene triamine penta-acetic acid for endovascular intra-balloon brachytherapy after coronary angioplasty. Eur J Nucl Med 27(1):76–82PubMedCrossRefGoogle Scholar
  49. Lee YS, Jeong JM, Kim YJ, Chung JW, Park JH, Suh YG, et al. (2002) Synthesis of 188 Re-labelled long chain alkyl diaminedithiol for therapy of liver cancer. Nucl Med Commun 23(3):237–242. Epub 2002/03/14Google Scholar
  50. Lee YS, Jeong JM, Kim YJ, Chang YS, Lee HJ, Son M et al. (2007) Development of acetylated HDD kit for preparation of 188Re-HDD/lipiodol. Appl Radiat Isot 65(1):64–69. Epub 2006/10/03Google Scholar
  51. Lewis JS, Lewis MR, Srinivasan A, Schmidt MA, Wang J, Anderson CJ (1999) Comparison of four Cu-64-labeled somatostatin analogues in vitro and in a tumor-bearing rat model: Evaluation of new derivatives for positron emission tomography imaging and targeted radiotherapy. J Med Chem 42(8):1341–1347PubMedCrossRefGoogle Scholar
  52. Li S, Beheshti M (2005) The radionuclide molecular imaging and therapy of neuroendocrine tumors. Curr Cancer Drug Targets 5(2):139–148. Epub 2005/04/07Google Scholar
  53. Lin WY, Lin CP, Yeh SJ, Hsieh BT, Tsai ZT, Ting G, et al. (1997) Rhenium-188 hydroxyethylidene diphosphonate: a new generator-produced radiotherapeutic drug of potential value for the treatment of bone metastases. Eur J Nucl Med 24(6):590–595. Epub 1997/06/01Google Scholar
  54. Liu S (2004) The role of coordination chemistry in the development of target-specific radiopharmaceuticals. Chem Soc Rev 33(7):445–461PubMedCrossRefGoogle Scholar
  55. Liu G, Hnatowich DJ (2007) Labeling biomolecules with radiorhenium: a review of the bifunctional chelators. Anti-cancer Agents Med Chem 7(3):367–377. Epub 2007/05/17Google Scholar
  56. Mausner LF, Kolsky KL, Joshi V, Srivastava SC (1998) Radionuclide development at BNL for nuclear medicine therapy. Appl Radiat Isot 49(4):285–294PubMedCrossRefGoogle Scholar
  57. McCarthy KE, Woltering EA, Espenan GD, Cronin M, Maloney TJ, Anthony LB (1998) In situ radiotherapy with In-111-pentetreotide: Initial observations and future directions. Cancer J 4(2):94–102Google Scholar
  58. Mcmurry TJ, Brechbiel M, Kumar K, Gansow OA (1992) Convenient synthesis of bifunctional tetraaza macrocycles. Bioconjug Chem 3(2):108–117PubMedCrossRefGoogle Scholar
  59. Meares CF, Wensel TG (1984) Metal-chelates as probes of biological-systems. Acc Chem Res 17(6):202–209CrossRefGoogle Scholar
  60. Meares CF, Mccall MJ, Reardan DT, Goodwin DA, Diamanti CI, Mctigue M (1984) Conjugation of antibodies with bifunctional chelating-agents - isothiocyanate and bromoacetamide reagents, methods of analysis, and subsequent addition of metal-ions. Anal Biochem 142(1):68–78PubMedCrossRefGoogle Scholar
  61. Michel RB, Andrews PM, Rosario AV, Goldenberg DM, Mattes MJ (2005a) Lu-177-antibody conjugates for single-cell kill of B-lymphoma cells in vitro and for therapy of micrometastases in vivo. Nucl Med Biol 32(3):269–278PubMedCrossRefGoogle Scholar
  62. Michel RB, Andrews PM, Castillo ME, Mattes MJ (2005b) In vitro cytotoxicity of carcinoma cells with In-111-labeled antibodies to HER-2. Mol Cancer Ther 4(6):927–937PubMedCrossRefGoogle Scholar
  63. Michel RB, Rosario AV, Andrews PM, Goldenberg DM, Mattes MJ (2005c) Therapy of small subcutaneous B-lymphoma xenografts with antibodies conjugated to radionuclides emitting low-energy electrons. Clin Cancer Res 11(2):777–786PubMedGoogle Scholar
  64. Milenic DE, Brechbiel MW (2004) Targeting of radio-isotopes for cancer therapy. Cancer Biol Ther 3(4):361–370. Epub 2004/02/21Google Scholar
  65. Mirick GR, O’Donnell RT, DeNardo SJ, Shen S, Meares CF, DeNardo GL (1999) Transfer of copper from a chelated Cu-67-antibody conjugate to ceruloplasmin in lymphoma patients. Nucl Med Biol 26(7):841–845PubMedCrossRefGoogle Scholar
  66. Moi MK, Meares CF, Mccall MJ, Cole WC, Denardo SJ (1985) Copper-chelates as probes of biological-systems—stable copper-complexes with a macrocyclic bifunctional chelating agent. Anal Biochem 148(1):249–253PubMedCrossRefGoogle Scholar
  67. Moi MK, Yanuck M, Deshpande SV, Hope H, Denardo SJ, Meares CF (1987) X-ray crystal-structure of a macrocyclic copper chelate stable enough for use in living systems—copper(Ii) dihydrogen 6-(p-nitrobenzyl)-1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetate. Inorg Chem 26(21):3458–3463CrossRefGoogle Scholar
  68. Moi MK, Meares CF, Denardo SJ (1988) The peptide way to macrocyclic bifunctional chelating-agents - synthesis of 2-(p-nitrobenzyl)-1,4,7,10-tetraazacyclododecane-N, N′, N″, N′′′-tetraacetic acid and study of its yttrium(iii) complex. J Am Chem Soc 110(18):6266–6267PubMedCrossRefGoogle Scholar
  69. Moreau J, Guillon E, Pierrard JC, Rimbault J, Port M, Aplincourt M (2004) Complexing mechanism of the lanthanide cations Eu3 + , Gd3 + , and Tb3 + with 1,4,7,10-tetrakis(carboxymethyl)-1,4,7,10-tetraazacyclododecane (dota)—Characterization of three successive complexing phases: Study of the thermodynamic and structural properties of the complexes by potentiometry, luminescence spectroscopy, and EXAFS. Chem Eur J 10(20):5218–5232PubMedCrossRefGoogle Scholar
  70. Novak-Hofer I, Schubiger PA (2002) Copper-67 as a therapeutic nuclide for radioimmunotherapy. Eur J Nucl Med Mol Imaging 29(6):821–830PubMedCrossRefGoogle Scholar
  71. O’Donnell RT, DeNardo GL, Kukis DL, Lamborn KR, Shen S, Yuan A et al (1999) A clinical trial of radioimmunotherapy with 67Cu-2IT-BAT-Lym-1 for non-Hodgkin’s lymphoma. J Nucl Med 40(12):2014–2020. Epub 2000/01/05Google Scholar
  72. Packard AB, Kronauge JF, Brechbiel MW (1999) Metalloradiopharmaceuticals. In: Clarke MJ, Sadler PJ (eds) A metalloradiopharmaceuticals II, diagnosis and therapy. Springer, New York, pp 45–116CrossRefGoogle Scholar
  73. Postema EJ, Boerman OC, Oyen WJG, Raemaekers JMM, Corstens FHM (2001) Radioimmunotherapy of B-cell non-Hodgkin’s lymphoma. Eur J Nucl Med 28(11):1725–1735PubMedCrossRefGoogle Scholar
  74. Prasanphanich AF, Nanda PK, Rold TL, Ma LX, Lewis MR, Garrison JC et al (2007) [Cu-64-NOTA-8-Aoc-BBN(7–14)NH2] targeting vector for positron-emission tomography imaging of gastrin-releasing peptide receptor-expressing tissues. Proc Natl Acad Sci USA 104(30):12462–12467PubMedCentralPubMedCrossRefGoogle Scholar
  75. Reske SN, Bunjes D, Buchmann I, Seitz U, Glatting G, Neumaier B et al (2001) Targeted bone marrow irradiation in the conditioning of high-risk leukaemia prior to stem cell transplantation. Eur J Nucl Med 28(7):807–815PubMedCrossRefGoogle Scholar
  76. Sangro B, Bilbao JI, Inarrairaegui M, Rodriguez M, Garrastachu P, Martinez-Cuesta A (2009) Treatment of hepatocellular carcinoma by radioembolization using Y-90 microspheres. Dig Dis 27(2):164–169PubMedCrossRefGoogle Scholar
  77. Schubiger PA, Alberto R, Smith A (1996) Vehicles, chelators, and radionuclides: Choosing the ‘‘building blocks’’ of an effective therapeutic radioimmunoconjugate. Bioconjug Chem 7(2):165–179PubMedCrossRefGoogle Scholar
  78. Schwarzbach R, Zimmermann K, Blauenstein P, Smith A, Schubiger PA (1995) Development of a simple and selective separation of cu-67 from irradiated zinc for use in antibody labeling—a comparison of methods. Appl Radiat Isot 46(5):329–336PubMedCrossRefGoogle Scholar
  79. Shannon RD (1976) Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32(Sep1):751–767Google Scholar
  80. Smith A, Alberto R, Blaeuenstein P, Novakhofer I, Maecke HR, Schubiger PA (1993) Preclinical evaluation of Cu-67 labeled intact and fragmented anti-colon carcinoma monoclonal-antibody Mab35. Cancer Res 53(23):5727–5733PubMedGoogle Scholar
  81. Thomas R, Chen J, Roudier MM, Vessella RL, Lantry LE, Nunn AD (2009) In vitro binding evaluation of 177Lu-AMBA, a novel 177Lu-labeled GRP-R agonist for systemic radiotherapy in human tissues. Clin Exp Metastasis 26(2):105–119. Epub 2008/11/01Google Scholar
  82. Vallabhajosula S, Goldsmith SJ, Kostakoglu L, Milowsky MI, Nanus DM, Bander NH (2005) Radioimmunotherapy of prostate cancer using 90Y- and 177Lu-labeled J591 monoclonal antibodies: effect of multiple treatments on myelotoxicity. Clin Cancer Res 11(19 Pt 2):7195s–200s. Epub 2005/10/06Google Scholar
  83. Volkert WA, Hoffman TJ (1999) Therapeutic radiopharmaceuticals. Chem Rev 99(9):2269–2292PubMedCrossRefGoogle Scholar
  84. Volkert WA, Goeckeler WF, Ehrhardt GJ, Ketring AR (1991) Therapeutic radionuclides: production and decay property considerations. J Nucl Med 32(1):174–185. Epub 1991/01/01Google Scholar
  85. Wang SJ, Lin WY, Hsieh BT, Shen LH, Tsai ZT, Ting G et al (1995) Re-188 sulfur colloid as a radiation synovectomy agent. Eur J Nucl Med 22(6):505–507PubMedCrossRefGoogle Scholar
  86. Welch MJ, Redvanly CS (2003) Handbook of radiopharmaceuticals radiochemistry and applications. Wiley, ChichesterGoogle Scholar
  87. Wilder RB, DeNardo GL, DeNardo SJ (1996) Radioimmunotherapy: recent results and future directions. J Clin Oncol 14(4):1383–1400PubMedGoogle Scholar
  88. Wu C, Kobayashi H, Sun B, Yoo TM, Paik CH, Gansow OA et al (1997) Stereochemical influence on the stability of radio-metal complexes in vivo. Synthesis and evaluation of the four stereoisomers of 2-(p-nitrobenzyl)-trans-CyDTPA. Bioorg Med Chem 5(10):1925–1934PubMedCrossRefGoogle Scholar
  89. Yoshimoto M, Ogawa K, Washiyama K, Shikan N, Mori H, Amano R et al (2008) Alpha(v)beta(3) integrin-targeting radionuclide therapy and imaging with monomeric RGD peptide. Int J Cancer 123(3):709–715PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2012

Authors and Affiliations

  1. 1.Department of Nuclear MedicineSeoul National University College of MedicineSeoulKorea

Personalised recommendations