PET for Radiotherapy Planning

Part of the Medical Radiology book series (MEDRAD)


In contrast to radionuclide treatment, the planning of percutaneous radiotherapy relies on geometrical concepts and is therefore based on topographical imaging information. In addition to morphological imaging, PET offers relevant information in this process. This chapter gives a short background on the basics of treatment planning in radiation oncology and gives some details on the use of PET for gross tumor delineation and technical challenges. The clinical applications in lung cancer, head and neck cancer, and brain tumors are discussed


Plan Target Volume Intensity Modulate Radiation Therapy Clinical Target Volume Gross Tumor Volume Normal Tissue Complication Probability 


  1. Abouzied MM, Crawford ES and Nabi HA (2005) 18F-FDG imaging: pitfalls and artifacts. J Nucl Med Technol 33:145–155; quiz 162–3Google Scholar
  2. Baum RP, Hellwig D, Mezzetti M (2004) Position of nuclear medicine modalities in the diagnostic workup of cancer patients: lung cancer. Q J Nucl Med Mol Imaging 48:119–142PubMedGoogle Scholar
  3. Bentzen SM (2005) Radiation therapy: intensity modulated, image guided, biologically optimized and evidence based. Radiother Oncol 77:227–230PubMedCrossRefGoogle Scholar
  4. Bettinardi V, Picchio M, Di Muzio N, Gianolli L, Gilardi MC, Messa C (2010) Detection and compensation of organ/lesion motion using 4D-PET/CT respiratory gated acquisition techniques. Radiother Oncol 96:311–316PubMedCrossRefGoogle Scholar
  5. Bradley J, Thorstad WL, Mutic S, Miller TR, Dehdashti F, Siegel BA, Bosch W, Bertrand RJ (2004) Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 59:78–86PubMedCrossRefGoogle Scholar
  6. Caldwell CB, Mah K, Skinner M, Danjoux CE (2003) Can PET provide the 3D extent of tumor motion for individualized internal target volumes? A phantom study of the limitations of CT and the promise of PET. Int J Radiat Oncol Biol Phys 55:1381–1393PubMedCrossRefGoogle Scholar
  7. Chan SC, Ng SH, Chang JT, Lin CY, Chen YC, Chang YC, Hsu CL, Wang HM, Liao CT, Yen TC (2006) Advantages and pitfalls of 18F-fluoro-2-deoxy-d-glucose positron emission tomography in detecting locally residual or recurrent nasopharyngeal carcinoma: comparison with magnetic resonance imaging. Eur J Nucl Med Mol Imaging 33:1032–1040PubMedCrossRefGoogle Scholar
  8. Cheson BD (2008) New response criteria for lymphomas in clinical trials. Ann Oncol 19 Suppl 4 iv35-8Google Scholar
  9. Ciernik IF, Dizendorf E, Baumert BG, Reiner B, Burger C, Davis JB, Lutolf UM, Steinert HC, Von Schulthess GK (2003) Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): a feasibility study. Int J Radiat Oncol Biol Phys 57:853–863PubMedCrossRefGoogle Scholar
  10. Coffey M, Vaandering A (2010) Patient setup for PET/CT acquisition in radiotherapy planning. Radiother Oncol 96:298–301PubMedCrossRefGoogle Scholar
  11. Connell CA, Corry J, Milner AD, Hogg A, Hicks RJ, Rischin D, Peters LJ (2007) Clinical impact of, and prognostic stratification by, F-18 FDG PET/CT in head and neck mucosal squamous cell carcinoma. Head Neck 29:986–995PubMedCrossRefGoogle Scholar
  12. Daisne JF, Duprez T, Weynand B, Lonneux M, Hamoir M, Reychler H, Gregoire V (2004) Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology 233:93–100PubMedCrossRefGoogle Scholar
  13. Deniaud-Alexandre E, Touboul E, Lerouge D, Grahek D, Foulquier JN, Petegnief Y, Grès B, El Balaa H, Keraudy K, Kerrou K, Montravers F, Milleron B, Lebeau B, Talbot JN (2005) Impact of computed tomography and 18F-eoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 63(5):1432–1441PubMedCrossRefGoogle Scholar
  14. de Koste JR, Lagerwaard FJ, de Boer HC, Nijssen-Visser MR, Senan S (2003) Are multiple CT scans required for planning curative radiotherapy in lung tumors of the lower lobe? Int J Radiat Oncol Biol Phys 55:1394–1399PubMedCrossRefGoogle Scholar
  15. De Ruysscher D, Wanders S, Minken A, Lumens A, Schiffelers J, Stultiens C, Halders S, Boersma L, Baardwijk A, Verschueren T, Hochstenbag M, Snoep G, Wouters B, Nijsten S, Bentzen SM, Kroonenburgh M, Ollers M, Lambin P (2005) Effects of radiotherapy planning with a dedicated combined PET-CT-simulator of patients with non-small cell lung cancer on dose limiting normal tissues and radiation dose-escalation: a planning study. Radiother Oncol 77:5–10PubMedCrossRefGoogle Scholar
  16. Dierckx RA, Van de Wiele C (2008) FDG uptake, a surrogate of tumour hypoxia? Eur J Nucl Med Mol Imaging 35:1544–1549PubMedCentralPubMedCrossRefGoogle Scholar
  17. Dresel S, Grammerstorff J, Schwenzer K, Brinkbaumer K, Schmid R, Pfluger T, Hahn K (2003) [18F]FDG imaging of head and neck tumours: comparison of hybrid PET and morphological methods. Eur J Nucl Med Mol Imaging 30:995–1003PubMedCrossRefGoogle Scholar
  18. Duprez F, De Neve W, De Gersem W, Coghe M, Madani I (2010) Adaptive dose painting by numbers for head-and-neck cancer. Int J Radiat Oncol Biol Phys 80(4):1045–1055PubMedCrossRefGoogle Scholar
  19. Dwamena BA, Sonnad SS, Angobaldo JO, Wahl RL (1999) Metastases from non-small cell lung cancer: mediastinal staging in the 1990s—meta-analytic comparison of PET and CT. Radiology 213:530–536PubMedCrossRefGoogle Scholar
  20. Ekberg L, Holmberg O, Wittgren L, Bjelkengren G, Landberg T (1998) What margins should be added to the clinical target volume in radiotherapy treatment planning for lung cancer? Radiother Oncol 48:71–77PubMedCrossRefGoogle Scholar
  21. Erdi YE, Mawlawi O, Larson SM, Imbriaco M, Yeung H, Finn R, Humm JL (1997) Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer 80:2505–2509PubMedCrossRefGoogle Scholar
  22. Eschmann SM, Friedel G, Paulsen F, Reimold M, Hehr T, Scheiderbauer J, Budach W, Kotzerke J, Bares R (2007) Impact of staging with 18F-FDG-PET on outcome of patients with stage III non-small cell lung cancer: PET identifies potential survivors. Eur J Nucl Med Mol Imaging 34:54–59PubMedCentralPubMedCrossRefGoogle Scholar
  23. Gambhir SS, Czernin J, Schwimmer J, Silverman DH, Coleman RE, Phelps ME (2001) A tabulated summary of the FDG PET literature. J Nucl Med 42:1S–93SPubMedGoogle Scholar
  24. Geets X, Lee JA, Bol A, Lonneux M, Gregoire V (2007) A gradient-based method for segmenting FDG-PET images: methodology and validation. Eur J Nucl Med Mol Imaging 34:1427–1438PubMedCrossRefGoogle Scholar
  25. Goshen E, Davidson T, Yahalom R, Talmi YP, Zwas ST (2006) PET/CT in the evaluation of patients with squamous cell cancer of the head and neck. Int J Oral Maxillofac Surg 35:332–336PubMedCrossRefGoogle Scholar
  26. Graves EE, Quon A, Loo BW Jr (2007) RT_Image: an open-source tool for investigating PET in radiation oncology. Technol Cancer Res Treat 6:111–121PubMedCrossRefGoogle Scholar
  27. Grgic A, Nestle U, Schaefer A, Kremp S, Kirsch CM and Hellwig D (2008) FDG-PET–based radiotherapy planning in lung cancer: optimum breathing protocol and patient positioning—an intraindividual comparison. Int J Radiat Oncol Biol Phys. doi: 10.1016/j.ijrobp.2008.03.063
  28. Grgic A, Nestle U, Schaefer-Schuler A, Kremp S, Ballek E, Fleckenstein J, Rube C, Kirsch CM, Hellwig D (2009) Nonrigid versus rigid registration of thoracic 18F-FDG PET and CT in patients with lung cancer: an intraindividual comparison of different breathing maneuvers. J Nucl Med 50:1921–1926PubMedCrossRefGoogle Scholar
  29. Grosu AL, Weber W, Feldmann HJ, Wuttke B, Bartenstein P, Gross MW, Lumenta C, Schwaiger M, Molls M (2000) First experience with I-123-alpha-methyl-tyrosine spect in the 3-D radiation treatment planning of brain gliomas. Int J Radiat Oncol Biol Phys 47:517–526PubMedCrossRefGoogle Scholar
  30. Grosu AL, Feldmann H, Dick S, Dzewas B, Nieder C, Gumprecht H, Frank A, Schwaiger M, Molls M, Weber WA (2002) Implications of IMT-SPECT for postoperative radiotherapy planning in patients with gliomas. Int J Radiat Oncol Biol Phys 54:842–854PubMedCrossRefGoogle Scholar
  31. Grosu AL, Lachner R, Wiedenmann N, Stark S, Thamm R, Kneschaurek P, Schwaiger M, Molls M, Weber WA (2003) Validation of a method for automatic image fusion (BrainLAB System) of CT data and 11C-methionine-PET data for stereotactic radiotherapy using a LINAC: first clinical experience. Int J Radiat Oncol Biol Phys 56:1450–1463PubMedCrossRefGoogle Scholar
  32. Grosu AL, Weber WA, Franz M, Stark S, Piert M, Thamm R, Gumprecht H, Schwaiger M, Molls M, Nieder C (2005a) Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 63:511–519PubMedCrossRefGoogle Scholar
  33. Grosu AL, Weber WA, Riedel E, Jeremic B, Nieder C, Franz M, Gumprecht H, Jaeger R, Schwaiger M, Molls M (2005b) L-(methyl-11C) methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy. Int J Radiat Oncol Biol Phys 63:64–74PubMedCrossRefGoogle Scholar
  34. Grosu AL, Astner ST, Riedel E, Nieder C, Wiedenmann N, Heinemann F, Schwaiger M, Molls M, Wester HJ, Weber WA (2011) An interindividual comparison of O-(2-[18F]fluoroethyl)-L-tyrosine (FET)- and L- [methyl-11C]methionine (MET)-PET in patients with brain gliomas and metastases. Int J Radiat Oncol Biol Phys 81(4):1049–1058PubMedCrossRefGoogle Scholar
  35. Haie-Meder C, Mazeron R, Magne N (2010) Clinical evidence on PET-CT for radiation therapy planning in cervix and endometrial cancers. Radiother Oncol 96:351–355PubMedCrossRefGoogle Scholar
  36. Haubner R (2010) PET radiopharmaceuticals in radiation treatment planning—synthesis and biological characteristics. Radiother Oncol 96:280–287PubMedCrossRefGoogle Scholar
  37. Hellwig D, Graeter TP, Ukena D, Groeschel A, Sybrecht GW, Schaefers HJ, Kirsch CM (2007) 18F-FDG PET for mediastinal staging of lung cancer: which SUV threshold makes sense? J Nucl Med 48:1761–1766PubMedCrossRefGoogle Scholar
  38. ICRU (1993) Prescribing, recording and reporting photon beam therapyGoogle Scholar
  39. ICRU (1999) Prescribing, recording and reporting photon beam therapy. Supplement to report 50Google Scholar
  40. Ireland RH, Dyker KE, Barber DC, Wood SM, Hanney MB, Tindale WB, Woodhouse N, Hoggard N, Conway J, Robinson MH (2007) Nonrigid image registration for head and neck cancer radiotherapy treatment planning with PET/CT. Int J Radiat Oncol Biol Phys 68:952–957PubMedCentralPubMedCrossRefGoogle Scholar
  41. Jaskowiak CJ, Bianco JA, Perlman SB, Fine JP (2005) Influence of reconstruction iterations on 18F-FDG PET/CT standardized uptake values. J Nucl Med 46:424–428PubMedGoogle Scholar
  42. Jeong HJ, Min JJ, Park JM, Chung JK, Kim BT, Jeong JM, Lee DS, Lee MC, Han SK, Shim YS (2002) Determination of the prognostic value of [18F]fluorodeoxyglucose uptake by using positron emission tomography in patients with non-small cell lung cancer. Nucl Med Commun 23:865–870PubMedCrossRefGoogle Scholar
  43. Kalff V, Hicks RJ, MacManus MP, Binns DS, McKenzie AF, Ware RE, Hogg A, Ball DL (2001) Clinical impact of (18)F fluorodeoxyglucose positron emission tomography in patients with non-small-cell lung cancer: a prospective study. J Clin Oncol 19(1):111–118PubMedGoogle Scholar
  44. Keall PJ, Mageras GS, Balter JM, Emery RS, Forster KM, Jiang SB, Kapatoes JM, Low DA, Murphy MJ, Murray BR, Ramsey CR, Van Herk MB, Vedam SS, Wong JW, Yorke E (2006) The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys 33:3874–3900PubMedCrossRefGoogle Scholar
  45. Kirby AM, Mikhaeel NG (2007) The role of FDG PET in the management of lymphoma: what is the evidence base? Nucl Med Commun 28:335–354PubMedCrossRefGoogle Scholar
  46. Kiricuta IC (2001) Selection and delineation of lymph node target volume for lung cancer conformal radiotherapy. Proposal for standardizing terminology based on surgical experience. Strahlenther Onkol 177:410–423PubMedCrossRefGoogle Scholar
  47. Knight SB, Delbeke D, Stewart JR, Sandler MP (1996) Evaluation of pulmonary lesions with FDG-PET. Comparison of findings in patients with and without a history of prior malignancy. Chest 109:982–988PubMedCrossRefGoogle Scholar
  48. Kracht LW, Miletic H, Busch S, Jacobs AH, Voges J, Hoevels M, Klein JC, Herholz K, Heiss WD (2004) Delineation of brain tumor extent with [11C]l-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res 10:7163–7170PubMedCrossRefGoogle Scholar
  49. Lambrecht M, Haustermans K (2010) Clinical evidence on PET-CT for radiation therapy planning in gastro-intestinal tumors. Radiother Oncol 96:339–346PubMedCrossRefGoogle Scholar
  50. Langen KJ, Ziemons K, Kiwit JC, Herzog H, Kuwert T, Bock WJ, Stocklin G, Feinendegen LE, Muller-Gartner HW (1997) 3-[123I]iodo-alpha-methyltyrosine and [methyl-11C]-l-methionine uptake in cerebral gliomas: a comparative study using SPECT and PET. J Nucl Med 38:517–522PubMedGoogle Scholar
  51. Langen KM, Jones DT (2001) Organ motion and its management. Int J Radiat Oncol Biol Phys 50:265–278PubMedCrossRefGoogle Scholar
  52. Ling CC, Humm J, Larson S, Amols H, Fuks Z, Leibel S, Koutcher JA (2000) Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 47:551–560PubMedCrossRefGoogle Scholar
  53. Ling CC, Yorke E, Amols H, Mechalakos J, Erdi Y, Leibel S, Rosenzweig K, Jackson A (2004) High-tech will improve radiotherapy of NSCLC: a hypothesis waiting to be validated. Int J Radiat Oncol Biol Phys 60:3–7PubMedCrossRefGoogle Scholar
  54. Liu T, Xu W, Yan WL, Ye M, Bai YR, Huang G (2007) FDG-PET, CT, MRI for diagnosis of local residual or recurrent nasopharyngeal carcinoma, which one is the best? A systematic review. Radiother Oncol 85:327–335PubMedCrossRefGoogle Scholar
  55. MacManus MP, Hicks RJ (2008) Where do we draw the line? Contouring tumors on positron emission tomography/computed tomography. Int J Radiat Oncol Biol Phys 71:2–4PubMedCrossRefGoogle Scholar
  56. MacManus MP, Hicks RJ, Matthews JP, Hogg A, McKenzie AF, Wirth A, Ware RE, Ball DL (2001) High rate of detection of unsuspected distant metastases by pet in apparent stage III non-small-cell lung cancer: implications for radical radiation therapy. Int J Radiat Oncol Biol Phys 50:287–293PubMedCrossRefGoogle Scholar
  57. MacManus MP, Bayne M, Fimmell N, Reynolds J, Everitt S, Ball D, Pitman A, Ware R, Lau E, Hicks R (2007) Reproducibility of “Intelligent” contouring of gross tumor volume in non-small cell lung cancer on PET/CT images using a standardized visual method. Int J Radiat Oncol Biol Phys 69:S154–S155CrossRefGoogle Scholar
  58. Madani I, Duthoy W, Derie C, De Gersem W, Boterberg T, Saerens M, Jacobs F, Gregoire V, Lonneux M, Vakaet L, Vanderstraeten B, Bauters W, Bonte K, Thierens H, De Neve W (2007) Positron emission tomography-guided, focal-dose escalation using intensity-modulated radiotherapy for head and neck cancer. Int J Radiat Oncol Biol Phys 68:126–135PubMedCrossRefGoogle Scholar
  59. Mah K, Caldwell CB, Ung YC, Danjoux CE, Balogh JM, Ganguli SN, Ehrlich LE, Tirona R (2002) The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study. Int J Radiat Oncol Biol Phys 52(2):339–350PubMedCrossRefGoogle Scholar
  60. Miwa K, Matsuo M, Shinoda J, Oka N, Kato T, Okumura A, Ueda T, Yokoyama K, Yamada J, Yano H, Yoshimura S, Iwama T (2008) Simultaneous integrated boost technique by helical tomotherapy for the treatment of glioblastoma multiforme with 11C-methionine PET: report of three cases. J Neurooncol 87:333–339PubMedCrossRefGoogle Scholar
  61. Munley MT, Marks LB, Scarfone C, Sibley GS, Patz EF Jr, Turkington TG, Jaszczak RJ, Gilland DR, Anscher MS, Coleman RE (1999) Multimodality nuclear medicine imaging in three-dimensional radiation treatment planning for lung cancer: challenges and prospects. Lung Cancer 23:105–114PubMedCrossRefGoogle Scholar
  62. Nakamoto Y, Tatsumi M, Hammoud D, Cohade C, Osman MM, Wahl RL (2005) Normal FDG distribution patterns in the head and neck: PET/CT evaluation. Radiology 234:879–885PubMedCrossRefGoogle Scholar
  63. Nehmeh SA, Erdi YE, Pan T, Pevsner A, Rosenzweig KE, Yorke E, Mageras GS, Schoder H, Vernon P, Squire O, Mostafavi H, Larson SM, Humm JL (2004) Four-dimensional (4D) PET/CT imaging of the thorax. Med Phys 31:3179–3186PubMedCrossRefGoogle Scholar
  64. Nestle U, Walter K, Schmidt S, Licht N, Nieder C, Motaref B, Hellwig D, Niewald M, Ukena D, Kirsch CM, Sybrecht GW, Schnabel K (1999) 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys 44:593–597PubMedCrossRefGoogle Scholar
  65. Nestle U, Hellwig D, Schmidt S, Licht N, Walter K, Ukena D, Rübe C, Baumann M, Kirsch CM (2002) 2-Deoxy-2-[18F]fluoro-d-glucose positron emission tomography in target volume definition for radiotherapy of patients with non-small-cell lung cancer. Mol Imaging Biol 4:257–263PubMedCrossRefGoogle Scholar
  66. Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, Rübe C, Kirsch CM (2005) Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer. J Nucl Med 46:1342–1348PubMedGoogle Scholar
  67. Nestle U, Kremp S, Grosu A (2006) Practical integration of [(18)F]-FDG-PET and PET-CT in the planning of radiotherapy for non-small cell lung cancer (NSCLC): the technical basis ICRU-target volumes, problems, perspectives. Radiother Oncol 81:209–225PubMedCrossRefGoogle Scholar
  68. Nestle U, Weber W, Hentschel M, Grosu AL (2009) Biological imaging in radiation therapy: role of positron emission tomography. Phys Med Biol 54:R1–R25PubMedCrossRefGoogle Scholar
  69. Nishioka T, Shiga T, Shirato H, Tsukamoto E, Tsuchiya K, Kato T, Ohmori K, Yamazaki A, Aoyama H, Hashimoto S, Chang TC, Miyasaka K (2002) Image fusion between 18FDG-PET and MRI/CT for radiotherapy planning of oropharyngeal and nasopharyngeal carcinomas. Int J Radiat Oncol Biol Phys 53:1051–1057PubMedCrossRefGoogle Scholar
  70. Paulino AC, Koshy M, Howell R, Schuster D, Davis LW (2005) Comparison of CT- and FDG-PET-defined gross tumor volume in intensity-modulated radiotherapy for head-and-neck cancer. Int J Radiat Oncol Biol Phys 61:1385–1392PubMedCrossRefGoogle Scholar
  71. Picchio M, Giovannini E, Crivellaro C, Gianolli L, di Muzio N, Messa C (2010) Clinical evidence on PET/CT for radiation therapy planning in prostate cancer. Radiother Oncol 96:347–350PubMedCrossRefGoogle Scholar
  72. Plathow C, Weber WA (2008) Tumor cell metabolism imaging. J Nucl Med 49(Suppl 2):43S–63SPubMedCrossRefGoogle Scholar
  73. Plotkin M, Gneveckow U, Meier-Hauff K, Amthauer H, Feussner A, Denecke T, Gutberlet M, Jordan A, Felix R, Wust P (2006) 18F-FET PET for planning of thermotherapy using magnetic nanoparticles in recurrent glioblastoma. Int J Hyperth 22:319–325CrossRefGoogle Scholar
  74. Pötzsch C, Hofheinz F, van den Hoff J (2006) Vergleich der Inter-Observer-Variabilität bei manueller und automatischer Volumenbestimmung in der PET. Nuklearmedizin 45:A42Google Scholar
  75. Rahn AN, Baum RP, Adamietz IA, Adams S, Sengupta S, Mose S, Bormeth SB, Hor G, Bottcher HD (1998) Value of 18F fluorodeoxyglucose positron emission tomography in radiotherapy planning of head-neck tumors. Strahlenther Onkol 174:358–364PubMedCrossRefGoogle Scholar
  76. Rosenzweig KE, Sura S, Jackson A, Yorke E (2007) Involved-field radiation therapy for inoperable non-small-cell lung cancer. J Clin Oncol 25(35):5557–5561PubMedCrossRefGoogle Scholar
  77. Ross CS, Hussey DH, Pennington EC, Stanford W, Doornbos JF (1990) Analysis of movement of intrathoracic neoplasms using ultrafast computerized tomography. Int J Radiat Oncol Biol Phys 18:671–677PubMedCrossRefGoogle Scholar
  78. Scarfone C, Lavely WC, Cmelak AJ, Delbeke D, Martin WH, Billheimer D, Hallahan DE (2004) Prospective feasibility trial of radiotherapy target definition for head and neck cancer using 3-dimensional PET and CT imaging. J Nucl Med 45:543–552PubMedGoogle Scholar
  79. Schaefer A, Kremp S, Hellwig D, Rube C, Kirsch CM, Nestle U (2008) Target volumes derived from FDG-PET in lung cancer: Phantom measurements for delineation of contours Eur J Nucl Med (in press)Google Scholar
  80. Schoder H, Erdi YE, Chao K, Gonen M, Larson SM, Yeung HW (2004) Clinical implications of different image reconstruction parameters for interpretation of whole-body PET studies in cancer patients. J Nucl Med 45:559–566PubMedGoogle Scholar
  81. Schoder H, Carlson DL, Kraus DH, Stambuk HE, Gonen M, Erdi YE, Yeung HW, Huvos AG, Shah JP, Larson SM, Wong RJ (2006) 18F-FDG PET/CT for detecting nodal metastases in patients with oral cancer staged N0 by clinical examination and CT/MRI. J Nucl Med 47:755–762PubMedGoogle Scholar
  82. Schwartz DL, Ford E, Rajendran J, Yueh B, Coltrera MD, Virgin J, Anzai Y, Haynor D, Lewellyn B, Mattes D, Meyer J, Phillips M, Leblanc M, Kinahan P, Krohn K, Eary J, Laramore GE (2005) FDG-PET/CT imaging for preradiotherapy staging of head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys 61:129–136PubMedCrossRefGoogle Scholar
  83. Senan S, De Ruysscher D, Giraud P, Mirimanoff R, Budach V (2004) Literature-based recommendations for treatment planning and execution in high-dose radiotherapy for lung cancer. Radiother Oncol 71:139–146PubMedCrossRefGoogle Scholar
  84. Shirato H, Seppenwoolde Y, Kitamura K, Onimura R, Shimizu S (2004) Intrafractional tumor motion: lung and liver. Semin Radiat Oncol 14:10–18PubMedCrossRefGoogle Scholar
  85. Tanderup K, Olsen DR, Grau C (2006) Dose painting: art or science? Radiother Oncol 79:245–248PubMedCrossRefGoogle Scholar
  86. Tarantola G, Zito F, Gerundini P (2003) PET instrumentation and reconstruction algorithms in whole-body applications. J Nucl Med 44:756–769PubMedGoogle Scholar
  87. Thorwarth D, Geets X, Paiusco M (2010) Physical radiotherapy treatment planning based on functional PET/CT data. Radiother Oncol 96:317–324PubMedCrossRefGoogle Scholar
  88. van Tinteren H, Hoekstra OS, Smit EF, van den Bergh JH, Schreurs AJ, Stallaert RA, van Velthoven PC, Comans EF, Diepenhorst FW, Verboom P, van Mourik JC, Postmus PE, Boers M, Teule GJ (2002) Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non-small-cell lung cancer: the PLUS multicentre randomised trial. Lancet 359:1388–1393PubMedCrossRefGoogle Scholar
  89. Vanuytsel LJ, Vansteenkiste JF, Stroobants SG, De Leyn PR, De Wever W, Verbeken EK, Gatti GG, Huyskens DP, Kutcher GJ (2000) The impact of (18)F-fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer. Radiother Oncol 55:317–324PubMedCrossRefGoogle Scholar
  90. von Schulthess GK, Steinert HC, Hany TF (2006) Integrated PET/CT: current applications and future directions. Radiology 238:405–422CrossRefGoogle Scholar
  91. Weber WA, Wester HJ, Grosu AL, Herz M, Dzewas B, Feldmann HJ, Molls M, Stocklin G, Schwaiger M (2000) O-(2-[18F]fluoroethyl)-l-tyrosine and L-[methyl-11C]methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med 27:542–549PubMedCrossRefGoogle Scholar
  92. Weber WA, Dick S, Reidl G, Dzewas B, Busch R, Feldmann HJ, Molls M, Lumenta CB, Schwaiger M, Grosu AL (2001) Correlation between postoperative 3-[(123)I]iodo-L-alpha-methyltyrosine uptake and survival in patients with gliomas. J Nucl Med 42:1144–1150PubMedGoogle Scholar
  93. Zaidi H, El Naqa I (2010) PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques. Eur J Nucl Med Mol Imaging 37:2165–2187PubMedCrossRefGoogle Scholar
  94. Zimny M, Hochstenbag M, Lamers R, Reinartz P, Cremerius U, Ten Velde G, Büll U (2003) Mediastinal staging of lung cancer with 2-[fluorine-18]-fluoro-2-deoxy-d-glucose positron emission tomography and a dual-head coincidence gamma camera. Eur Radiol 13:740–747PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Radiation OncologyUniversity of FreiburgFreiburgGermany

Personalised recommendations