Medullary Thyroid Carcinoma

  • Jean-François Chatal
  • Françoise Kraeber-Bodéré
  • David M. Goldenberg
  • Jacques Barbet
Part of the Medical Radiology book series (MEDRAD)


Overall survival after initial surgery in patients diagnosed with MTC is quite variable, but the rate decreases substantially after discovery of distant metastases depending on prognostic indicator values. In this context, nuclear medicine can play an important role both with diagnostic PET imaging, and radionuclide therapy. Among available imaging techniques, CT is the best for liver and lung and MRI for bone/bone marrow. MRI should be performed in MTC patients with increased serum calcitonin levels, even when bone scintigraphy is normal. FDG-PET/CT should be recommended for exploration of neck, mediastinum, and lungs, and CT and MRI for exploration of, respectively, liver and bone/bone marrow. There is a need for prognostic indicators allowing to have a clear distinction between high-risk patients who should be treated and low-risk patients who justify a “watchful waiting” management. The prognostic value of calcitonin (Ct) doubling time (DT) have been shown to be quite favorable. For this purpose, it can be recommended that sequential measurements (every month) of Ct serum levels be performed after primary surgery in the event of persisting abnormal titers allowing to calculate CtDT after a few months. Among current treatment modalities, chemotherapy is not accepted as a useful treatment of patients with metastatic disease. Effectiveness of radioimmunotherapy has been clearly documented as well as that of vandetanib, a multikinase inhibitor which has been approved for treatment of metastatic MTC.


Vascular Endothelial Growth Factor Medullary Thyroid Carcinoma Medullary Thyroid Cancer Multikinase Inhibitor Medullary Thyroid Carcinoma Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Barbet J, Kraeber-Bodere F, Vuillez JP et al (1999) Pretargeting with the affinity enhancement system for radioimmunotherapy. Cancer Biother Radiopharm 14:153–166PubMedCrossRefGoogle Scholar
  2. Barbet J, Campion L, Kraeber-Bodere F et al (2005) Prognostic impact of serum calcitonin and carcinoembryonic antigen doubling-times in patients with medullary thyroid carcinoma. J Clin Endocrinol Metab 90:6077–6084PubMedCrossRefGoogle Scholar
  3. Bardies M, Bardet S, Faivre-Chauvet A et al (1996) Bispecific antibody and iodine-131- labeled bivalent hapten dosimetry in patients with medullary thyroid or small-cell lung cancer. J Nucl Med 37:1853–1859PubMedGoogle Scholar
  4. Bergholm U, Bergstrom R, Ekbom A (1997) Long-term follow-up of patients with medullary carcinoma of the thyroid. Cancer 79:132–138PubMedCrossRefGoogle Scholar
  5. Bodei L, Handkiewicz-Junak D, Grana C et al (2004) Receptor radionuclide therapy with 90Y-DOTATOC in patients with medullary thyroid carcinomas. Cancer Biother Radiopharm 19:65–71PubMedCrossRefGoogle Scholar
  6. Chatal JF, Campion L, Kraeber-Bodere F et al (2006) Survival improvement in patients with medullary thyroid carcinoma who undergo pretargeted anti-carcinoembryonic-antigen radioimmunotherapy: a collaborative study with the French Endocrine Tumor Group. J Clin Oncol 24:1705–1711PubMedCrossRefGoogle Scholar
  7. Cohen EE, Vokes EE, Rosen LS et al (2007) A phase II study of axitinib (AG-013736) in patients with advanced thyroid cancers (abstract). Presented at American society of clinical oncology annual meeting, Chicago, IL, Abstract 6008, 1–4 June 2007Google Scholar
  8. de Groot JWB, Links TP, Jager PL et al (2004) Impact of 18F-fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) in patients with biochemical evidence of recurrent or residual medullary thyroid cancer. Ann Surg Oncol 11:786–794PubMedCrossRefGoogle Scholar
  9. de Groot JWB, Zonnenberg BA, van Ufford-Mannesse PQ et al (2007) A phase II trial of imatinib therapy for metastatic medullary thyroid carcinoma. J Clin Endocrinol Metab 92:3466–3469PubMedCrossRefGoogle Scholar
  10. De Santis R, Anastasi AM, D’Alessio V et al (2003) Novel antitenascin antibody with increased tumour localisation for Pretargeted Antibody-Guided RadioImmunotherapy (PAGRIT). Br J Cancer 88:996–1003PubMedCentralPubMedCrossRefGoogle Scholar
  11. Diehl M, Risse JH, Brandt-Mainz K et al (2001) Fluorine-18 fluorodeoxyglucose positron emission tomography in medullary thyroid cancer: results of a multicentre study. Eur J Nucl Med 28:1671–1676PubMedCrossRefGoogle Scholar
  12. Frank-Raue K, Fabel M, Delorme S et al (2007) Efficacy of imatinib mesylate in advanced medullary thyroid carcinoma. Eur J Endocrinol 157:215–220PubMedCrossRefGoogle Scholar
  13. Fromigue J, De Baere T, Baudin E et al (2006) Chemoembolization for liver metastases from medullary thyroid carcinoma. J Clin Endocrinol Metab 91:2496–2499PubMedCrossRefGoogle Scholar
  14. Giraudet AL, Vanel D, Leboulleux S et al (2007) Imaging medullary thyroid carcinoma with persistent elevated calcitonin levels. J Clin Endocrinol Metab 92:4185–4190PubMedCrossRefGoogle Scholar
  15. Gross DJ, Munter G, Bitan M et al (2006) The role of imatinib mesylate (Glivec) for treatment of patients with malignant endocrine tumors positive for c-kit or PDGF-R. Endocr Relat Cancer 13:535–540PubMedCrossRefGoogle Scholar
  16. Hosono M, Hosono M, Kraeber-Bodere F et al (1998) Biodistribution and dosimetry study in medullary thyroid cancer xenograft using bispecific antibody and iodine-125-labeled bivalent hapten. J Nucl Med 39:1608–1613PubMedGoogle Scholar
  17. Ishikawa N, Hamada S (1976) Association of medullary carcinoma of the thyroid with carcinoembryonic antigen. Br J Cancer 34:111–115PubMedCentralPubMedCrossRefGoogle Scholar
  18. Iten F, Müller B, Schindler C et al (2007) Response to [90Yttrium-DOTA]-TOC treatment is associated with long-term survival benefit in metastasized medullary thyroid cancer: a phase II clinical trial. Clin Cancer Res 13:6696–6702PubMedCrossRefGoogle Scholar
  19. Juweid ME, Hajjar G, Swayne LC et al (2000) Initial experience with high-dose radioimmunotherapy of metastatic medullary thyroid cancer using 131I-MN-14 F(ab’)2 anti-carcinoembryonic antigen MAb and AHSCR. J Nucl Med 41:93–103PubMedGoogle Scholar
  20. Kebebew E, Ituarte PH, Siperstein AE et al (2000) Medullary thyroid carcinoma: clinical characteristics, treatment, prognostic factors, and a comparison of staging systems. Cancer 88:1139–1148PubMedCrossRefGoogle Scholar
  21. Kober F, Hermann M, Handler A et al (2007) Effect of sorafenib in symptomatic metastatic medullary thyroid cancer [abstract]. Presented at American society of clinical oncology annual meeting, Chicago, IL, Abstract 14065, 1–4 June 2007Google Scholar
  22. Kraeber-Bodere F, Bardet S, Hoefnagel CA et al (1999) Radioimmunotherapy in medullary thyroid cancer using bispecific antibody and iodine 131-labeled bivalent hapten: preliminary results of a phase I/II clinical trial. Clin Cancer Res 5:3190–3198Google Scholar
  23. Lorenz K, Brauckhoff M, Behrmann C et al (2005) Selective arterial chemoembolization for hepatic metastases from medullary thyroid carcinoma. Surgery 138:986–993PubMedCrossRefGoogle Scholar
  24. Machens A, Schneyer U, Holzhausen HJ, Dralle H (2005) Prospects of remission in medullary thyroid carcinoma according to basal calcitonin level. J Clin Endocrinol Metab 90:2029–2034PubMedCrossRefGoogle Scholar
  25. Mirallie E, Vuillez JP, Bardet S et al (2005) High frequency of bone/bone marrow involvement in advanced medullary thyroid cancer. J Clin Endocrinol Metab 90:779–788PubMedCrossRefGoogle Scholar
  26. Oudoux A, Salaun PY, Bournaud C et al (2007) Sensitivity and prognostic value of positron emission tomography with F-18-fluorodeoxyglucose and sensitivity of immunoscintigraphy in patients with medullary thyroid carcinoma treated with anticarcinoembryonic antigen-targeted radioimmunotherapy. J Clin Endocrinol Metab 92:4590–4597PubMedCrossRefGoogle Scholar
  27. Romei C, Elisei R, Pinchera A et al (1996) Somatic mutations of the ret proto-oncogene in sporadic medullary thyroid carcinoma are not restricted to exon 16 and are associated with tumor recurrence. J Clin Endocrinol Metab 81:1619–1622PubMedGoogle Scholar
  28. Schlumberger MJ, Elisei R, Bastholt L et al (2009) Phase II study of safety and efficacy of motesanib in patients with progressive or symptomatic advanced or metastatic medullary thyroid cancer. J Clin Oncol 27:3794–3801PubMedCrossRefGoogle Scholar
  29. Szakall S Jr, Esik O, Bajzik G et al (2002) 18F-FDG PET detection of lymph node metastases in medullary thyroid carcinoma. J Nucl Med 43:66–71PubMedGoogle Scholar
  30. Thomas SR, Maxon MR, Kereiakes JG et al (1977) Quantitative external counting techniques enabling improved diagnostic and therapy decisions in patients with well-differentiated thyroid cancer. Radiology 122:731–737PubMedCrossRefGoogle Scholar
  31. Wells SA, Gosnell JE, Gagel RF et al (2007) Vandetanib in metastatic medullary thyroid cancer: follow-up results of an open-label phase II trial [abstract]. Presented at American society of clinical oncology annual meeting, Chicago, IL, Abstract 6018, 1–4 June 2007Google Scholar
  32. Wells SA, Robinson BG, Gagel RF et al (2012) Vandetinib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol 30:134–141PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jean-François Chatal
    • 1
  • Françoise Kraeber-Bodéré
    • 2
    • 3
  • David M. Goldenberg
    • 4
  • Jacques Barbet
    • 2
  1. 1.GIP ArronaxUniversity of NantesNantes-Saint-HerblainFrance
  2. 2.Cancer Research Center, CRCNA, Institut de BiologieINSERM UMR892NantesFrance
  3. 3.Nuclear Medicine Department, University HospitalRené Gauducheau Cancer Center, IRCNANantes-Saint-HerblainFrance
  4. 4.Garden State Cancer CenterCenter for Molecular Medicine and ImmunologyBellevilleUSA

Personalised recommendations