Advertisement

Hypoxia Imaging for Radiation Therapy Planning

  • Heikki Minn
  • Jan Seppälä
  • Tony Shepherd
Chapter
Part of the Medical Radiology book series (MEDRAD)

Abstract

Hypoxia is one of the key features conferring resistance to oncologic treatment. Modern radiotherapy aims at overcoming hypoxia-induced resistance by escalating or redistributing dose or by modulating the sensitivity of poorly oxygenated but viable tumour cells. To accomplish this, it is necessary to detect hypoxia both spatially and temporally and to recognise limitations in sensitivity to differentiate oxic and hypoxic tumour subvolumes. Currently, PET/CT-based imaging using radiolabelled nitroimidazole or thiosemicarbazone compounds is the preferred technique for biological dose planning targeting hypoxia. Hypoxic tumour cells identified on PET/CT may be treated by giving a graded higher dose in a limited number of hypoxic compartments or by individually prescribing a dose to each volume unit based on 3D mapping of tumour oxygenation status. The latter technique is commonly called dose painting by numbers (DPN) to illustrate the heterogeneous dose received by the hypoxic target. Dose planning requires sophisticated computer algorithms where intensity-modulated radiotherapy (IMRT) is used to deliver irradiation. It is not yet known which strategy for planning and delivering hypoxia-targeted radiotherapy is the most appropriate in the clinical setting and what role chemical and biological modifiers of oxygenation will play given the lack of outcome data. Furthermore, adaptive strategies accounting for the effect of reoxygenation and cyclic hypoxia should be studied as well. This chapter outlines biological, methodological and technical issues associated with hypoxia-directed radiation therapy planning with emphasis on their potential application in clinical practice.

Keywords

Normal Tissue Complication Probability Tumour Control Probability Manual Delineation Hypoxic Tumour Cell Target Delineation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

ATSM

Thiosemicarbazone ligands

BTV

Biological target volume

DCEMRI

Dynamic contrast-enhanced magnetic resonance imaging

DPN

Dose painting by numbers

EF5

Pentafluoropropylacetamide

FAZA

Fluoroazomycin-arabinofuranosine

FDG

Fluorodeoxyglucose

FMISO

Fluoromisonidazole

HF

Hypoxic fraction

HIF

Hypoxia-inducible factor

IMRT

Intensity-modulated radiotherapy

IGRT

Image guided radiotherapy

NTCP

Normal tissue complication probability

OER

Oxygen enhancement ratio

RT

Radiotherapy

SCC

Squamous cell carcinoma

SNR

Signal-to-noise ratio

TCP

Tumour control probability

VOI

Volume of interest

References

  1. Bentzen SM (2005) Theragnostic imaging for radiation oncology: dose-painting by numbers. Lancet Oncol 6:112–117PubMedCrossRefGoogle Scholar
  2. Busk M, Horsman MR, Overgaard J (2008) Resolution in PET hypoxia imaging: voxel size matters. Acta Oncol 47:1201–1210PubMedCrossRefGoogle Scholar
  3. Carlson DJ, Stewart RD, Semenenko VA (2006) Effects of oxygen on intrinsic radiation sensitivity: a test of the relationship between aerobic and hypoxic linear-quadratic (LQ) model parameters. Med Phys 33:3105–3115PubMedCrossRefGoogle Scholar
  4. Chao KS, Bosch WR, Mutic S et al (2001) A novel approach to overcome hypoxic tumour resistance: Cu-ATSM-guided intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 49:1171–1182PubMedCrossRefGoogle Scholar
  5. Christian N, Lee JA, Bol A et al (2009) The limitation of PET imaging for biological adaptive-IMRT assessed in animal models. Radiother Oncol 91:101–106PubMedCrossRefGoogle Scholar
  6. Dewhirst MW (2009) Relationships between cycling hypoxia, HIF-1, angiogenesis and oxidative stress. Radiat Res 172:653–665PubMedCentralPubMedCrossRefGoogle Scholar
  7. Dewhirst MW, Cao Y, Moeller B (2008) Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer 8:425–438CrossRefGoogle Scholar
  8. El-Naqa I, Yang D, Apte A et al (2007) Concurrent multimodality image segmentation by active contours for radiotherapy treatment planning. Med Phys 34:4738–4749PubMedCrossRefGoogle Scholar
  9. Eschmann S, Paulsen F, Reimold M et al (2005) Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy. J Nucl Med 46:253–260PubMedGoogle Scholar
  10. Geets X, Lee JA, Bol A et al (2007) A gradient-based method for segmenting FDG-PET images: methodology and validation. Eur J Nucl Med Mol Imaging 34:1427–1438PubMedCrossRefGoogle Scholar
  11. Grosu AL, Souvatzoglou M, Röper B et al (2007) Hypoxia imaging with FAZA-PET and theoretical considerations with regard to dose painting for individualization of radiotherapy in patients with head and neck cancer. Int J Radiat Oncol Biol Phys 69:541–551PubMedCrossRefGoogle Scholar
  12. Hatt M, le Rest C, Turzo A et al (2009) A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET. IEEE Trans Med Im 28:881–893CrossRefGoogle Scholar
  13. Horsman MR, Wouters BG, Joiner MC, Overgaard J (2009) The oxygen effect and fractionated radiotherapy. In: Joiner M, van der Kogel A (eds) Basic clinical radiobiology. Edward Arnold, London, pp 207–216CrossRefGoogle Scholar
  14. Horsman MR, van der Kogel A (2009) Therapeutic approaches to tumour hypoxia. In: Joiner M, van der Kogel A (eds) Basic clinical radiobiology. Edward Arnold, London, pp 233–245CrossRefGoogle Scholar
  15. Koh WJ, Bergman KS, Rasey JS et al (1995) Evaluation of oxygenation status during fractionated radiotherapy in human non-small cell lung cancers using [F-18]fluoromisonidazole positron emission tomography. Int J Radiat Oncol Biol Phys 33:391–398PubMedCrossRefGoogle Scholar
  16. Komar G, Seppänen M, Eskola O et al (2008) 18F-EF5: a new PET tracer for imaging hypoxia in head and neck cancer. J Nucl Med 49:1944–1951PubMedCrossRefGoogle Scholar
  17. Krohn KA, Link JM, Mason RP (2008) Molecular imaging of hypoxia. J Nucl Med 49:129S–148SPubMedCrossRefGoogle Scholar
  18. Lee NY, Mechalakos JG, Nehmeh S et al (2008) Fluorine-18-labeled fluoromisonidazole positron emission and computed tomography-guided intensity-modulated radiotherapy for head and neck cancer: a feasibility study. Int J Radiat Oncol Biol Phys 70:2–13PubMedCentralPubMedCrossRefGoogle Scholar
  19. Lin Z, Mechalakos J, Nehmeh S et al (2008) The influence of changes in tumour hypoxia on dose-painting treatment plans based on 18F-FMISO positron emission tomography. Int J Radiat Oncol Biol Phys 70:1219–1228PubMedCentralPubMedCrossRefGoogle Scholar
  20. Ling CC, Humm J, Larson S et al (2000) Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 47:551–560PubMedCrossRefGoogle Scholar
  21. Mackay RI, Hendry JH (1999) The modelled benefits of individualizing radiotherapy patients’ dose using cellular radiosensitivity assays with inherent variability. Radiother Oncol 50:67–75PubMedCrossRefGoogle Scholar
  22. Madani I, Duprez F, Boterberg T et al (2011) Maximum tolerated dose in a phase I trial on adaptive dose painting by numbers for head and neck cancer. Radiother Oncol 101:351–355PubMedCrossRefGoogle Scholar
  23. Malinen E, Søvik A, Hristov D et al (2006) Adapting radiotherapy to hypoxic tumours. Phys Med Biol 51:4903–4921PubMedCrossRefGoogle Scholar
  24. Mees G, Dierckx R, Vangestel C et al (2009) Molecular imaging of hypoxia with radiolabelled agents. Eur J Nucl Med Mol Imaging 36:1674–1686PubMedCentralPubMedCrossRefGoogle Scholar
  25. Minn H, Grönroos TJ, Komar G et al (2008) Imaging of tumour hypoxia to predict treatment sensitivity. Curr Pharm Design 14:2932–2942CrossRefGoogle Scholar
  26. Nehmeh SA, Schoder H, Lee NY et al (2008) Reproducibility of the intra-tumoral distribution of 18F-flouromisonidazole (18FMISO) in head and neck cancer. Int J Radiat Oncol Biol Phys 70:235–242PubMedCentralPubMedCrossRefGoogle Scholar
  27. Nordsmark M, Bentzen SM, Rudat V et al (2005) Prognostic value of tumour oxygenation in 397 head and neck tumours after primary radiation therapy. An international multi-center study. Radiother Oncol 77:18–24Google Scholar
  28. O’Donoghue JA, Zanzonico P, Pugachev A et al (2005) Assessment of regional tumour hypoxia using 18F-fluoromisonidazole and 64Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) positron emission tomography: comparative study featuring microPET imaging, Po2 probe measurement, autoradiography, and fluorescent microscopy in the R3327-AT and FaDu rat tumour models. Int J Radiat Oncol Biol Phys 61:1493–1502PubMedCrossRefGoogle Scholar
  29. Overgaard J (2011) Hypoxic modification of radiotherapy in squamous cell carcinoma of the head and neck—a systematic review and meta-analysis. Radiother Oncol 100:22–32PubMedCrossRefGoogle Scholar
  30. Petit SF, Dekker AL, Seigneuric R et al (2009) Intra-voxel heterogeneity influences the dose prescription for dose-painting with radiotherapy: a modelling study. Phys Med Biol 54:2179–2196PubMedCrossRefGoogle Scholar
  31. Popple RA, Ove R, Shen S (2002) Tumour control probability for selective boosting of hypoxic subvolumes, including the effect of reoxygenation. Int J Radiat Oncol Biol Phys 54:921–927PubMedCrossRefGoogle Scholar
  32. Rajendran JG, Schwartz DL, O’Sullivan J et al (2006a) Tumor hypoxia imaging with [F-18] fluoromisonidazole positron emission tomography in head and neck cancer. Clin Cancer Res 12:5435–5441PubMedCrossRefGoogle Scholar
  33. Rajendran JG, Hendrickson KRG, Spence AM et al (2006b) Hypoxia imaging-directed radiation treatment planning. Eur J Nucl Med Mol Imaging 33:S44–S53CrossRefGoogle Scholar
  34. Rasey JS, Koh WJ, Evans ML et al (1996) Quantifying regional hypoxia in human tumors with positron emission tomography of [18F]fluoromisonidazole: a pretherapy study of 37 patients. Int J Radiat Oncol Biol Phys 36:417–428PubMedCrossRefGoogle Scholar
  35. Rischin D, Hicks RJ, Fisher R et al (2006) Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumour hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncology Group Study 98.02. J Clin Oncol 24:2098–2104PubMedCrossRefGoogle Scholar
  36. Shepherd T, Owenius R (2012) Gaussian process models of dynamic PET for functional volume definition in radiation oncology. IEEE Trans Med Imaging 38:1542–1556Google Scholar
  37. South CP, Evans PM, Partridge M (2009) Dose prescription complexity versus tumour control probability in biologically conformal radiotherapy. Med Phys 36:4379–4388PubMedCrossRefGoogle Scholar
  38. Souvatzoglou M, Grosu AL, Röper B et al (2007) Tumour hypoxia imaging with [18F]FAZA PET in head and neck cancer patients: a pilot study. Eur J Nucl Med Mol Imaging 34:1566–1575PubMedCrossRefGoogle Scholar
  39. Søvik A, Malinen E, Skogmo HK et al (2007a) Radiotherapy adapted to spatial and temporal variability in tumour hypoxia. Int J Radiat Oncol Biol Phys 68:1496–1504PubMedCrossRefGoogle Scholar
  40. Søvik A, Malinen E, Bruland ØS et al (2007b) Optimization of tumour control probability in hypoxic tumours by radiation dose redistribution: a modelling study. Phys Med Biol 52:499–513PubMedCrossRefGoogle Scholar
  41. Søvik A, Malinen E, Olsen DR (2009) Strategies for biologic image-guided dose escalation: a review. Int J Radiat Oncol Biol Phys 73:650–658PubMedCrossRefGoogle Scholar
  42. Stephen RM, Gillies RJ (2007) Promise and progress for functional and molecular imaging of response to targeted therapies. Pharm Res 24:1172–1185PubMedCrossRefGoogle Scholar
  43. Stewart FA, Dörr W (2009) Milestones in normal tissue radiation biology over the past 50 years: from clonogenic survival to cytokine networks and back to stem cell recovery. Int J Radiat Biol 85:574–586PubMedCrossRefGoogle Scholar
  44. Stewart RD, Li XA (2007) BGRT: biologically guided radiation therapy—the future is fast approaching! Med Phys 34:3739–3751Google Scholar
  45. Thorwarth D, Eschmann S, Paulsen F et al (2007) Hypoxia dose painting by numbers: a planning study. Int J Radiat Oncol Biol Phys 68:291–300PubMedCrossRefGoogle Scholar
  46. Thorwarth D, Alber M (2010) Implementation of hypoxia imaging into treatment planning and delivery. Radiother Oncol 97:172–175PubMedCrossRefGoogle Scholar
  47. Toma-Daşu I, Daşu A, Brahme A (2009) Dose prescription and optimisation based on tumour hypoxia. Acta Oncol 48:1181–1192PubMedCrossRefGoogle Scholar
  48. Tomé WA, Fowler JF (2000) Selective boosting of tumour subvolumes. Int J Radiat Oncol Biol Phys 48:593–599PubMedCrossRefGoogle Scholar
  49. Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Met Rev 26:225–239CrossRefGoogle Scholar
  50. Zaidi H (2006) Medical image segmentation: Quo Vadis (Editorial). Comput Methods Prog Biomed 84:63–65PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Oncology and RadiotherapyTurku University HospitalTurkuFinland
  2. 2.Cancer CenterKuopio University HospitalKuopioFinland
  3. 3.Turku PET CentreTurku University HospitalTurkuFinland

Personalised recommendations