Radiopeptide Therapy of Brain Tumors

Part of the Medical Radiology book series (MEDRAD)


 The following chapter summarizes the results of the phase I and II studies that have been published dealing with radiopeptide therapy in brain tumors. To date, three radiopeptides conjugated with a chelator for radiolabeling with radiometals or labeled directly with 131I have been used in patients. Radiopeptide therapy for brain tumors has to be regarded as experimental. So far, the largest number of patients has been treated with substance P radiolabeled with 90Y, 177Lu, or 213Bi. Besides substance P, the somatostatin analog DOTATOC and the synthetic chlorotoxin TM-601 have been used for this therapy strategy.


Malignant Glioma Resection Cavity Triacetic Acid Effective Dose Range Radiopeptide Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Beaujouan JC, Torrens Y, Saffroy M et al (2004) A 25 year adventure in the field of tachykinins. Peptides 25:339–357PubMedCrossRefGoogle Scholar
  2. Beutler D, Avoledo P, Reubi JC et al (2005) Three-year recurrence-free survival in a patient with recurrent medulloblastoma after resection, high-dose chemotherapy, and intrathecal Yttrium-90-labeled DOTA0-D-Phe1-Tyr3-octreotide radiopeptide brachytherapy. Cancer 103:869–873PubMedCrossRefGoogle Scholar
  3. Cokgor I, Akabani G, Kuan CT et al (2000) Phase I trial results of iodine-131-labeled antitenascin monoclonal antibody 81C6 treatment of patients with newly diagnosed malignant gliomas. J Clin Oncol 18:3862–3872PubMedGoogle Scholar
  4. Cordier D, Forrer F, Bruchertseifer F, Morgenstern A, Apostolidis C, Good S, Müller-Brand J, Mäcke H, Reubi JC, Merlo A (2010) Targeted alpha-radionuclide therapy of functionally critically located gliomas with 213Bi-DOTA-[Thi8,Met(O2)11]- substance P: a pilot trial. Eur J Nucl Med Mol Imaging 37:1335–1344PubMedCrossRefGoogle Scholar
  5. Forrer F, Valkema R, Kwekkeboom DJ et al (2007) Peptide receptor radionuclide therapy. Best Pract Res Clin Endocrinol Metab 21:111–129PubMedCrossRefGoogle Scholar
  6. Hegi ME, Diserens AC, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003PubMedCrossRefGoogle Scholar
  7. Hennig IM, Laissue JA, Horisberger U, Reubi JC (1995) Substance-P receptors in human primary neoplasms: tumoral and vascular localization. Int J Cancer 61:786–792PubMedCrossRefGoogle Scholar
  8. Hochberg FH, Pruitt A (1980) Assumptions in the radiotherapy of glioblastoma. Neurology 30:907–911PubMedCrossRefGoogle Scholar
  9. Kawakami K, Kawakami M, Kioi M et al (2004) Distribution kinetics of targeted cytotoxin in glioma by bolus or convection-enhanced delivery in a murine model. J Neurosurg 101:1004–1011PubMedCrossRefGoogle Scholar
  10. Kneifel S, Cordier D, Good S et al (2006) Local targeting of malignant gliomas by the diffusible peptidic vector 1,4,7,10-tetraazacyclododecane-1-glutaric acid-4,7,10-triacetic acid-substance p. Clin Cancer Res 12:3843–3850PubMedCrossRefGoogle Scholar
  11. Kneifel S, Bernhardt P, Uusijärvi H et al (2007) Individual voxelwise dosimetry of targeted 90Y-labelled substance P radiotherapy for malignant gliomas. Eur J Nucl Med Mol Imaging 34:1388–1395PubMedCrossRefGoogle Scholar
  12. Laske DW, Youle RJ, Oldfield EH (1997) Tumor regression with regional distribution of the targeted toxin TF-CRM107 in patients with malignant brain tumors. Nat Med 3:1362–1368PubMedCrossRefGoogle Scholar
  13. Macdonald DR, Cascino TL, Schold SC Jr, Cairncross JG (1990) Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 8:1277–1280PubMedGoogle Scholar
  14. Maecke HR (2005) Radiolabeled peptides in nuclear oncology: influence of peptide structure and labeling strategy on pharmacology. Ernst Schering Res Found Workshop, pp 43–72Google Scholar
  15. Mamelak AN, Rosenfeld S, Bucholz R et al (2006) Phase I single-dose study of intracavitary-administered iodine-131-TM-601 in adults with recurrent high-grade glioma. J Clin Oncol 24:3644–3650PubMedCrossRefGoogle Scholar
  16. Merlo A, Jermann E, Hausmann O et al (1997) Biodistribution of 111In-labelled SCN-bz-DTPA-BC-2 MAb following loco-regional injection into glioblastomas. Int J Cancer 71:810–816PubMedCrossRefGoogle Scholar
  17. Merlo A, Hausmann O, Wasner M et al (1999) Locoregional regulatory peptide receptor targeting with the diffusible somatostatin analogue 90Y-labeled DOTA0-D-Phe1-Tyr3-octreotide (DOTATOC): a pilot study in human gliomas. Clin Cancer Res 5:1025–1033PubMedGoogle Scholar
  18. Mitrovic B, Martin FC, Charles AC et al (1994) Neurotransmitters and cytokines in CNS pathology. Prog Brain Res 103:319–330PubMedCrossRefGoogle Scholar
  19. Oertel J, von Buttlar E, Schroeder HW, Gaab MR (2005) Prognosis of gliomas in the 1970s and today. Neurosurg Focus 18:e12PubMedCrossRefGoogle Scholar
  20. Otte A, Mueller-Brand J, Dellas S et al (1998) Yttrium-90-labelled somatostatin-analogue for cancer treatment. Lancet 351:417–418PubMedCrossRefGoogle Scholar
  21. Rand RW, Kreitman RJ, Patronas N et al (2000) Intratumoral administration of recombinant circularly permuted interleukin-4-Pseudomonas exotoxin in patients with high-grade glioma. Clin Cancer Res 6:2157–2165PubMedGoogle Scholar
  22. Riva P, Arista A, Franceschi G et al (1995) Local treatment of malignant gliomas by direct infusion of specific monoclonal antibodies labeled with 131I: comparison of the results obtained in recurrent and newly diagnosed tumors. Cancer Res 55:5952s–5956sGoogle Scholar
  23. Schumacher T, Hofer S, Eichhorn K et al (2002) Local injection of the 90Y-labelled peptidic vector DOTATOC to control gliomas of WHO grades II and III: an extended pilot study. Eur J Nucl Med Mol Imaging 29:486–493PubMedCrossRefGoogle Scholar
  24. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996PubMedCrossRefGoogle Scholar
  25. Walker MD, Green SB, Byar DP et al (1980) Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N Engl J Med 303:1323–1329PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Deputy Head Department of Nuclear MedicineUniversity Hospital BaselBaselSwitzerland
  2. 2.Senior Physician Department of NeurosurgeryUniversity HospitalBaselSwitzerland

Personalised recommendations